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ABSTRACT

Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, 
differentiation, and development of various cell types in a tissue specific manner. 
Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate 
during the developmental phases of cardiac, muscle, vascular, immune and skeletal 
systems. Through their associations with various cellular factors MEF-2 isoforms 
can trigger alterations in complex protein networks and modulate various stages of 
cellular differentiation, proliferation, survival and apoptosis. The role of the MEF-2 
family of transcription factors in the development has been investigated in various 
cell types, and the evolving alterations in this family of transcription factors have 
resulted in a diverse and wide spectrum of disease phenotypes, ranging from cancer 
to infection. This review provides a comprehensive account on MEF-2 isoforms (A-D) 
from their respective localization, signaling, role in development and tumorigenesis as 
well as their association with histone deacetylases (HDACs), which can be exploited 
for therapeutic intervention.

INTRODUCTION

Myocyte enhancer factor (MEF)-2 is a member 
of the MCM+Agamous+Deficiens+Serum response 
factor (MADS) box group of transcription factors. 
MEF-2 transcription factors have been well studied 
in the context of various developmental programs, 
including those of skeletal muscle, cardiac muscle, 
and neural tissue [1]. There are 4 isoforms of MEF-2, 
namely MEF-2A, MEF-2B, MEF-2C, and MEF-2D. 
These isoforms play an important role in embryogenesis 
and other epigenetic modifications that control gene 
expression [2–14]. Initially studied in the context of 
muscle development; involvement of MEF-2 is now well 
established in B-cell development, T-cell differentiation 
and thymocyte selection. MEF-2 regulates calcium-
dependent transcription of the Interleukin-2 (IL-2) 
gene in T lymphocytes, and down-modulating MEF-
2 by siRNA in primary human T cells leads to the 

inhibition endogenous IL-2 transcription. Due to intrinsic 
involvement of MEF-2 in T-cell development and IL-2 
transcription, this transcription factor has been associated 
with T-cell leukemias/lymphomas (TCLs) in addition to 
a variety of other cancers as will be discussed later for 
each isoform. There are four major subtypes of TCLs: 
human T-Cell Acute Lymphoblastic Leukemia/Lymphoma 
(T-ALL), Adult T-Cell Leukemia/Lymphoma and Peripheral 
T-cell Lymphoma/unspecified (PTCL/U) [15]. MEF-2 
isoforms are transcriptionally dysregulated in T-ALL and 
possess non-rearranged T-cell receptors [15, 16]. Moreover, 
MEF-2 has been implicated in HTLV-1-induced ATLL [17], 
and is under clinical investigation in various trials of CTCL 
and PTCL by targeting via HDACi [18].

Over the years, research progress has altered our 
perception of MEF-2 as less of a conventional transcription 
factor involved in development, and more as a vital 
player in tumor and leukemogenesis. MEF-2 is not only 
implicated in development, regulation and carcinogenesis, 
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but also in chronic viral infections such as Epstein-Barr 
virus (EBV) [19–22], Human immunodeficiency virus-1 
(HIV-1) [23] and Human T-cell leukemia virus-1 (HTLV-
1) [17]. In addition, MEF-2 has been implicated in muscle 
related parasitic infections such as Trichinella [24]. It can 
also act as an immune-metabolic switch that can regulate 
infection susceptibility in drosophila models [25]. Our 
investigations into MEF-2 and HTLV-1 [26–40] are now 
providing rationale towards potential therapeutic strategies 
against virally induced ATLL based upon MEF-2: HDAC 
interactions. Our lab was the first to describe MEF-2A as 
a regulator of viral gene expression in the pathogenesis 
of the retrovirus HTLV-1. HTLV-1 encodes an oncogenic 
protein in the pX region of the viral genome known as 
Tax. Tax directly binds to MEF-2A and together with 
various co-activating transcription complexes hijacks 
the host transcriptional machinery to increase viral gene 
expression [17, 28]. With the exception of this study, the 
roles of MEF-2 and its isoforms in the course of HTLV-
1 infection remain largely unexplored. MEF-2 isoforms 
were reported as the direct gene target of EBV nuclear 
antigen 1 (EBNA1), which supports the survival of 
EBV infected B-lymphocytes. EBNA-1 bound to B-cell 
specific transcription factors can inhibit MEF-2B and 
also suppresses cell growth as well as the viability of 
latently infected EBV cells [21, 22]. Additionally, other 
groups reported that MEF-2B enhances the activity of the 
promoter Zp of viral trans-activator protein BZLF1 by 
approximately 17.8-fold and promotes viral reactivation 
from latency [21].

MEF-2 contains a highly conserved MADS domain 
in the N-terminus, approximately 55 amino acids. 
The adjacent MEF-2 domain (29 amino acids) is also 
evolutionarily conserved, and serves as the DNA binding 
domain, interaction region for other proteins, and a site 
for dimerization. The MEF-2 domain acts as a docking 
site for various coactivators such as p300, CREB, etc., 
and corepressors including CABIN1, class IIa HDACs 
(histone deacetylases) and some kinases like GSK3β and 
other selective regulators like Protein Kinase A (PKA) [6, 
8, 41, 42]. The transcriptional program of MEF-2 involves 
interactions with various coactivators such as p300, CBP, 
cFOS, cJUN, and ATF [43–52]. Another negative regulator 
of MEF-2 is Glycogen synthase kinase 3β (GSK3β) which 
has an indirect role of regulation of suppression of MEF-2 
by modulation of p38MAPK. Pharmacological inhibition 
of GSK3β resulted in the increased activity of MEF-
2(A-D) expression in myoblasts and cardiac myocytes. 
In-silico analysis showed consensus sites for GSK3β on 
MEF-2 as (S/T) XXX(S/T), although in vitro kinase assay 
stated that MEF-2A is only a weak substrate. Heart specific 
knockout of GSK3β in mice resulted in the upregulation of 
p38MAPK activity, suggesting the GSK3β as a negative 
regulator of MEF-2 isoforms and suggested crosstalk 
between the P38MAPK and GSK3β [53]. In cultured 
cerebellar neurons, a non-competitive inhibitor of GSK3β, 

inhibited caspase-3 activation and chromatin condensation 
but removing the depolarizing potassium and serum. 
Also, Lithium decreased MEF-2D hyperphosphorylation 
and apoptosis induced by calcineurin inhibition under 
depolarizing conditions. This suggests that GSK-3β 
phosphorylates and inhibits pro-survival activity of MEF-
2D in cerebellar granular neurons [54]. GSK3β has been 
implicated in neuronal death and increase in its activity can 
induce the neurodegeneration and Alzheimer’s disease. It 
has been stated that phosphorylation of MEF-2D at three 
specific residues in the transactivation domain inhibits 
MEF-2D transcriptional activity. Overexpressing a MEF-2 
mutant resistant to GSK3β inhibition protected cerebellar 
granular neurons survival, stating the more suppressive 
role of GSK3β role in MEF-2 transcriptional activity [55]. 
In cardiomyocytes, CaMKII promotes hypertrophy and 
pathological remodeling by phosphorylating HDAC4 and 
subsequent activation of MEF-2. Protein kinase A (PKA) 
overcomes CaMKII mediated activation and selectively 
activates MEF-2 by regulated proteolysis of HDAC4. 
PKA degrades the N-terminal of HDAC4(HDAC-NT), 
which selectively inhibits the MEF-2 domain but not the 
SRF, thereby antagonizing the prohypertropic activity of 
CaMKII, without causing any effect on the cardiomyocyte 
survival and aiding in the cardio-protection and other 
cellular processes [56]. Although in certain studies it 
has been claimed that activation of PKA elevates the 
intracellular levels of cyclic AMP (cAMP) and inhibits 
skeletal myogenesis and this suggests MEF-2D as primary 
target of PKA and represses the transactivation of MEF-
2D, but enhanced accumulation of HDAC4-MEF-2 
complex inhibits the skeletal muscle differentiation 
[57]. It has been also shown that in embryonic day 18 
(E18), Sprague Dawley hippocampal neurons, with the 
experimental induction of cAMP/PKA signaling promoted 
apoptosis. Also, Krüppel- like factor 6 (KLF6) was a 
transcriptional target of MEF-2 hippocampal neurons and 
knockdown of KLF6 antagonized the pro-survival role of 
MEF-2D and caused neuronal cell death [58]. HDACs are 
important and well characterized transcriptional partners 
of MEF-2, which have been exploited for therapeutic 
intervention using HDAC inhibitors (HDACi) to modulate 
the transcriptional machinery via the HDAC: MEF-2 axis. 
There are 18 categories of HDACs classified on the basis 
of their homology with yeast transcriptional regulator 
RPD3 and other biochemical properties [59]. The histone 
tails and their interactions with the DNA that control their 
modifications lead to activation or repression of gene 
transcription. Of these HDACs, classes I, II, and IV are 
zinc dependent and class III is NAD+ dependent. Class 
I HDACs [1–3, 8] are expressed ubiquitously in human 
cell lines and tissues, and are predominantly expressed 
in the nucleus. The class II HDACs can be defined into 
two subgroups IIA and IIB, which comprise HDAC4, 5, 
7, and 9, and HDAC6, and 10 respectively, and they tend 
to shuttle between the nucleus and the cytoplasm. The 
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third major group of HDACs consist of Class III HDACs 
and are also known as Sirtuins (SIRT1-7); at present their 
subcellular localization and tissue-specific properties if 
any, are not fully known. Class IV HDACs consists of 
only the most recently discovered HDAC11, and shows 
homology with both classes I and II [22, 60–70]. Class IIa 
HDACs are involved in the direct binding and suppression 
of MEF-2 proteins through the MADS/MEF-2 domains in 
the N-terminus. Association of class II HDACs with MEF-
2 results in the deacetylation of histones in the vicinity of 
MEF-2 DNA-binding sites and subsequent suppression of 
MEF-2 target genes.

Many HDACs are a part of multiprotein complexes 
and interact with various proteins that affect their activity and 
specificity, and are controlled by various post-translational 
modifications such as phosphorylation, acetylation, and 
sumoylation [71, 72]. HDACs are constitutively bound 
with co-repressor complexes including HDAC1: SIN3, 
NURD and HDAC3: NCOR1 (nuclear receptor co-repressor 
1) and SMRT (silencing mediator of retinoic acid and 
thyroid hormone receptor) [73]. The class IIa HDACs form 
multiprotein complexes with MEF-2, NCOR1 and SMRT 
along with association with HDAC3 for regulation of its 
deacetylase activity. The nuclear co-repression of the various 
transcription factors is regulated by phosphorylation events 
which promotes the binding of 14-3-3 via G-protein coupled 
receptors, and results in their shuttling back to the cytosol thus 
allowing for reactivation of the target genes [74]. HDACs 
not only target histone moieties but target non-histone targets 
as well, thereby enhancing the diverse regulatory properties 
of PTMs. There are lysine acetylation signatures that have 
been identified not only on nuclear proteins but also on 
cytosolic and mitochondrial proteins across many different 
species [75]. More recently, the MEF-2: HDAC axis has also 
been implicated in various cancers. Increased expression 
of class IIa HDACs has been correlated with suppression 
of MEF-2 transcriptional activity and poor prognosis of 
estrogen receptor-positive (ER+) breast tumors as well as 
increased proliferation of mammary epithelial cells [76]. 
Overexpression of HDAC9 has been linked to poor prognosis 
of oral squamous cell carcinoma by targeting MEF-2D and 
repressing expression of MEF2-dependent genes [77]. Class 
IIa HDACs in conjunction with MEF-2 have been implicated 
in leiomyosarcomas as well [78].

Because of their widespread influence on 
oncogenesis, HDACs have emerged as the target of an 
entire class of anticancer drugs collectively known as 
HDACi (Histone deacetyalase inhibitors) that encompass 
a diverse group of small molecule drugs that can induce 
apoptosis, cell cycle arrest, differentiation, and autophagy 
of cancer cells and promote anti-angiogenic effects [79–
86]. These drugs are mostly efficacious for treatment of 
leukemias, and have not shown great success against solid 
tumors [83, 86]. MEF-2 proteins also play a key role in 
T-cell survival by interacting with calcium-regulated NFAT 
family members, p300, and p/CAF [87–91]. This review 

will provide a detailed discussion on the signaling pathways 
that control the activation of different isoforms of MEF-
2 via various signaling molecules and cascades, and their 
implications in various disease phenotypes. Furthermore, 
this review will also provide a glimpse of the potential of 
HDACi in the context of MEF-2-based therapeutics.

REGULATION OF MEF-2

MEF-2 family proteins act as effector molecules 
for multiple signaling cascades, with the major regulators 
of their signaling being activated and guided by multiple 
pathways through various second messenger and signaling 
molecules. Various activators of MEF-2 activity include 
Calcium (Ca2+)-mediated signaling, Mitogen activated 
protein signaling (MAPK), Wnt signaling and the PI3K/AKT 
signaling pathways. The basal expression in various tissues 
and cells will be illustrated in Figure 1 and a detailed outline 
of the key regulatory molecules as well as the signaling 
pathways are provided in Figures 2 and 3 of this review.

Calcium mediated regulation

Calcium is a critical second messenger in various 
cellular processes in the cell. The major calcium/
calcineurin responsive elements present in the NUR77/
NR4A1 promoter act as docking sites for MEF-2 
transcription factors. NFAT (Nuclear Factor in activated T 
cells) is activated by calcium influx, and in turn interacts 
with MEF-2D for its activation via calcineurin. NF-κB 
becomes activated when stimulation of the T-cell receptor 
results in calcium and protein kinase-mediated signaling 
that activates the IκB kinase (IKK) complex which then 
phosphorylates inhibitory κB proteins (IκBs), triggering 
their degradation by the proteasome and thus allowing NF-
κB to translocate to the nucleus. The calcineurin-mediated 
dephosphorylation of MEF-2 at residue S408 activates 
the switch from sumoylation to acetylation at lysine-408, 
leading to the inhibition of the differentiation of the 
dendritic claw [92]. Furthermore, Calcineurin binding 
protein 1 (CABIN1), MEF-2-interacting transcriptional 
repressor (MITR), and HDAC4 are repressors of MEF-2 
activity. CABIN-1, together with MITR and HDAC4, have 
been shown to repress MEF-2 transcriptional activation 
by binding to MEF-2 constitutively. HDAC4 and MITR 
contain calmodulin binding domains that are similar to 
the MEF-2 binding domain; in response to an influx of 
calcium, calmodulin binds to Cabin-1 and HDAC4 in turn 
releases MEF-2 and derepresses its transcriptional activity 
[47]. T cells expressing a truncated mutant of CABIN1, 
devoid of the C-terminus, serves as the binding domain 
for MEF-2 and calcineurin, showed significant increase 
in the release of cytokines such as IL-2, IL-13, IL-4 and 
IFN-γ [93]. Calreticulin represents another chaperone 
protein in the calcium signaling to MEF-2. Calreticulin 
is located in the ER/SR (endoplasmic/sarcoplasmic 
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reticulum), and modulates the intracellular Ca2+ stores 
and associated signaling events. Calreticulin is known 
to control myocardial development; in the absence of 
Calreticulin (Crt–/–), there is impaired nucleocytoplasmic 
transport of the cardiac transcription factor MEF-2C [94], 
and myofibrillogenesis is impeded in a calcium dependent 

manner. The Ca2+/calmodulin-dependent protein kinase 
IIδ2 (CaMKIIδ2) is a positive regulator of vascular smooth 
muscle cells (VSMCs) dedifferentiation from contractile 
to synthetic phenotype in chronic vascular diseases such as 
atherosclerosis, that contribute to the growth of neointima. 
MEF-2 is a transcriptional activator of the VSM phenotype 

Figure 1: Basal expression of MEF-2 isoforms in organ systems and tissues in RNA and protein. The expression of 
MEF-2 isoforms are illustrated in the various organ systems at the transcriptome level in TPM (transcripts for kilobase million) via RNA-
seq expression and the protein expression from high to low levels which is obtained from the immune-cytochemistry quantification  
(https://www.proteinatlas.org/).

https://www.proteinatlas.org/
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and regulated in an HDAC-dependent manner, and 
suppression of CaMKIIδ2 decreased the DNA binding 
affinity of MEF-2 and down regulation of its target genes 
Nur77 and MCP1n [90]. Calpain-3 (Capn-3) is a calcium-
dependent proteolytic enzyme which also regulates certain 
non-proteolytic functions. MEF-2A has been implicated 
in regulating Capn3 gene expression by occupying the 
promoter region of the Capn3 gene in rat denervated 
gastrocnemius muscle tissue, positively correlated with 
the increase of MEF-2A expression in protein and RNA 
expression in L6 myoblasts [95]. Calcium is known to 
exert an important role in the survival and proliferation 
of ATLL cells and NFAT family members have been 
found to be activated in HTLV-1 transformed cells [96]. 
In HTLV-1-infected cells, the viral transactivator protein 
Tax interacts with a number of transcription factors and 

proteins to stimulate T-cell proliferation, many of them 
regulated by calcium [97].

In HTLV-1-infected cells, Tax-mediated activation 
of histone acetylase p300, CRE-binding protein (CBP), 
and p300/CBP associated factor (p/CAF), among 
others, results in transcriptional activation and T-cell 
proliferation [17]. For instance, Tax-mediated activation 
of NF-κB results in expression of interleukin-2 (IL-2)/
IL-2 receptor (IL-2R), IL-9, IL-13, IL-15/IL-15R, and 
receptors of the tumor necrosis factor family, thereby 
promoting proliferation as well as transformation of 
T cells [97]. MEF-2 proteins also play a key role in 
regulating T-cell survival by associating with proteins 
including p300, p/CAF, and NFAT and are regulated 
by calcium [17]. Cabin1, MITR, and HDAC4 are 
repressors of MEF-2 activity that are displaced by the 

Figure 2: Calcium signaling affecting MEF-2 transcription at steady state versus the activated state in T cells. MEF-2 
is constitutively bound with co-repressor complex, which comprises of CABIN-1, HDAC3 and Class II HDACs along with SMRT/NCOR 
in steady state. With the activation of stimulus, calcium stores from the ER are released into the cytoplasm via the IP3 receptor activation. 
The Ca2+ activates the calmodulin-calcineurin complex, which dephosphorylates the inactive NFAT in the cytoplasm into activated NFAT 
and translocates into the nucleus (this has been observed in depolarized neurons and skeletal myoblasts in specific isoforms of MEF-2). In 
T-lymphocytes, Calcium influx activates the CamK and PKA, which allows the transcription of NF-ĸB. PKA phosphorylates CREB and 
pCREB/P300 complex translocates to the nucleus and the co-repressor shuttles out of the nucleus and allows the activation of MEF-2, in 
the proliferation of T cells (shown in Jurkat T-cell line in-vitro).
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calcium/calmodulin complex [98]. Hypercalcemia is 
observed in 31% of ATL patients at disease onset [99]. 
About 70% of ATL patients develop hypercalcemia, 
particularly in the aggressive stage of the disease [100]. 
Calcium levels are often elevated in acute and lymphoma 
forms of ATL, but not in chronic and smoldering forms 
[101]. Hypercalcemia is present in about 50% of acute 
type ATLL patients at diagnosis, and it may develop 
in another third of patients as the disease progresses 
[101]. In contrast to other leukemia cells, ATL cells 
show enhanced growth by addition of calcium in a dose-
dependent manner and inhibited growth in response to 
calcium antagonists and calmodulin inhibitors [102].

MAPK (P38/ERK/JNK) signaling

The other signaling pathways associated with MEF-
2 proteins are mitogen-activated protein kinase (MAPK) 
signaling pathways which control various cellular processes 
such as proliferation, differentiation [103, 104], cell cycle, 
survival and apoptosis as reviewed in [105]. MAPKs are 

serine/threonine kinases that can target both cytoplasmic 
and nuclear substrates. In mammals, there are four canonical 
MAPK pathways: P38 mediated signaling, extracellular 
signal regulated kinase signaling (ERK1/2/5), non-mitogen 
mediated signaling and c-Jun kinase/stress-activated 
protein kinase (JNK/SAPK) signaling [103, 104, 106]. The 
important phosphorylation nuclear targets of p38 include 
ATF1/2/6, p53, MEF-2, and ELK-1 [103, 104]. p38-MEF-2 
signaling is involved in the proliferation and differentiation 
of B cells [107, 108], and also mediates the survival of 
cerebellar granular neurons [109, 110]. It has been further 
implicated in various types of developmental pathways 
in the context of regulation with the MEF-2 family and 
regulates various signaling cascades in cardiomyocyte 
biology [111]. Studies have shown close correlation 
between p38 MAPKs, calcium-calmodulin dependent 
protein kinases and calcineurin signaling pathways that 
activate the expression of myogenesis via activating MEF-
2 transcription factors [112]. The presence of high glucose 
significantly increased p38 MAPK signaling and escalated 
cardiac hypertrophy induced by hyperglycemia, whereas 

Figure 3: Activation of MEF-2 by PI3K-AKT and MAPK signaling. MEF-2 is also activated by PI3K/AKT pathway which 
activates mTOR as a downstream target and also increases the transcription of MyoD and MEF-2 along with other transcription factors. 
The receptor tyrosine kinase (RTK) under specific stimulus activates various different transcription factors of AP-1 family like c-JUN and 
FOS and aids in the activation of MEF-2 via the MAPK family of MEK/ERK.
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miR-373 inhibits MEF-2 activity by down regulating p38 
signaling and reducing glucose induced hypertrophy [113]. 
The activation of p38 MAPK results in the degradation of 
HDAC4 followed by the release of RUNX2 and activation 
of MEF-2 genes in modulating chondrocyte hypertrophy 
[114]. The phosphorylation of p38 MAPK results in the 
interaction of β-catenin and MEF-2 in primary vascular 
smooth muscle cells (VSMCs) via increased β-catenin 
nuclear retention and increased activation of MEF-2 
mediated Wnt/β-catenin signaling for cell proliferation 
[115]. The activation of MEF-2 via a p38-dependent 
pathway causes vascular inflammation through the 
activation of MCP-1 in VSMCs and allows the infiltration of 
macrophages into the endothelium [116]. MEF-2 also plays 
an important role in the Alzheimers disease, specifically 
amyloid precursor protein (APP)-mediated signaling 
pathway by inhibiting neuronal apoptosis by mediating 
the p38 MAPK-dependent pathway and activation of 
MEF-2-dependent gene transcription; alterations in this 
pathway results in the neuronal degeneration that occurs in 
Alzheimer’s disease (AD) [117].

There is a unique MEF-2 interacting domain in the 
C-terminus of ERK5, and mice lacking ERK5 or MEK5 
exhibit cardiovascular defects during embryogenesis 
[118]. ERK5 also activates members of the MEF-2 family 
during the process of monocytic differentiation of myeloid 
leukemia cells [119]. Mouse embryonic fibroblasts that 
lack ERK 1/2 completely fail to proliferate [120]. The 
sheer stress-induced factor Krüppel like factor- 2 (KLF-
2) is transcriptionally induced by a MEK5/ERK5/MEF-
2-MAPK pathway which indirectly activates RhoA which 
causes the formation of actin shear fibers that control the 
alignment of flow and also inhibits the JNK/c-Jun/ATF 
signaling pathway in the vascular endothelial homeostasis 
[121]. It has also been shown that MEF-2 is activated via 
the MEK5-ERK5 pathway by Hepatitis C non-enveloped 
core like particles (HCVne) for altering biological activity 
[122]. MEF-2 and miR-193b-3p and miR-203a have direct 
biological association in downstream p38 signaling and are 
implicated as dysregulated genes in colorectal carcinoma 
[123, 124]. DNA damage induced apoptosis suppressor 
(DDAIS) is a protein that promotes cancer cell survival 
via its anti-apoptotic activity and is activated by NFAT. In 
response to EGF (Epidermal growth factor) stimulation, 
the ERK5/MEF-2 pathway subsequently induces DDIAS 
expression to promote the invasion of cancer cells by 
activation of various β-catenin target genes [125].

Post-translational modifications associated with 
MEF-2

The regulation of MEF-2 is also associated with 
the degradation pathways involved in the cell cycle. It 
has been reported that MEF-2C is degraded in the mitotic 
phase of proliferating cells by Anaphase Promoting 
complex/Cyclosome (APC/C), this downregulation is 

necessary for the efficient progression of the cell cycle 
checkpoints. This mechanism requires the presence 
of 2 phospho-motifs, pSer98 and pSer110, which 
mediate the interaction of CDC20 and MEF-2C for this 
process to occur and can mediate the cell proliferation 
[126]. In primary cerebellar granular neurons, Cyclin-
dependent kinase5(CDK5) induces neurotoxic effects 
by phosphorylating and degrading MEF-2 via a caspase 
dependent manner. Neurotoxic conditions results in the 
nuclear activation of Cdk5 activity, which in-turn resulted 
in the activation of caspase3 and subsequently apoptosis 
[127]. Moreover, in other studies it has been reported that 
CDK5 also stimulated the sumoylation. It has been shown 
that Ser-444 of MEF-2D is required for the sumoylation 
of Lys-439. HDAC4 stimulated the modification by acting 
through Ser444. Opposing this inhibitory function over 
MEF-2D, Calcineurin also known as protein phosphatase 
2B (PP2B) dephosphorylated Ser-444 and inhibited 
sumoylation of Lys-439 thereby activation of MEF-2 
[128]. The transcriptional activity of MEF-2A is highly 
repressed by sumoylation, there are SENPs (Sumo specific 
proteases) which acts as an de-sumoylation enzyme of 
MEF-2A. The expression of SENP2 markedly increased 
the activity of MEF-2A in neuroblastoma cell lines and 
it mediated the activity dependent regulation of MEF-
2A based on the stimuli, thus playing an important role 
in the activation dynamics of MEF-2A [129]. Neuronal 
survival and activity are controlled by MEF-2 isoforms 
and they exhibit a differential stress response to various 
stimuli and certain isoforms of MEF-2 are activated more 
than the others. It has been shown that MEF-2A but not 
MEF-2C or MEF-2D was modified in dopaminergic 
neuronal cell lines. It has been shown that MEF-2A is 
the only isoform that is ubiquitinated in the N’ terminus 
and also markedly reduced the DNA binding activity 
and transcriptional activation. Moreover, interfering 
the degradation of ubiquitinated MEF-2A induced 
neurotoxins associated with Parkinson’s disease (PD 
in model animals suggesting the selective regulation of 
MEF-2 in ubiquitin-proteasome pathway [130]. Redox-
mediated post translational modifications can act has a 
molecular switch in MEF-2 function. Nitric oxide (NO) 
mediates redox reaction called S-nitrosylation of MEF-
2 which acts a redox switch to inhibit both neurogenesis 
and survival. Structural analysis showed the dimerization 
of MEF-2 creates a pocket and nitrosylation occurs on 
the evolutionarily conserved cysteine residue in the 
DNA binding domain, which disrupts the binding and 
transcriptional activity of MEF-2 and leads to impairment 
of neuronal survival and neurogenesis both in-vitro and 
in-vivo [131]. MEF-2 suppresses the excitatory synapse 
number by the degradation of the synaptic scaffold 
protein or post synaptic density protein 95 (PSD-95) 
degradation, a gene that is defective in the rodent model 
of Fragile X syndrome. MEF-2 induces a PP2A mediated 
dephosphorylation of murine double minute-2 (Mdm-2), 
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which is an ubiquitin ligase for PSD-95 which translocates 
to the nucleus and degrades PSD-95 and causes synapse 
elimination [132]. MEF-2D is activated by calcium/
calmodulin-dependent protein Calcineurin (CaN or 
PP2B). Both MEF-2D and CaN bind to the scaffold of 
muscle A-kinase anchoring protein β (mAKAPβ) which 
is localized in the nuclear envelope. This phenomenon 
decreases skeletal myoblast differentiation and inhibits 
neonatal rat ventricular myocyte hypertrophy. The 
formation of signalosomes by mAKAPβ is required for 
the dephosphorylation and desumoylation of MEF-2D in 
C2C12 cells. The decrease in MEF-2D phosphorylation 
switched the activation of p300 instead of type IIA histone 
deacetylases and caused ventricular myocyte hypertrophy, 
suggesting the role of post-translational modifications 
of MEF-2 in the formation of active and repressive 
transcriptional complexes with signalosomes [133].

MEF-2 and its functions in mitochondria

MEF-2 and its isoforms play a critical role in 
mitochondrial maintenance and biogenesis and the 
phenomenon has been established in the various in-vitro 
and in-vivo models. A conserved region of MEF-2 gene, 
the MADS-box phosphorylation domain regulates the 
mitochondrial function in many cell types such as skeletal, 
cardiac and smooth muscle cells [134]. MEF-2 along with 
Serum response factor (SRF) regulate the expression of 
miR-133a and mitochondrial function via translational 
inhibition of mitophagy and cell modulating protein called 
NIX. In mice, MEF-2 also plays an important role in 
mitochondrial biogenesis. It has been shown that specific 
mi-RNAs, such as miRNA-27B regulates mitochondrial 
biogenesis in myocytes via targeting the fork-head box 
j3 (FoxJ3) and downregulated the expression levels 
of downstream targets like MEF-2c, PGC1α, NRF-
1and mtTFA [135]. In xenopus models, mitochondria 
have been linked to the maintenance of synaptic and 
neuronal plasticity by integrated functions of MEF-2 and 
mitochondria. MEF-2 serves as a target of mitochondrial 
caspases and in-turn MEF-2 regulates the mitochondrial 
gene transcription essential for the production of hydrogen 
peroxide and superoxidase controlling the spatio-temporal 
neuronal plasticity [136]. It has also been shown that 
MEF-2D has a neuro-protective ability with neurotoxicity 
associated with the MPTP in Parkinson’s disease [137]. 
This sort of neuroprotective activity is induced by agents 
like Methylene blue (MB) via MEF-2D and can ameliorate 
the neurochemical/neuropathological impairments in 
animal models of various neurodegenerative disorders. 
MB upregulated the expression of mitochondrial NADH 
dehydrogenase -6 (ND6) in a MEF-2D dependent manner, 
and knockdown of MEF-2D abolished the MB mediated 
increase of ND6 and the neuroprotective effect. Moreover, 
MB also induced the activation of AKT pathway and 
suppressed the GSK-3β activity which is an inhibitor of 

MEF-2D function [138]. Some anti-cancer agents like 
SU4312, yielded an unexpected neuroprotective effect 
by potentiating the pro-survival effect of PI3-K/AKT 
pathway to downregulate the inhibitory effect of MEF-
2D inhibitor glycogen synthase kinase-3 beta (GSK3β) 
and ameliorated parkinsonian motor defects and restored 
levels of MEF-2D [137]. It has also been established that 
there is an association between PD and mitochondrial 
toxins, other environmental pesticides. In this study it has 
been shown that mitochondrial-toxin induced nitrosative/
oxidative stress results in the S-nitrosylation of MEF-
2C in A53T mutated cells compared to isogenic controls 
[139], via inhibiting the MEF-2C-PGC1α pathway and 
leading to mitochondrial dysfunction and apoptotic cell 
death. In certain murine models, it has also been shown 
that the activation of conventional Tcells and Tregs (T 
regulatory cells) led to the increase in gene expression 
of OXPHOS (Oxidative phosphorylation). The deletion 
of HDAC9, which is an inhibitor of MEF-2 increased the 
Treg suppressive activity as well as expression of Pgc1α 
and Sirt3 and improved mitochondrial respiration. The 
study shows that key regulators of OXPHOS are required 
for optimal functioning of Tregs and Treg dependent 
allograft acceptance [140].

Mutations in MEF-2 in the context of diseases

Numerous studies have investigated the genetic 
aberrations of MEF-2 in various cancers [1, 141]. 
Mutations in the N-terminal domain lead to defects in 
DNA binding activity and impairs MEF-2 transcriptional 
activity [142]. The C-terminal domain, which acts as the 
regulatory or the catalytic domain, has 2 transactivation 
domains (TADs) which are highly divergent between 
the isoforms; they are also known to contain specific 
phosphorylation sites for multiple kinases, allowing for 
tight regulatory activity of the MEF-2 proteins [143]. The 
final few amino acids of the C-terminal region comprise 
the nuclear localization signal (NLS) for all the isoforms 
which is absent in the MEF-2B isoform, although MEF-
2B can be found both in the nucleus and the cytoplasm 
[144]. The defects associated with the absence and/
or aberrations of MEF-2 have been well characterized 
in murine models and humans. MEF-2 activity is 
coordinated by multiple layers of regulation and all the 
isoforms are subjected to alternative splicing events, 
post-translational modifications in the C-terminus, 
and dimerization capability with other transcription 
factors at the N-terminus. Mutations in these respective 
domains result not only in developmental abnormalities, 
but may also cause tumors, leukemias and aberrations 
in the transcriptional machinery. MEF-2a null mice 
exhibit pre/post-natal defects in cardiac development 
and muscle differentiation [145, 146]. However, mice 
deficient in MEF-2B do not have significant observable 
phenotypes, since the other isoforms can compensate for 
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the loss of its function [147]. Several mouse models have 
been generated to study the abnormalities associated 
with loss of MEF-2C. In the absence of MEF-2C there 
were defects associated with B-cell proliferation and 
BCR stimulation, and a decrease in B-cell numbers in 
the bone marrow [148]. There was also a considerable 
loss of granulocyte progenitor function with a loss of 
function allele of MEF-2c [149]. Preliminary studies of 
MEF-2d-null mice indicated that these mice exhibited 
normal viability and life span, but heterozygous alleles 
of MEF-2c mouse showed debilitating effects in bone 
differentiation, and MEF-2d knock-out mice had 
blindness in photoreceptor cells within the retina [150].

Isoforms of MEF-2

Table 1 summarizes some key information on MEF-
2A, MEF-2B, MEF-2C, and MEF-2D. These isoforms play 
an important role in embryogenesis and other epigenetic 
modifications that control gene expression [13, 151–153]. 
The chromosomal coordinates of MEF-2 are 15, 19, 5 and 
1 for the MEF-2A, 2B, 2C, and 2D, respectively [154]. The 
perception of MEF-2 as a developmental transcription factor 
has gradually shifted to encompass emerging findings of 
MEF-2 in more pathological processes such as tumorigenesis 
and involvement in viral pathogenesis/gene expression in 
HTLV-1 and activation of latent virus in the case of EBV [17, 
19–22]. The basal RNA and protein expression and various 
aberrations of each isoform will be discussed in detail in the 
following sections and is illustrated in Figure 1.

MEF-2A

MEF-2 genes are expressed in very distinct 
and specific temporo-spatial patterns. MEF-2A is 
transcriptionally autoregulated and is activated by Erk5 and 
p38 MAPK signaling; the MEF-2a protein product regulates 
transcription either positively or negatively [53]. MEF-
2A is a DNA binding transcription factor which induces 
muscle development, neuronal differentiation, cell growth 
and apoptosis specific genes. It is located on chromosome 
15q26 [130]. MEF-2A is present ubiquitously in all tissues 
but enriched in the brain, endocrine tissues, muscle, lungs, 
skin and soft tissues. In the CNS, at the transcriptome level, 
it is highly expressed at 68.3 TPM (transcript per kilobase 
million) cerebral cortex, but expressed at low levels in 
the hippocampal, caudate or cerebellar regions. However, 
elevated expression of MEF-2 protein is observed in the 
cerebral cortex and cerebellar region. In muscle tissues, 
such as cardiac, skeletal, and smooth muscle, MEF-2 
has medium to high level expression at 59.2 TPM, 21.6 
TPM, and 52.4 TPM, respectively. Higher levels of MEF-
2A protein expression are seen in cardiac and skeletal 
muscles, but considerably less observed in the smooth 
muscle. In the bone marrow and immune system, it is also 
expressed considerably less (medium level) at both at the 

transcriptome and the protein level (12 TPM). MEF-2A was 
found to be highly overexpressed in gliomas, lymphomas 
and melanomas as well as lung cancers but not to a great 
extent (https://www.proteinatlas.org/).

MEF-2A in muscle development

It has been suggested that MEF-2A is absolutely 
indispensable for proper myoblast differentiation compared 
to other isoforms. In bovine myoblasts, via regulation 
through myozenin2 (MyoZ2) [2], it has been shown to be a 
transcriptional regulator of Calpain3 (Capn3) gene expression, 
which in turn controls L6 rat myoblast differentiation. Defects 
in this pathway might result in atrophy of the proximal limb 
muscles [95]. Skeletal muscle regeneration and repair are 
crucial for regeneration of diseased muscle. Injured MEF-2a 
knockout mice are impaired by myofiber defects and necrosis, 
a process controlled by MEF-2A via the microRNA (miRNA) 
Gtl2-Dio3 locus that downregulates Wnt signaling activity. 
This step is critical for proper muscle regeneration and tissue 
repair and may be dysregulated in muscular dystrophy. The 
same locus is involved in regulating Cited2 in cardiomyocyte 
proliferation via MEF-2A through increased VEGFA activity 
[155]. Also, miR-143 is regulated by MEF-2A in hydrogen 
peroxide-induced senescence in vascular smooth muscle 
cells (VSMCs); overexpression of MEF-2A along with miR-
143 shows synergy in senescence induction whereas the 
knockdown has opposite effects [156]. MEF-2A and AP-1 
provide antagonistic regulation of Heat-shock protein B7 
(HspB7) which has been implicated in muscular atrophy [157].

In diabetic mouse models, MEF-2A knockdown 
in cardiac fibroblasts led to significant reduction of 
hyperglycemia-induced cardiofibroblast proliferation, 
myofibroblast differentiation, and matrix metalloprotease 
(MMP) and collagen activity, as well as improved cardiac 
function and collagen deposition. This process was 
achieved via downregulation of Akt and TGF-β/Smad 
signaling, which can serve as a potential treatment modality 
in diabetic-induced cardiac remodeling. MEF-2A:MEF-
2D heterodimers, responsible for GLUT-4 (Glucose 
transporter-4) transcriptional activity, were shown to be 
selectively decreased in insulin-deficient diabetic rats [158]. 
Protein Kinase B2 (AKT2) is involved in cardiomyocyte 
signaling, heart development and systemic blood pressure. 
AKT2 via EndoG, a mitochondrial-specific nuclease, 
regulates MEF-2A in the myocardium, and the deficiency 
of AKT2 results in defective myocyte development 
through the EndoG:MEF-2A signaling pathway [159]. 
Acute knockdown of MEF-2A results in defective integrity 
of costameres, a macromolecular complex responsible 
for transmission of contractile force through the straited 
muscle cells. This costamere defect results in abstruse 
malformations in myofibrils, defects in focal adhesion and 
adhesion-dependenT-cell death [160].

Xirp2 (also called CMYA3) is a cardiomyopathy-
associated gene induced by Angiotensin-ii (Ang-ii), and 

https://www.proteinatlas.org/
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Table 1: Expression, transcriptional activity and associated diseases of MEF-2 isoforms

Isoforms Expression Development Mutations Activity Gene-targets Disease

MEF-2A

Expressed in 
brain, endocrine 
tissue, lung, skin 
and soft tissue.
Expressed in 
cardiac, skeletal 
and smooth 
muscle.
Highly 
overexpressed 
in glioma, 
lymphoma, and 
melanoma.

Required for 
proliferation, 
differentiation 
and maturation 
of neural stem 
cells into 
neurons and 
glial cells [164, 
165].
Muscle-
regeneration 
and tissue 
repair [95].
Myofibroblast 
differentiation 
[158].

MEF-2A 
mutations is 
associated 
with premature 
myocardial 
infarction and 
coronary heart 
disease [172].
Also associated 
with reduced 
myofibroblast 
proliferation and 
differentiation 
[152].

Downregulation 
of Wnt signaling 
via miRNA/
Gtl2-Dio3 loci 
[155].
Regulates 
miRNA-143 
[156].
Regulates 
Calpain 3 gene 
expression [95].
Also, involved 
in immune 
response [180, 
183, 184].

MEF-2A is 
located on 
chromosome 
15q26 [154].
GSK3beta 
and Xirp2 are 
transcriptional 
target of MEF-
2A [53–55, 161].
Cited2 is 
a possible 
transcriptional 
target [155].

MEF-2A is 
involved in the 
pathogenesis 
of HTLV-1 
and ATLL[18, 
26–40].
 Accelerates the 
progression of 
atherosclerosis 
[184].
Implicated in 
HCC and gastric 
cancer [180, 
183].

MEF-2B

Expressed in 
tonsil, appendix, 
germinal center of 
lymph node, and 
bone marrow.
Highly-expressed 
in lung carcinoma 
and lymphoma.
Expressed in 
cardiac and 
skeletal muscle.

MEF-2B is 
required for the 
development 
of cardiac and 
skeletal muscle 
[189].

Mutation causes 
dysregulation of 
proto-oncogene 
BCL6 [193, 
194].
Associated with 
leukemia and 
carcinoma [193, 
195–197].

Promotes 
tumorigenesis 
[125].

MEF-2B is 
located on 
chromosome 
19p12 [154].
ROS-induced 
NOX-1 
signaling [188].
Binds in the 
promoter of 
DDAIS [125].

Involved in 
follicular 
lymphoma, 
Burkitt’s 
lymphoma, 
mantle cell 
lymphoma, 
splenic marginal 
zone lymphoma, 
and diffuse large 
B cell lymphoma 
[196, 197].
Hypertension 
in VSMCs 
[188] and 
TGFβ-induced 
EMT and 
tumorigenesis 
[125, 191].

MEF-2C

Expressed in 
nucleoplasm and 
neuroplasmic 
vesicles.
Expressed in 
cardiac, skeletal 
muscle and 
brain tissue 
(especially in 
cortical excitatory 
neurons).
Expressed in both 
common myeloid 
& lymphoid 
progenitors.
Maturing 
hematopoietic 
stem cells and B 
cells.

It is involved 
in the 
development 
of cardiac and 
skeletal muscle 
[152].
Development 
of lymphoid 
and myeloid 
progenitor cells 
[153].
Development 
of the 
cerebrocortex 
in its role in 
corticostriatal 
circuit [202].

Associated 
with decline in 
cognitive ability 
as well as in 
development 
of autism, 
schizophrenia, 
and epilepsy [10, 
202–204].
Implicated 
in congenital 
heart defect 
and forelimb 
malformations 
[210, 221].

It possesses 
differential 
activity in 
membrane 
depolarization 
[201].
Required 
for neuronal 
differentiation 
and commitment 
of embryonic 
stem cells [199].

MEF-2C is 
located on 
chromosome 
5q14 [154].
Target genes 
include GPM6A, 
DLx6, Hand2, 
Myogenin, and 
Myokinase [200, 
207, 233].

MEF-2C 
implicated 
in DiGeorge 
syndrome [209].

(Continued)
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a direct transcriptional target of MEF-2A. Both MEF-2A 
and Xirp2 serve as the important downstream regulators 
of Ang-II in mediating pathological cardiac remodeling 
[161]. MEF-2A is also implicated in cardiac hypertrophy 
and myopathy due to arsenic exposure in rats [162]. 
Another study suggests that glycogen synthase kinase3β 
(GSK3β), a suppressor of both myogenesis and cardiac 
hypertrophy, is a transcriptional target of MEF-2A. 
Inhibition of GSK3β results in the activation of the P38 
MAPK pathway and subsequently MEF-2A activity that 
controls skeletal and muscle gene expression [53]. Also, 
inhibition of MEF-2A or MEF-2D results in activation 
of cell cycle genes, but the downregulation of terminal 
differentiation of neonatal rat cardiomyocytes [163].

MEF-2A in neuronal development

All the MEF-2 isoforms are extensively but 
differentially expressed during phases of pre- and post-natal 
development. They follow distinct roles at various stages of 
the maturation of neurons, in neural stem cells that have an 
ability to proliferate and differentiate into various neuronal 
and glial phenotypes. In vivo analysis has implicated 
various MEF-2 transcription factors in synapse regulation 
and neuronal survival [164]. Studies indicate that MEF-2A 
is present in undifferentiated neural stem cells, and after 
subsequent differentiation exhibit higher amounts in neuronal 
cells. MEF-2A plays a critical role in differentiation and 
maturation of neural stem cells into neurons in rat models 
[165]. MEF-2 transcriptional activity is also activated by 

neurotrophins such as brain-derived neurotrophic factor 
(BDNF) via Nur77 and ARC through a novel pathway in 
rat cortical neurons [166]. The glucocorticoid receptor (GR) 
and MEF-2A are the two key transcription factors involved 
in neuronal plasticity, and they both modulate c-JUN, a 
transcriptional target regulating the synapse strength and 
number. MEF-2A is hyper-phosphorylated by GR activation 
and in turn regulates c-JUN, which increases MEF-2A 
DNA binding ability. This molecular cross-talk controls 
genes of neuronal plasticity [167]. SENP2 (Sumo specific 
protease-2) post-translationally regulates MEF-2A in post-
synaptic differentiation, which is de-SUMOylated and 
acetylated at Lys403. This modification inhibits dendritic 
claw differentiation via activation of MEF-2A. SENP2 is 
highly expressed in the cortex and hippocampus and regulates 
sumoylation status of MEF-2A for transcriptional activation 
[129]. Interestingly, sumoylated-MEF-2A is a transcriptional 
repressor which drives the suppression of orphan presynaptic 
sites. Synaptogamin (Syt1) was identified as the direct 
repressed target of sumoylated MEF-2A in neurons. Syt1 
eliminates the orphan presynaptic sites and aids in the 
accumulation of presynaptic material in the maturing boutons, 
which may be implicated in the neuronal connectivity, brain 
development, and disease [168]. Formal thought disorder is 
an important feature of schizophrenia and other psychotic 
disorders. In a cohort study of high-risk family subjects, 
microsatellite linkage analysis and whole genome sequencing 
identified causative variants in the linkage region and reported 
a MEF-2A binding site that was located between two genes 
associated with schizophrenia; the locus 6q25-26 has been 

Isoforms Expression Development Mutations Activity Gene-targets Disease

MEF-2D

Highly expressed 
in cerebrocortex, 
endocrine system, 
skin, kidney, and 
breast.
Present in 
hematopoietic 
stem cells and 
germinal centers 
of lymph node.
Expressed in 
cardiac and 
skeletal muscles.

It is required 
for the 
development of 
neuronal and 
muscle cells 
[53, 54].
Terminal 
differentiation 
of neonatal 
cardiomyocytes 
and human 
macrophages 
[163, 52].

Mutation 
implicated in 
the inhibited 
differentiation 
of common 
lymphoid 
progenitors 
(differentiation 
into CD19 
positive B-cells) 
[248].

Promotes the 
survival of 
dopaminergic 
neurons [242].
In GLUT-4 
transcriptional 
activity [158, 
182].

MEF-2D is 
located on 
chromosome 
1q12-q23 [154].
DYRK1A is 
a target gene 
[240].

MEF-2D is 
involved in 
cancer of the 
colorectal tissue, 
breast, prostate, 
lung, liver, and 
thyroid [124, 
125].
Implicated 
in melanoma 
[279–281], and 
pathobiology 
of B-cell acute 
lymphoblastic 
leukemia 
(B-ALL) [248].
Also, 
Parkinson’s 
disease, cardiac 
myxoma, and 
lung cancer 
[239, 244, 250, 
251].
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implicated in formal thought disorder via dysregulated 
MEF-2A signaling [169]. Also, it has been implicated in 
oxidative stress during aging and other neurodegenerative 
disorders that result in neuronal death. Chaperone mediated 
autophagy (CMA) targets MEF-2A to the lysosomes for 
CMA degradation, and stress-induced destabilization of 
the lysosome results in the disruption of MEF-2A and its 
function thereby leading to neuronal damage in various 
neurodegenerative diseases [170]. MEF-2A was detected in 
patient subjects with temporal lobe epilepsy (TLE) and it 
was significantly downregulated in the temporal neocortex of 
both humans and rats with TLE compared to control groups, 
suggesting a role in the pathogenesis of TLE [171].

MEF-2A mutations and activity control

Contrasting mutational and functional analysis 
of MEF-2A have been reported in many studies which 
identify MEF-2A as a susceptibility gene for premature 
myocardial infarction and coronary artery disease (CAD). 
Specifically, a 21-bp deletion in exon 12 and 3 and other 
missense mutations which affect its transcriptional 
activity have been implicated, but most studies have not 
demonstrated significance for supporting this hypothesis 
[172]. Cohort studies performed for Exon 11 deletion 
examined in CAD subjects reveal that only 0.09% of the 
population in the Sicilian cohort was reported to have 
CAD-associated genes compared to healthy subjects 
[173]. Similarly, in a Chinese-HAN cohort, they found 
4 single nucleotide polymorphisms in Exons 9 and 11, 
one insertion mutation in Exon 11, one deletion mutation 
in Exon 11, and one STR in Exon 11; however, these 
structural changes in Exon 11 of MEF-2A did not relate 
to the sporadic CAD [174]. Similar cohort studies in 
Chinese Han subjects claim that the 3’ UTR may consist 
of functionally relevant nucleotide changes, and 2 single 
nucleotide polymorphisms were detected but deemed not 
significant, but a further haplotype carrier of rs325380-
rs325381 was claimed to be associated with CAD risk, 
suggesting variance in the 3’ UTR of MEF-2A [175]. 
Another study in the Saudi population revealed MEF-
2A as the susceptible gene for the risk of CAD, upon 
analysis of Exon 11 which revealed several substitution 
polymorphisms, insertions/deletions at the 11 CAG 
trinucleotide loci, which introduced premature stop 
codons at 4 nucleotide sequences nt146637, nt146647 
and nt146780 or nt146783 [176].

Exogenous control of MEF-2A can be regulated by 
exercise. Many genes are upregulated during exercise and 
confer protection against diseases such as type 2 diabetes. 
Studies have shown that NRF-1, known to regulate 
mitochondrial oxidative genes, can also affect MEF-2A 
and GLUT-4. Exercise-induced CAMKII activation induced 
hyperacetylation of histones of both NRF-1 and MEF-2A 
genes and increased glucose transport by upregulation of 
GLUT4 in rats [177]. Similar exercise regimens performed 

in mice, where muscle-type carnitine palmitoyl l1 (CPT1b) 
is involved in skeletal muscle mitochondrial β-oxidation, 
suggest binding of MEF-2A to the Cpt1b promoter, 
which elevates the growth of the quadricep muscles and 
development of skeletal muscle; binding activity was 
decreased with exercise training and increased expression 
of HDAC5 which correlates to the decrease in MEF-2A 
activity [178]. Additionally, other studies indicate that 
exercise increased nuclear MEF-2A content and increased 
binding of MEF-2A to the GLUT-4 gene in a AMP activated 
protein kinase (AMPKα2)-dependent mechanism [179].

Infection, immunity and cancer

MEF-2A has been implicated in various disease 
models ranging from neuronal to tumorigenic. It has 
contrasting roles in various tumor types and has been linked 
to various disorders such as hepatocellular carcinoma (HCC), 
gastric cancer, atherosclerosis and also in immunity. TGF-β1 
(transforming growth factor β1) is involved in HCC invasion, 
and MEF-2A along with other isoforms are overexpressed 
in HCC cells in a PI3K/AKT-dependent manner. By 
modulating TGF- β1 signaling, MEF-2A promotes epithelial 
to mesenchymal transition (EMT) [180]. TGF-β is also a 
transcriptional activator of Matrix metalloprotease-10 (MMP-
10) via activation of MEF-2A and downregulation of Class IIa 
HDACs [181]. In gastric cancer MEF-2A is phosphorylated 
by P38 to activate glycolysis via the GLUT-4 transporter 
[182]; moreover, MEF-2A mRNA is overexpressed in 10% of 
tumors of patients with gastric carcinomas. Recently, MEF-
2A has been identified as a proapoptotic factor in therapeutics 
of HCC via activation of caspase-3 and caspase-7, and 
thereby inhibiting growth of HCC xenografts in nude mice 
[183]. MEF-2A has been implicated in the progression of pre-
existing atherosclerotic lesions. The inflammation patterns of 
apolipoprotein E-deficient mice following the knockdown 
of MEF-2A showed accelerated atherosclerosis [184]. Our 
lab was the first to implicate MEF-2A as a regulator of viral 
gene expression in the pathogenesis of HTLV-1. HTLV-1 
encodes the oncogenic trans-activating Tax protein, which 
directly binds to MEF-2A and hijacks the host transcriptional 
machinery to increase viral gene expression [17]. MEF-
2A expression was upregulated in the peripheral blood of 
HTLV-1-infected individuals. We are currently studying 
other isoforms of MEF-2 and their implications in HTLV-
1-induced ATLL (unpublished observations). MEF-2A 
has been reported in the differentiation of many cell types. 
MEF-2A and MEF-2D play dual roles in human macrophage 
terminal differentiation by forming heterodimers with each 
other and activating P300 binding and c-JUN expression in 
differentiated macrophages [8].

MEF-2B

MEF-2B is the most distant member of the MEF-
2 family of transcription factors based on phylogenetic 
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analysis, and it also lacks the HJURP_C (Holliday junction 
recognition protein C-terminal) region and other duplication 
events [185]. In the apo structure of MEF-2B (only MADS-
box/MEF-2 domain) without DNA or cofactor binding, it 
showed a preformed DNA binding interface that may be 
important for recognizing the DNA from the minor groove 
side and the C-terminal helix which can serve as the 
docking site for MEF-2 transcription co-factors suggesting 
new interaction patterns [186]. This gene undergoes 
considerable alternative splicing events. MEF-2B is the only 
isoform that is not ubiquitously expressed, but is enriched 
only in bone marrow and immune cells and the gene is 
located on chromosome 19p12. At the transcriptome level 
it is expressed in the appendix, bone marrow, and tonsils 
at 17.6 tpm, 45.7 tpm and 27.2 tpm, respectively. High 
protein expression of MEF-2B is only found in the germinal 
centers of lymph nodes and tonsils, but not in non-germinal 
centers or in other cell types. Low or no expression of MEF-
2B is observed in many cancer types and is significantly 
downregulated in lymphomas and lung carcinomas (https://
www.proteinatlas.org/).

MEF-2B in development

MEF-2B is also involved in developmental programs 
and its mutations have been implicated in the genesis of 
leukemias and carcinomas. In smooth muscle specific 
gene expression, the SMHC (smooth muscle myosin 
heavy chain) gene consists of an A/T rich region which 
provides a binding site for MEF-2B, and overexpression 
of MEF-2B increased SMHC activity suggesting its role 
in SMHC gene regulation [187]. MEF-2B modulates 
inducible expression of NOX-1 in superoxide production 
in various cardiovascular tissues via ATF-1:MEF-2B 
signaling [45]. During cyclic stretch (CS) in VSMCs, 
ROS (reactive oxygen species) are produced via MEF-
2B:NOX1 signaling causing dysfunction of VSMCs by 
switching from contractile to synthetic phenotype leading 
to hypertension [188]. During mouse embryogenesis, 
MEF-2B transcripts were expressed in cardiac and skeletal 
muscle and its gene mapped to chromosome 8, and its 
potent transactivation was controlled in the C-terminal 
domain [189].

MEF-2B is widely implicated in cancer phenotypes 
and poor prognosis based on its mutations and the pathways 
it regulates. In the P19 teratocarcinoma murine stem cell 
line, MEF-2B homologue is differentially expressed during 
development and is predominantly found in non-committed 
cells [190]. In a kinome-wide siRNA screen, the MEK5-
ERK5 signaling axis was implicated in the activation of 
MEF-2B, thereby leading to EMT, lung metastasis and 
invasion in breast cancer cells. This MEK5-ERK5:MEF-2 
axis promoted TGFβ-induced EMT in murine and human 
breast cancer cells. MEF-2B drastically affects the 
morphology of the cell and gene expression patterns during 
EMT [191]. Similarly, EGF activates the ERK5:MEF-
2B pathway which induces the expression of DDAIS, an 

anti-apoptotic protein activated during DNA damage, 
and promotes tumor invasion by activating the β-catenin 
signaling pathway. MEF-2B binds to sequence specific 
promoter binding sites in DDAIS which activates the ERK5/
MEF-2B pathway for promoting tumorigenesis [125].

Extensive MEF-2B mutations in lymphomas

Mutations in MEF-2B have been shown to have 
fatal consequences in different disease phenotypes. 
MEF-2B is a target for somatic mutations in various 
lymphomas, most of these affecting the MADS-box/
MEF-2 domain, and the most frequent being the D83V 
mutation in cancer. Crystallographic analysis revealed 
that most mutations are non-synonymous substitutions 
altering the structure and function of the protein, 
causing changes in the MEF-2 domain from an α-helix 
to β strand with resulting binding defects in various 
transcriptional co-factors. This conformational switch is 
a key mechanism in NHL (Non-Hodgkin’s lymphoma) 
in driving tumorigenesis [192]. MEF-2B acts as a 
transcriptional activator and is mutated in 11% of Diffuse 
large B-cell lymphomas (DLBCL), and 12% of follicular 
lymphomas. BCL6, which is a direct target of MEF-2B, 
controls germinal center B cells. The oncogenic mutations 
in MEF-2B largely impact the dysregulation of the BCL6 
proto-oncogene which controls the cell cycle and B-cell 
differentiation. Mutation in the N-terminal domain results 
in a gain of function phenotype by preventing the binding 
of CABIN-1, a corepressor of MEF-2B. C-terminal 
truncations, nonsense, or frameshift mutations might 
affect the PTMs and transcriptional activity of MEF-2B 
[193]. BCL6 is also regulated by AhR (Aryl hydrocarbon 
receptor)/ARNT complex and wild type MEF-2B and if 
mutated may cause DLBCL [194]. Also, similar studies 
indicate hotspot mutations in K4E, Y69H and D83V in 
DLBCL affecting DNA binding and functional activation 
respectively [195]. Comparative analysis of MEF-2B with 
other germinal center antigens revealed that in differential 
diagnosis of B cell non-Hodgkin’s lymphoma there was 
positive expression of MEF-2B in all FL (follicular 
lymphomas) and BL (Burkitt’s Lymphoma), 8/9 of 
mantle cell lymphomas and 2/24 of Splenic marginal 
zone lymphomas (MZL) and 38/44 DLBCLs but negative 
expression in extranodal MZL and B-lymphoblastic 
lymphomas [196]. Genetic alterations were reported 
in FL and revealed 85% translocations [197], 96% 
mutations in the BCL2 gene and about 15% frequency of 
genetic alterations in MEF-2B. In an extensive analysis 
of various B and T-cell lymphomas to validate MEF-
2B as an immunohistochemical marker, the expression 
revealed a statistically significant association with BCL6 
in DLBCL and indicates MEF-2B as a valuable marker 
for differential diagnosis of various types of lymphomas 
[193]. Clinical interventions via HDACi that function as 
major repressors of MEF-2B activity have been reported. 

https://www.proteinatlas.org/
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Pabinostat which is a Pan-HDACi was used to treat 
relapsing DBLCL subjects in a phase II trial along with/
without rituximab showed durable responses in 28% of 
the patients and early responses were predicted for MEF-
2B and significant increase in the ct-DNA was a surrogate 
for subsequent treatment failure [198].

MEF-2C

MEF-2C is one of the most characterized genes in 
the MEF-2 family and has shown to be involved in various 
neural, cardiac, skeletal, muscle, lymphoid and myeloid 
developmental programs, and has also been implicated in 
various types of T-cell and B-cell lymphomas, carcinomas, 
many neurodegenerative diseases and vascular disorders. 
MEF-2C has transactivation and DNA binding domains 
and its gene is located on chromosome 5q14.3. It is 
highly expressed in the nucleoplasm and nucleoplasmic 
vesicles. Although it is ubiquitous in nature, its enrichment 
is limited to specific cell types found in the brain and 
muscle tissues. The highest expression of MEF-2C 
mRNA transcripts is found in the cerebral cortex of the 
brain (197.9 tpm), but is absent in the hippocampal and 
cerebellar regions. Also, similar expression is observed in 
skeletal muscle (192.4 tpm). MEF-2C is perhaps the only 
member of the family where the transcriptome expression 
correlates with the protein expression patterns, both in 
the CNS and skeletal muscle, with high levels of protein 
expression observed in these tissue types. Furthermore, 
MEF-2C protein expression is similarly abundant in the 
immune system where higher expression is observed in 
the lymph nodes, tonsils, and spleen, but surprisingly not 
in the bone marrow but considerably less at the transcript 
level at 75.6 tpm, 70.6tpm, and 60 tpm, respectively. MEF-
2C is highly overexpressed in lymphomas, melanomas and 
gliomas (https://www.proteinatlas.org/).

MEF-2C in development

MEF-2C is the predominant isoform regulating 
the development of the cerebrocortex, and conditional 
knockout of MEF-2c in mice in neural stem cells (NSCs) 
abolished neuronal differentiation. These findings suggest 
critical roles of MEF-2C in early neuronal differentiation 
and proper distribution of layers in the neocortex [146]. 
Activation of MEF-2C-dependent Bone Morphogenetic 
protein2 (BMP2) by P38 MAPK controls the commitment 
switch between cardiomyocyte and neuronal commitment. 
Inhibition of P38 MAPK in ES cells (Embryonic stem 
cells) results in the neuronal commitment of the ES cells; 
similarly, treatment with BMP-2 in ES cells results in 
the cardiomyocyte differentiation which is regulated by 
MEF-2C, suggesting a molecular mechanism for ES cell 
commitment [199].

Proper neurite function and outgrowth are necessary 
for neuronal function and synapse formation. miRNAs play 

an important role in neuronal development and function, 
and miR-124 and miR-9 are abundantly expressed 
in the mammalian nervous system. HDAC5 inhibits 
neurite extension by inhibiting the neuronal membrane 
glycoprotein GPM6A(M6a), which is regulated by MEF-
2C. miR-124 and miR-9 modulate this HDAC5:MEF-
2C:M6a pathway to regulate neurite development in 
primary neurons [200]. BDNF is a neurotrophin which 
controls synaptic development and function, and it 
regulates many signaling pathways leading to activation 
of MEF-2 family members. MEF-2C splice variants 
which lack the γ-domain are activated by membrane 
depolarization, and the knock down of MEF-2C resulted 
in the impairment of membrane depolarization-induced 
expression of Bdnf exon 1, suggesting the differential 
activity of MEF-2C [201]. Cortico-basal ganglia circuits 
control language and speech in Autism spectrum disorders 
(ASD). FOXP2 is known to interact with several ASD 
related genes and have been implicated in spoken 
language disabilities and dysfunction in the corticostriatal 
circuit. MEF-2C, which is a synapse suppressor negatively 
interacts with Foxp2. The deletion of FoxP2 derepresses 
MEF-2C function, which then restores vocalization and 
related striatal spinogenesis suggesting MEF-2C function 
in corticostriatal circuit [202]. MEF-2C is abundantly 
expressed in cortical excitatory neurons, and conditional 
knockdown of MEF-2c in hippocampal and cortical 
excitatory neurons decreases the cortical network activity 
by decreasing the excitatory synaptic transmission. MEF-
2c mutants showed significant overlap of synaptic and 
autism-linked genes in the cortex and mutant mouse 
models displayed autism and schizophrenia-like behavior, 
suggesting functional importance of MEF-2C in the neo-
cortex [10]. Constitutively expressing MEF-2C in both in 
vivo and in vitro systems yielded pure neurons and MEF-
2C-directed neuronal progenitor cells can successfully 
differentiate into functional neurons in mouse models 
of cerebral ischemia and can improve behavioral defects 
[146]. The haploinsufficiency of MEF-2C reported 
in patient and mouse models leads to severe mental 
retardation, epilepsy and cerebral malformations, and also 
the mice exhibited severe hyperkinesis. Moreover, MEF-
2C was implicated in various developmental stages of 
dorso-ventral neuronal cell types [203]. A microdeletion 
involving the 5q14.3 region of the chromosome resulted 
in the haploinsufficient phenotype of MEF-2C [204]. 
Similar clinical studies reported that decreased MEF-2C 
mRNA transcripts in leukocytes may serve as a diagnostic 
marker in Alzheimer’s disease (AD), and this may also be 
associated with the decline in cognitive ability [205]. Rett’s 
syndrome is characterized by severe mental retardation, 
epilepsy, absence of speech and cerebral malformations, 
and MEF-2C polymorphisms have been found in patients 
with Rett’s or severe Rett-like encephalopathies [206].

https://www.proteinatlas.org/
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MEF-2C in diseases

Various congenital diseases arise from the 
improper development of the neural crest cells (NC 
cells) which undergo various developmental changes 
during morphogenesis, including craniofacial defects. 
MEF-2c NC knockout mice exhibit delayed ossification 
and hypoplasia (loss of skeletal elements of the face 
and skull). Dlx6 and Hand2 genes are responsible for 
these developmental pathways, where MEF-2C is the 
direct transcriptional regulator of Dlx6-Hand2 and 
affects craniofacial development via a feed-forward 
transcriptional circuit mechanism in mice [207]. In 
addition, Endothelin, which is also essential for neural 
crest development, targets MEF-2C downstream of a 
calmodulin-CamKii histone deacetylase signaling cascade 
through a positive feedback mechanism [208].

TBX-1 is a T-Box transcription factor that has 
been implicated as a haploinsufficient gene in DiGeorge 
syndrome, which is characterized by congenital defects 
of the heart, craniofacial dysmorphism, abnormal thymus 
gland and hypoplasia. Tbx null mutant embryos showed 
higher MEF-2c expression, and conversely MEF-2c 
expression was decreased in the Tbx1 gain-of-function 
mutants, revealing the suppressive effects of Tbx on 
MEF-2c. It was also shown that Tbx1 interferes with the 
Gata4 signaling regulation of MEF-2c affecting critical 
developmental pathways [209]. Conversely, TBX5 plays 
a synergistic role with MEF-2C in the early phases of 
cardiomyocyte development and differentiation, and 
mutations in TBX5 are associated with Holt-Oram 
syndrome which features massive heart and forelimb 
abnormalities [210]. During embryogenesis, the binding 
of MEF-2C in the BOP gene promoter is responsible for 
bop expression in the anterior heart field and its cardiac 
derivatives [211]. Similarly, transcription factors NKX 2.5 
and MEF-2C bind physically and functionally to control 
ventricle formation during cardiogenesis [212], and also 
are required for the maintenance of the cells between the 
ventricular and sinoatrial precursors in the primary heart 
field [211]. However, in certain mouse models, knockdown 
of MEF-2c attenuated left ventricular hypertrophy and 
mechanical stress via the mTOR/S6K pathway [213]. 
The specific isoform MEF-2cα1 is involved in dynamic 
phosphorylation events implicated in myoblast and 
skeletal muscle regeneration via Akt/mTOR/S6K signaling 
which may potentially be targeted for treatment of muscle 
wasting diseases [214]. There is evidence for miRNA 
regulation of MEF-2C; miR-214 suppresses the activity 
of MEF-2C:MYOCD:Leiomodin1(LMOD-1) signaling 
pathway, and excessive proliferation of smooth muscle 
cells causing pulmonary arterial hypertension [215]. 
Dysregulated expression of several miRNAs and mRNAs 
in a myotonic dystrophy type 1 (DM1) cell model, was 
rescued with the exogenous addition of MEF-2C [216]. 
Hormonal mediators such as testosterone and IGF 

(Insulin like growth factor) also modulate MEF-2C in 
cardiomyogenesis and pro-hypertrophic effects in cardiac 
gene function via HCN4 and P38-MAPK respectively 
[217]. MEF-2C interacts with the transcription factor 
c-FOS and increases its binding to an AP-1 site in the 
Mmp13 promoter, which is modulated by para-thyroid 
hormone (PTH), a transcriptional regulator of many genes 
in osteoblast formation [218]. Another known co-repressor 
of MEF-2c is HDAC-5, whose increased expression 
decreases osteocyte formation. Binding of MEF-2C in the 
sclerostin, encoded in the SOST gene, after its detachment 
from the repressor complex, derepresses MEF-2C function 
in the direct regulation of osteocyte formation via SOST 
gene expression [219]. Also, studies reveal that MEF-2C/
NFAT pathways along with GATA4 that juncture the Ca2+ 
signaling have been implicated in cardiac hypertrophy 
and heart failure from a cohort of heart transplant 
patients [220]. Similarly, in a study of 200 patients with 
congenital heart defects (CHD), loss of function mutations 
in MEF-2C were reported to be associated with CHD, 
which also affects the activation of transcription factors 
such as GATA4 [221]. MEF-2C also controls circadian 
clock rhythms in Drosophila models [222]. Aquaporin 
is present in the microvascular endothelial cells and is 
responsible for formation of water channels that control 
various physiological processes; MEF-2C is a direct target 
of Aquaporin which controls angiogenesis and water 
processes in endothelial cells [223].

MEF-2C in cancer and immunity

MEF-2C is associated with the development of 
various cell types including myeloid and lymphoid 
progenitor cells, and its deficiency results in profound 
defects in the phenotypes of both cell types. It has been 
also implicated in fate commitment of the progenitor cells, 
determining if a cell will differentiate along the myeloid 
or lymphoid lineage [149]. Deficiency of MEF-2c results 
in delayed B-cell development with significant reduction 
of immature B cells; MEF-2c deficiency also alters the 
expression of various proteins including CD23, OX40L 
and Ciita [224]. Moreover, MEF-2C is required for the 
survival and proliferation of B-cells and B-cell signaling 
receptor function [148], and also modulates B-cell 
proliferation via P38 MAPK activity and EBF1 (Early B 
cell factor 1) [107]. MEF-2C regulates megakaryopoiesis 
[225], and via a MEF-2C/Nur77 pathway mediates 
activation-induced cell death of macrophages [226]. The 
activation of MEF-2C by MEKK-2 kinase activity induces 
c-JUN expression and activates cytokine production 
through FcἐR1 for stimulation of mast cells [227]. MEF-
2C is also required for restraining age-related microglial 
inflammation through excessive production of IFN-
beta and its loss results in brain related inflammatory 
syndromes [228]. Although it has been associated with 
exclusively B-cell restricted transcription factors [229], 



Oncotarget2770www.oncotarget.com

it also exerts multiple roles in T-cell associated function 
and disease. MEF-2C is activated by several mechanisms 
in various T-cell acute lymphoblastic/leukemia cell lines 
[230]. Transcriptome and molecular-cytogenic analysis, 
(Chromosome conformation capture on chip (4C)) of >117 
pediatric patients revealed the involvement of MEF-2C 
and NKX2-1 as potential candidates as oncogenes in T-cell 
acute lymphoblastic leukemia [231]. Additionally, MEF-
2C is significantly upregulated in chronic myelogenous 
leukemia (CML) patients and cell lines. MEF-2C and the 
CEBP (CCAAT-enhancer binding protein) pathway are 
associated with disease progression in CML [232].

Loss of skeletal muscle is a characteristic feature 
and leads to poor prognosis in cancer-associated cachexia; 
there is a downregulation of MEF-2C (at the mRNA and 
protein levels) in cachexia which leads to the loss of 
skeletal muscle architecture and mitochondrial integrity 
as observed by electron microscopy. This occurs due to 
the dysregulation of MEF-2C gene targets-myogenin 
and myokinase, and also downregulated oxygen carrying 
capacity, ATP regeneration and the calcineurin pathway, 
culminating in the severe diseased phenotype of contractile 
muscle and skeletal instability associated with muscle 
cachexia [233]. Knockdown of MEF-2C in endothelial 
cells upregulates pro-inflammatory molecules and 
enhances the adhesion of leukocytes to endothelial cells 
and activated NF-κB. This process is partially controlled 
by KLF2 (Krüppel-like Factor 2), and overexpression of 
MEF-2C has the opposite effect, establishing the function 
of MEF-2C as a negative regulator of inflammation in 
endothelial cells [234]. MEF-2C is one of the targets 
downregulated by miR-223, but the expression of MEF-
2C is negatively correlated with miR-223 in CML patient 
samples, suggesting its role in CML pathogenesis [235]. 
Gene expression patterns also reveal that MEF-2C is 
highly overexpressed in pediatric patient samples of 
ETP-ALL (Early T-cell precursor acute lymphoblastic 
leukemia) [236]. Alternative splicing of MEF-2C mRNA 
results in myogenesis and tumorigenic phenotype in 
Rhabdomyosarcoma (RMS) cells. The inactive myogenic 
splice variant of MEF-2Cα1 is ubiquitously expressed, but 
only the active variant MEF-2Cα2 is required for active 
differentiation. The α exon is aberrantly expressed in RMS 
cells and overexpression of MEF-2Cα2 resulted in normal 
myogenesis and differentiation of RMS cells [237].

MEF-2D

Like all the members of the MEF-2 family, MEF-
2D also plays a key role in neuronal cells, muscle cells 
and other developmental pathways and is regulated 
by various class II HDACs, specifically HDAC4 and 
5. MEF-2D also undergoes alternative splicing which 
yields multiple transcript variants. The MEF-2D gene 
is located on chromosome 1q12- q23. It is ubiquitously 
expressed and exhibits high and uniform distribution of 
protein expression in most-cell and tissue types ranging 

from brain to skin. Although elevated mRNA transcripts 
are found in cerebral cortex, bone marrow, and skeletal 
muscle with 50.9, 49.8 and 55.5 tpms, respectively. All 
cells and tissues have high levels of protein expression 
of MEF-2D in cerebral cortex, endocrine system, bone 
marrow, hematopoietic, germinal centers and also non-
germinal centers, cardiac and skeletal muscles, kidneys, 
breast and skin, etc. MEF-2D is mainly localized in the 
nucleoplasm and overexpression of MEF-2D is observed 
in colorectal, breast, prostate, lung and liver cancers, 
with 100% overexpression in lymphomas, urothelial, 
breast, thyroid carcinomas and melanomas (https://www.
proteinatlas.org/).

MEF-2D in development

MEF-2D null mice experience suppressed cardiac 
hypertrophy, decrease in fibrosis, and an inability to 
activate fetal activation [145]. MEF-2D represses skeletal 
myogenesis upon phosphorylation by protein kinase A 
(PKA) and HDAC4 activity in the nucleus [57]. Recently, 
MEF-2D has been implicated in pro-tumorigenic effects, 
causing cardiac myxoma (CM), the most common cardiac 
tumor. CM tissue has upregulated expression of MEF-2D, 
and this is correlated with increased tumor size. MEF-
2D regulates IGF-induced proliferation and control of 
apoptosis in the pathophysiology of CM, and knockdown 
of MEF-2D reduced the activity of IGF-1 and Matrix 
metalloprotein 9 (MMP-9) and associated tumorigenesis 
[238]. Similar studies reveal that MEF-2D expression 
positively correlates with the proliferation of CM cells; 
MEF-2D expression can be suppressed by miR-218, a 
tumor suppressor which is downregulated in myxoma cells 
and serves as an important target for treatment of cardiac 
myxoma [239].

Dual-specificity tyrosine-phosphorylation regulated 
kinase 1A (DYRK1A) is encoded in chromosome 
21, which is a critical region associated with Down’s 
syndrome. MEF-2D is involved in the upregulation of 
this kinase and activates isoform-5 of DYRK1A. The 
interaction of these genes promotes neurodevelopment 
[240]. MEF-2D acts as a neuronal survival factor in 
the maintenance of dopaminergic neurons (DN), the 
progressive death of which leads to Parkinson’s disease 
(PD). PD-associated neurotoxins destabilize MEF-2D by 
PTMs. MPP+, a toxic metabolite, decreases the half-life 
of MEF-2D in DA neuronal cell lines by MEF-2D protein 
degradation and destabilizing MEF-2D mRNA [241]. 
Another study reports that modulation of transcription 
factor Nur77 via MEF-2D results in the DN loss in 
response to another neurotoxin, 1-Methl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP). The neurotoxin affects the 
binding of MEF-2D and Nur77 under basal conditions 
and significantly decreases the expression of MEF-2D and 
Nur77. This results in the severe dopaminergic loss and 
increase in the post-synaptic Fos-B activity indicative of 
nigrostriatal damage in mice [242].

https://www.proteinatlas.org/
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Dysfunctions in chaperone mediated autophagy 
(CMA) via α-synuclein are also associated with PD. 
Rotenone, a mitochondrial complex-1 inhibitor, has been 
used to study CMA substrates. The inhibitor induces 
the accumulation of α-synuclein and MEF-2D in the 
cytoplasm due to impaired lysosome-mediated degradation, 
and affected the protective role of MEF-2D resulting in 
mitochondrial dysfunction and oxidative stress [243]. 
The accumulation of α-synuclein in neurons of the nigral 
pathway reduces the protective activity of MEF-2D in 
idiopathic and experimental PD [244]. The expression of 
MEF-2D in microglia modulates neuroinflammation. MEF-
2D binds to a MEF-2 binding site in the promoter region 
of the IL-10 gene and transcribes IL-10; the silencing of 
MEF-2D decreased IL-10 induction and increased the 
levels of TNF-α expression resulting in neuroinflammation 
[245]. MEF-2D also acts as a potential oncogene in the 
tumorigenesis of malignant glioma and is highly upregulated 
in grade 3 and 4 malignant glioma patients [246].

MEF-2D fusion proteins and disease

RNAseq analysis of 560 ALL patients report the 
rearrangements of MEF-2D along with five other genes. 
The rearrangements enhance the transcriptional activity 
of MEF-2D, activated histone acetylase-9, and promoted 
lymphoid transformation. Additionally, it results in de 
novo fusion proteins with BCL9 and FOXJ2 in a number 
of cases [247]. Another study with similar RNA-seq 
analysis of the Philadelphia chromosome reported MEF-
2D translocations in the subjects and similar fusions of 
MEF-2D/BCL9 and MEF-2D/HRNPUL1. MEF-2D/BCL9 
fusions are lethal and have the ability to cause leukemia. 
Many MEF-2D fusion mutations have dire prognosis: most 
of the mutations cause B-ALL, although some of these 
fusion products are not completely investigated [41, 147]. 
Recently, functional studies revealed the pathogenic role 
of another fusion product resulting in the chromosomal 
translocation of MEF-2D/SS18 and had the worst 
prognosis. The studies showed significant inhibition of 
mouse common lymphoid progenitors into CD19 positive 
B-cells and diminished B-cell development; additionally, 
drug sensitivity to B-cell survival is upregulated and 
plays an important role in the pathobiology of B-ALL 
[248]. Neurotrophic tyrosine kinases (NTRKs) are highly 
effective targets for treatment options in many cancers. 
Fusion proteins involving NTRK1,2, and 3 are being 
actively investigated in the study of rare cancers such as 
secretory breast carcinoma, infantile fibrosarcoma, and 
congenital mesoblastic nephroma. One study reveals the 
cytoplasmic/membranous expression of NTRK1/MEF-2D 
fusion protein with a strong (3+) and uniform distribution 
among carcinomas [249]. Clinical bioinformatic analysis 
reveals that patients suffering from chronic obstructive 
pulmonary disease have poor prognosis for developing 
lung cancer and have higher expression of MEF-2D in 

non-small cell lung carcinoma (NSCLC), because of its 
affects on cell proliferation, differentiation and metastasis 
[250]. In lung cancer, expression of miR-30a has been 
inversely correlated with MEF-2D, and miR-30a mimetics 
inhibited the growth of lung cancer by suppressing MEF-
2D [251]. The study predicts that miR-30a targets the 
3’UTR of MEF-2D mRNA and promotes apoptosis in lung 
cancer cells. Similar studies performed in osteosarcoma 
patients reveal that over-expression of MEF-2D and miR-
30a leads to a tumor suppressor effect and suppresses 
osteosarcoma cell proliferation by inhibiting MEF-2D 
[252]. Long-coding RNAs (lncR-D63785) are emerging 
trends in cancer implications, and it was revealed that 
lncR-D63785 expression inversely correlated with 
miR-422a which can downregulate MEF-2D and 
drug sensitivity in gastric carcinoma. Knockdown of 
lncR-D63785 upregulates the expression of miR-422a 
and sensitized gastric cancer cells to apoptosis induced 
by doxorubicin; the long non-coding RNA served as a 
competitive endogenous RNA for miR-422 and promoted 
chemoresistance by suppressing MEF-2D [253]. MEF-2D 
is also implicated in angiogenesis and EMT via TGF-β in 
an autoregulatory mechanism in hepatocellular carcinoma 
(HCC). MEF-2D along with other isoforms were found 
to increase expression of TGF-β in HCC, resulting in the 
activation of the PI3K/AKT/MEF-2 signaling pathway 
which promoted the progression of metastasis and EMT 
in HCC [180].

MEF-2 based therapeutics, HDACi

Class IIa HDACs are involved in the direct binding 
and suppression of MEF-2 proteins through the MAD/
MEF-2 domains [63]. Association of class II HDACs 
with MEF-2 results in the deacetylation of histones in 
the vicinity of MEF-2 DNA-binding sites and subsequent 
suppression of MEF-2 target genes [254]. Furthermore, the 
association of HDAC with MEF-2 can trigger sumoylation 
of MEF-2 and further decrease its transcriptional potential 
[255]. Interestingly, HDAC4 and 5 are highly expressed 
in the heart, skeletal muscle, and brain, the same tissues in 
which MEF-2 expression is highest [63]. HDACs 4, 5, 7, 
and 9 interact with MEF-2 to regulate the differentiation 
of various cells, including those in bone, brain, skeletal 
and cardiac muscle, and vascular endothelium [255]. 
Aberrations in class IIa HDACs are associated with 
skeletal abnormalities, cardiac defects, denervation super 
sensitivity, and embryonic lethality [255]. More recently, 
the HDAC-MEF-2 axis has been implicated in various 
cancers. Increased expression of class IIa HDACs has 
been correlated with suppression of MEF-2 transcriptional 
activity and poor prognosis of estrogen receptor-positive 
(ER+) breast tumors as well as increased proliferation of 
mammary epithelial cells [76]. Overexpression of HDAC9 
has been linked to poor prognosis of oral squamous 
cell carcinoma by targeting MEF-2D and repressing 
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expression of MEF-2-dependent genes [77]. Class IIa 
HDACs in conjunction with MEF-2 have been implicated 
in leiomyosarcomas as well [41].

Because of their widespread influence on 
oncogenesis, HDACs have emerged as the target of 
an entire class of anticancer drugs, known as histone 
deacetylase inhibitors (HDACi). HDAC inhibitors enco- 
mpass a diverse group of small molecule drugs that can 
induce apoptosis, cell cycle arrest, differentiation, and 
autophagy of cancer cells and promote anti-angiogenic 
effects [256]. These drugs are predominantly efficacious 
for leukemias but not solid tumors [257]. Although 
numerous clinical trials are underway involving HDAC 
inhibitors, only four have received FDA approval 
for anticancer drugs: Vorinostat and Romidepsin for 
cutaneous T-cell lymphomas, Belinostat for relapsed or 
refractory peripheral T-cell lymphoma, and Panobinostat 
for multiple myeloma [257]. A fifth molecule known 
as Valproic acid (VPA) is a weak HDAC inhibitor with 
a known clinical profile that is commonly involved in 
clinical trials [257]. HDAC inhibitors complementary to 
specific amino acid residues on particular HDAC isoforms 
have been formulated, including HDACs 4, 6, and 7 [257]. 
Zinc-binding HDAC inhibitors have also been described 
for class I and II HDACs [257]. HDACi are grouped under 
4 different classes on the basis of their chemical structures, 
hydroxamates, short chain fatty acids, benzamides and 
cyclic peptides [72].

The precise mechanisms of HDAC inhibitors have 
not been fully elucidated. Vorinostat (suberoylanilide 
hydroxamic acid, SAHA) is characterized as a pan-
HDAC inhibitor, is a hydroxamic acid derivative 
(inhibits classes I, II, and III), and is thought to increase 
activity of the tumor suppressor gene RUNX3 in 
conjunction with the histone acetylase protein p300. 
Romidepsin, a depsipeptide, is a selective inhibitor 
of class I HDACs, specifically HDAC1 and 2 [258]. 
An ex vivo mechanistic study of Romidepsin action 
in HTLV-1-infected ATL cells found that this drug 
inhibited transcription factors NF-κB and AP-1 as 
well as decreased expression of cyclin D2 and Bcl-xL. 
Belinostat is another pan-HDAC inhibitor and was found 
to induce apoptosis by TGF-β signaling-dependent 
down-regulation of survivin [259, 260]. Panobinostat 
is also a hydroxamic acid derivative and a pan-HDAC 
inhibitor with ten times the inhibitory activity of 
vorinostat [261]. It has been shown to reactivate tumor 
suppressor genes such as p21 and inhibit factors such 
as Akt and hypoxia-inducible factor 1α [262]. VPA or 
Valproic acid, a short chain fatty acid derivative has 
been shown to inhibit class I HDACs with more efficacy 
than class II HDACs and selectively induce proteasomal 
degradation of HDAC2 by activating the Ubc E2 
ubiquitin conjugase [263, 264].

HDAC inhibitors have been utilized in clinical 
and pre-clinical trials for treatment of ATL. Vorinostat, 

Romidepsin, and Panobinostat have shown promising anti-
cancer effects in pre-clinical and/or clinical studies in ATL 
and other T-cell malignancies [99]. Aside from Romidepsin, 
VPA and pan-HDAC inhibitor AR-42 have been utilized in 
murine ATL models and shown efficacy [265]. AR-42 was 
found to decrease Akt, Bcl-xL, and survivin in a prostate 
cancer model [266]. However, in the context of case studies, 
due to modest response rates, high rate of cytopenias, and 
concerns of viral reactivation, it is advised that HDAC 
inhibitors be used cautiously for treatment of ATL [267]. 
Nevertheless, a phase 2 clinical trial using panobinostat 
for relapsed DLBCL found that patients with MEF-2B 
mutations had a higher chance (likelihood ratio 3.67, 95% 
CI 1.46-9.19) of a complete or partial response to treatment 
[198]. Peritoneal fibrosis is a pathological condition that 
alters peritoneal morphology, causing inflammation. The 
peritoneum is a continuous monolayer of mesothelial 
cells. When fibrosis occurs, there is a mesothelial to 
mesenchymal transition (MMT) which causes invasion. 
MS-275 is a specific class-I HDAC inhibitor which 
inhibits cellular invasion and promotes MMT reversal in 
peritoneal fibrosis [268]. HDACi are also used in various 
preclinical models of immunological diseases such as EAE 
(experimental autoimmune encephalomyelitis), asthma, and 
rheumatoid arthritis [269, 270]. Also, HDACi are used as 
a “shock and kill” mechanism to reactivate latent HIV and 
to deplete the viral reservoir [271], and recently Class-I 
specific HDACi were shown to enhance viral latency 
reversal and also preserve activity of HDAC isoforms for 
maximal HIV gene expression to target the virus [272]. 
The final class of HDACi are the Sirtuins inhibitors, which 
primarily target Sirt 1 and Sirt 2; nicotinamide is in phase 
III clinical trial for laryngeal cancer. Sirtinol and Cambinol 
are drugs in the preclinical stage of investigation, and 
EX-527 is in phase I and II trial for Huntington’s disease 
and glaucoma [86]. Certain studies demonstrate effects 
of HDACi in anti-parasitic activity against Plasmodium 
and Trypanosoma [273]. Recently, HDACi have evolved 
into chimeric HDACi (chi-HDACi) which simultaneously 
modulate both HDAC and other targets, using molecular 
hybridization techniques, drugs that target protein tyrosine 
kinases, epidermal growth factor (EGF), BCL-ABL 
tyrosine kinase, or VEGFR along with HDACi were made 
into chi-HDACi structures which can be used to treat 
multiple cancer types [274].

Although there are many HDAC inhibitors being 
studied in preclinical and clinical trials, one of the unique 
class IIA HDACi, namely MC1568, is highly selective to 
class IIA HDACs and has been shown to activate the tumor 
suppressor BRAHMA, that is suppressed by HDAC9 and 
exhibits cytostatic effect in melanoma cells much greater 
than Class I inhibitors [275]. MC1568 has been shown to 
decrease cell proliferation and IL-8 production in human 
melanoma cells, suppress c-JUN which is a transcriptional 
target of MEF-2 transcription factors and also suppress 
the activity of histones 3 and 4, RNA polymerase II and 
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TFIIB to the c-JUN promoter [276]. It is now reported 
as an anti-influenza drug target that inhibits the activity 
of HDAC6/8 and decreased expression of viral proteins 
and mRNAs via the early acetylation of HSP90 [277]. It 
is a unique molecule that utilizes a distinct mechanism 
by stabilizing the HDAC4-MEF-2D complex [278] and 
inhibiting myogenesis [279].

Our lab has been characterizing MC1568 in the 
context of treatment for HTLV-1-induced ATLL, which 
is a malignant and intractable T-cell neoplasia. Over 5% 
of the infected population acquire an aggressive form of 
non-Hodgkin’s lymphoma; and there are no preventive 
or treatment measures in the form of vaccines or drugs 
respectively. We have shown earlier the implication 
of MEF-2A in the viral gene expression and T-cell 
proliferation and transformation [17]. We are currently 
investigating MC1568 in the treatment of ATLL, 
preliminary data suggests that MC1568 is selectively 
cytotoxic to virus producing leukemic cells but not non-
infected cells. Moreover, activated autophagic signaling 
and a dose-dependent inhibition of viral protein expression 
of Tax and HBZ was also observed (Madugula et.al 
unpublished observations). Further mechanistic studies are 
underway to delineate the involvement of MEF-2 isoforms 
in the pathobiology of HTLV-1-induced ATLL. MC1568 
might be the first of its kind for the treatment of ATLL.

Conclusions and perspectives

Due to the high-risk disease characteristics 
associated with MEF-2 aberrations, the outcomes of 
treatment are less encouraging, the diversity of disease 
phenotypes caused by MEF-2 family members are very 
peculiar and are associated to one or more isoforms, but 
the treatment regimens still more uncertain. Most studies 
concerning MEF-2 isoforms are based on their gain and 
loss of function, but the basal level expression of each 
isoform and how much it is altered in each tissue and 
cell type is still an open question. Although each isoform 
has been classified as an oncogene or tumor suppressor, 
it remains unclear the genetic alterations and molecular 
aberrations that are occurring in neoplasms associated 
with MEF-2 isoforms. Due to the differences in the 
dynamic nature of the MEF-2 isoforms in context of their 
roles in infection or leukemogenesis, it is warranted to 
develop isoform-specific molecular targets. Moreover, 
due to their association with specific classes of HDACs, 
it would be noteworthy that MEF-2 isoforms would serve 
as a potential therapeutic target in the treatment of a wide 
array of diseases.

Epigenetic regulators in the context of therapeutics, 
especially in the case of cancer and more recently in infection, 
are a matter of intense discussion. But over time with the 
evolution of disease categories, HDACi have become more 
and more indispensable in anti-cancer therapeutics and other 
infections like influenza and ATLL. Because of their selective 

cytotoxic effects and induction of autophagy and apoptosis in 
tumor cells, and feasibility in combinatorial treatments, there 
are multiple clinical trials based on HDACi as reviewed in 
[280, 281] that are underway to treat various types of blood 
cancers and solid tumors and some have reached Phase IV of 
the trials. The enormous potential of these drug moieties can 
be tapped out for not only cancer-related syndromes but also 
in the treatment of infectious diseases. It will be a priority 
to discover more potent HDACi which are more class and 
isoform-specific molecules that can provide greater efficacy 
compared to using more broad-spectrum Pan-HDACi. In this 
context using Class II specific HDACi that are associated 
with MEF-2 isoforms may be anticipated to show greater 
therapeutic potential and fewer off-target effects. Therefore, 
MEF-2 isoforms can be harnessed by modulating these 
specific class of HDACs via a specific class of HDACi 
to open a new range of therapeutics for a wide array 
of diseases.
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