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Ankylosing spondylitis (AS) is a type of spondyloarthropathies, the diagnosis of which is
often delayed. The lack of early diagnosis tools often delays the institution of appropriate
therapy. This study aimed to investigate the systemic metabolic shifts associated with AS
and TNF inhibitors treatment. Additionally, we aimed to define reliable serum biomarkers
for the diagnosis. We employed an untargeted technique, ultra-performance liquid
chromatography-mass spectroscopy (LC-MS), to analyze the serum metabolome of 32
AS individuals before and after 24-week TNF inhibitors treatment, as well as 40 health
controls (HCs). Multivariate and univariate statistical analyses were used to profile the
differential metabolites associated with AS and TNF inhibitors. A diagnostic panel
was established with the least absolute shrinkage and selection operator (LASSO). The
pathway analysis was also conducted. A total of 55 significantly differential metabolites
were detected. We generated a diagnostic panel comprising five metabolites
(L-glutamate, arachidonic acid, L-phenylalanine, PC (18:1(9Z)/18:1(9Z)), 1-
palmitoylglycerol), capable of distinguishing HCs from AS with a high AUC of 0.998,
(95%CI: 0.992–1.000). TNF inhibitors treatment could restore the equilibrium of 21
metabolites. The most involved pathways in AS were amino acid biosynthesis,
glycolysis, glutaminolysis, fatty acids biosynthesis and choline metabolism. This study
characterized the serum metabolomics signatures of AS and TNF inhibitor therapy. We
developed a five-metabolites-based panel serving as a diagnostic tool to separate
patients from HCs. This serum metabolomics study yielded new knowledge about the
AS pathogenesis and the systemic effects of TNF inhibitors.

Keywords: ankylosing spondylitis, metabolomics (OMICS), TNF inhibitor, liquid chromatography-mass
spectroscopy, biomarker
INTRODUCTION

Ankylosing spondylitis (AS) belongs in the group of diseases called spondyloarthropathies,
presenting with chronic back pain, which predominantly affects the spine and the sacroiliac
joints. AS is more common in males, presenting with inflammatory back pain, the onset of which
typically occurs in the third or fourth decade of life. At the advanced stage, the disease progression
may result in spinal deformity, limitations of spinal mobility and inevitably impaired quality of life.
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The etiology of AS remains unclear. According to studies in
twins, genetic factors are now thought to account for over 90% of
the risk for AS (1). Despite the numerous disease-associated
variants identified in AS with genome-wide association studies,
they cumulatively explain only a small proportion (<28%) of the
heritability of these diseases (2). Environmental exposures have
been suspected to play a role in AS, such as mechanical stress,
infections (3), smoking (4), and breast feeding (5) in the
early life.

Due to the insidious onset or ignorance of the lower back
pain, the diagnosis for AS is often delayed by 5–10 years (6). The
administration of biologics therapies, which has been proven
highly effective in multiple clinical trials, could achieve a high
rate of clinical remission. However, the lack of early diagnosis
tools often delays the institution of appropriate therapy.
Consequently, there is an unmet need for more effective and
sensitive biomarkers of diagnosis. The introduction of tumor
necrosis factor (TNF) inhibitors nearly two decades ago opened a
new chapter of the treatment of AS, especially in patients with
insufficient response to conventional treatment and inhibit
radiographic progression (7). Nonetheless, the underlying
pathophysiology targeted by anti-TNFa therapy has not yet
been elucidated.

As one of the ‘omics’ technologies, metabolomics is a fast-
developing research area in the post-genomic era. It has emerged
to be a powerful comprehensive approach to characterize
convoluted metabolic changes and evaluate the biochemical
mechanisms involved in such changes in a systematic fashion
(8). Currently, metabolomics has been utilized in biomarker
discovery in multiple rheumatic diseases, including rheumatoid
arthritis (RA) and reactive arthritis (9, 10). However, the
application of metabolomics to AS is still in its infancy,
although several studies have been reported recently (11–13).
Overall, the sample size of most studies is small and the types of
samples are diverse including plasma, fecal, and urine. The two
most common detection methods in metabolomics, nuclear
magnetic resonance and mass spectrometry, have not yet been
employed, but the findings are contradictory among studies.
Moreover, the follow-up data regarding metabolic alteration in
patients treated with TNF inhibitors are scarce.

Therefore, this study aimed to investigate the systemic
metabolic shifts associated with AS and define reliable serum
biomarkers for the diagnosis of AS. Additionally, we aimed to
further investigate the influence of 24-week TNF inhibitor
treatment on metabolic profiles in AS. To accomplish these
objectives, we employed an untargeted technique with high
sensitivity and specificity, namely ultra-performance liquid
chromatography-mass spectroscopy (LC-MS), to analyze the
serum metabolome of 32 AS individuals and 40 healthy controls
(HCs). Furthermore, we attempted to construct a metabolites-
based diagnostic panel to distinguish AS from the healthy controls.
Besides, metabolome profiles were also compared before and after
treatment with TNF inhibitors. We propose that the serum
metabolite signatures can assist in diagnosis and provide insight
into the underlying pathophysiology of AS and the systemic effects
of TNF inhibitors.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Study Participants
A total of 32 AS patients were enrolled in this study from the
Rheumatology department in the Third Affiliated Hospital of Sun
Yat-sen University between June 2016 and June 2018. Additional
40 sex- and age-matched HCs from the physical examination
center in our hospital were consecutively recruited. Inclusion
criteria of AS patients were as follows:1) aged over 16 years old;
2) fulfilled the modified 1984 New York diagnosis criteria; 3)
patients did not take any TNF inhibitors treatment before
enrollments; 4) active disease (Bath Ankylosing Spondylitis
Disease Activity Index (BASDAI) ≥4.0 or Ankylosing
Spondylitis Disease Activity Score-CRP (ASDAS-CRP) ≥1.3); 5)
the patients administered TNF inhibitors (Etanercept) over 24
weeks. Patients with other rheumatic diseases, other systemic
diseases or tumors were excluded from this study. Patients who
took conventional disease-modifying antirheumatic drugs
(DMARDs) or medicine impacting serum metabolites (such as
insulin and statin) were also excluded. All HCs had no history of
chronic disease or rheumatic diseases. Demographic and clinical
parameters including age, sex, symptom duration, BASDAI, Bath
Ankylosing Spondylitis Functional Index (BASFI), ASDAS-CRP,
and laboratory indicators, such as HLA-B27, C-reactive protein
(CRP) and erythrocyte sedimentation rate (ESR) were recorded.
The serum samples of AS patients were collected before and after
the 24-week TNF inhibitors treatment. All procedures involving
human participants in the study were performed in accordance
with the 1964 Helsinki declaration. The protocol was approved by
the Ethics Committee of the Third affiliated Hospital, Sun Yat-Sen
University ([2013]2-93). All patients signed informed consent
prior to study enrollment.

Sample Collection and Preparation
The detailed protocols of samples collection, preparation,
metabolomics profiling and data pre-processing are available in
Supplementary Data.

Data Processing and Statistical Analysis
The data processing procedures comprised filtering, imputation of
missing values (R package “DMwR”) and area normalization. Then
the data matrix was imported into SIMCA-P software (version 14.1,
Umetrics AB, Umea, Sweden) for multivariate statistical analysis
including principal component analysis (PCA) and orthogonal
partial least-squares discriminant analysis (OPLS-DA).
Metabolites were further applied to the univariable Wilcoxon
rank-sum test. The differential metabolites that satisfied the
criterion of variable importance in the projection (VIP) values of
>1.0 and false discovered rate (FDR) of <0.05 were considered as
biomarker candidates. A diagnostic model was established with
Least absolute shrinkage and selection operator (LASSO) regression
(R package “glmnetcr”). The results were presented as mean ±
standard deviation (SD) for continuous variables and as percentage
for categorical variables. GraphPad Prism (version 6.02, San Diego,
CA, USA) was used for statistical analysis of the data. P < 0.05 was
considered statistically significant.
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RESULTS

Demographic Characteristics of the
Study Population
A total of 72 individuals (32 AS patients and 40 HCs) were
enrolled in the serum metabolic profiling study. Flow diagram of
the overview for the study design and analytical pipeline was
depicted in Figure 1. All patients and HCs were included in the
discovery stage. The treatment stage consisted of 32 follow-up
patients who received 24-week TNF inhibitors therapy. The
general demographic and clinical characteristics of the study
participants were presented in Table 1. Age and gender were
matched between AS patients and HCs. Most of the participants
in the two groups were male (92.5% vs. 90.6%, p>0.05) and the
mean ages were 27.05 ± 5.64 years vs. 28.63 ± 7.53 years (p>0.05).
The mean disease duration of patients was 94.28 mouths.
Indicators of clinical assessments significantly improved after
treatment, while the acute phase reactants (ESR and CRP)
significantly decreased (p<0.001 respectively). Besides, a
significant reduction of BASDAI, BASFI, and ASDAS-CRP was
observed (p<0.001 respectively). These results indicated the
therapeutic benefit of TNF inhibitor treatment.

Metabolomic Characteristics of TNF
Inhibitors-Naive AS Patients
With ultra-performance LC-MS, a total of 7,713 metabolic peaks
including 5,349 in positive ion mode and 2,364 in negative ion
Frontiers in Immunology | www.frontiersin.org 3
mode were detected from 72 subjects. The representative total
ion chromatograms (TIC) for QC samples were overlapped
almost completely. The RSD of QC samples in each metabolic
peak was also used to assess the stability of the detection system,
and 4,952 (92.6%) and 2,092 (88.5%) metabolic peaks with RSDs
less than 30% were left in positive and negative ion mode
respectively. Furthermore, PCA analysis was performed to
determine the classification of samples from patients and
control. As is shown in Figures 2A, B, there were no obvious
outliers in the serum samples of two modes and the QC samples
were clustered together. These results indicated the outstanding
stability of the detection condition. Additionally, automated clear
separation was observed in the positive mode rather than the
negative mode in this unsupervised analysis. From the OPLS-DA
models (Figures 2C, D), the AS group could be distinguished
from HCs with good fitness (R2Y = 0.986, Q2 = 0.956 in positive
ion mode; R2Y = 0.842, Q2 = 0.608 in negative ion mode). The
cross-validation through permutations tests (200 times) of two
OPLS-DA models validated that there was no overfitting of the
models (generated intercepts of R2 = 0.769, Q2 = −0.408 and
R2 = 0.665, Q2 = −0.433 respectively) (Figures 2E, F). As a
result, a total of 1,278 metabolic peaks with VIP-values larger
than 1.0 were considered for the subsequent analysis. Through
the univariable Wilcoxon rank-sum test, altogether 1,147
metabolic peaks were found to be significantly altered between
AS subjects and HCs (p<0.05). Finally, these peaks were mapped
to 55 metabolites by database searches, in which 41 were elevated
FIGURE 1 | The workflow for the study design and analytical pipeline.
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and 11 decreased. The metabolites consisted of amino acids,
carbohydrates, fatty acyls, glycerophospholipids, purines and
purine derivatives. The detailed information including HMDB
ID, VIP-values and fold change of individual metabolites was
presented in Supplementary Tables S1, S2.
Frontiers in Immunology | www.frontiersin.org 4
To further test the classification power of these 55
metabolites, we also performed unsupervised multivariate
analysis. PCA analysis of the two groups, using the 55 unique
metabolites, revealed distinct metabolomic profiles (Figure
3A). Furthermore, the OPLS-DA analysis enabled a clear
A B

D

E F

C

FIGURE 2 | Multivariate statistical analysis of serum metabolites in ankylosing spondylitis patients (AS) and healthy controls (HCs). (A, B) The scatter plots of
principal component analysis (PCA) were based on the serum metabolic data in positive and negative ion mode. AS patients and HCs were denoted with red and
green circles, respectively. The QC samples (blue circles) were clustered together in two modes. (C, D) Orthogonal partial least-squares discriminant analysis (OPLS-
DA) scatter plots were based on the serum metabolic profiles in positive and negative ion mode. (E, F) The statistical validation of the corresponding OPLS-DA
models by permutation tests (200 times).
TABLE 1 | The demographic characteristics of the study population.

Characteristics HC (n = 40) AS (pre-treatment) (n = 32) AS (post-treatment) (n = 32) p

Male, n (%) 37 (92.5) 29 (90.6) – 1.000*
Age, year, mean ± SD 27.05 ± 5.64 28.63 ± 7.53 – 0.314*
HLA-B27 positive, n (%) – 30 (93.8) – –

Duration, month, mean ± SD – 94.28 ± 48.79 – –

BASDAI, mean ± SD – 6.85 ± 2.03 3.28 ± 1.70 <0.001
BASFI, mean ± SD – 4.46 ± 2.22 2.37 ± 2.01 <0.001
ASDAS-CRP, mean ± SD – 4.36 ± 0.79 1.07 ± 0.73 <0.001
ESR, mm/H, median (IQR) – 29.5 (12.5–46.5) 5.0 (3.0–10.8) <0.001
CRP, mg/L, median (IQR) – 21.1 (12.4–44.0) 2.6 (1.1–9.5) <0.001
February 2021 | Volume 12 | Article
*P-values were calculated with HCs as references. Other p-values were calculated from the comparison between pre- and post-treatment. HC, health control; AS, ankylosing spondylitis;
SD, standard deviation; BASDAI, Bath Ankylosing Spondylitis Activity Index; BASFI, Bath Ankylosing Spondylitis Functional Index; ASDAS, Ankylosing Spondylitis Disease Activity Score;
ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; IQR, interquartile range.
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separation between the AS group and HCs (Figure 3B).
Unsupervised clustering analysis showed the 55 metabolites
could distinguish most of the AS patients from HCs (Figure
3C). The ROC curve analyses were conducted based on three
multivariate algorithms. The combination of these 55 metabolic
peaks had AUC values of 0.861 (95% CI 0.696–0.969), 0.999
(95% CI 0.993–1) and 0.992 (0.959–1) in the PLS, random
forest, and SVM prediction models respectively. These results
suggested that these 55 differential metabolites could serve as
candidate biomarkers in AS diagnosis, while more screening
was needed.

Establishment of Five-Metabolites-Based
Diagnostic Model
To establish the least redundant and most informative diagnostic
model for clinical application, we used a more advanced
Frontiers in Immunology | www.frontiersin.org 5
statistical tool, the LASSO procedure. Only 33 candidate
metabolites with AUC greater than 0.75 were guided in the
initial LASSO model. Finally, we obtained a five-metabolites-
based diagnostic model, consisting of L-glutamate, arachidonic
acid, L-phenylalanine, 1-palmitoylglycerol, PC (18:1(9Z)/18:1
(9Z)). The PCA (Figure 3D) and OPLS-DA (Figure 3E)
exhibited excellent discriminative power between AS patients
and HCs. The unsupervised clustering analysis showed that the
five metabolites can distinguish most AS patients from HCs
(Figure 3F). Moreover, the AUC in ROC analysis was used to
evaluate the diagnostic performance of the biomarker panel. The
final model had a fairly high AUC value equal to 0.998 (95%CI:
0.992–1.000) (Figure 3G) and explained 63.8% of the variation
in AS patients and controls. Taken together, these results
demonstrated that five metabolites-panel could be considered a
promising tool for diagnosis of AS.
A

B

D E

F G

C

FIGURE 3 | The capacity of 55 discrepant serum metabolites and LASSO-based model in discrimination. (A) The scatter plot of principal component analysis (PCA)
was based on 55 metabolites to discriminate ankylosing spondylitis patients (AS, red circles) from healthy controls (HCs, green circles). (B) Orthogonal partial least-
squares discriminant analysis (OPLS-DA) scatter plot of 55 metabolites. (C) Unsupervised cluster heatmap of 55 metabolites. (D) The scatter plot of PCA was based
on 5 metabolites. (E) OPLS-DA scatter plot of 5 metabolites. (F) Unsupervised cluster heatmap of five metabolites. (G) Receiver operating characteristic curve (ROC)
analysis of the 5 metabolites panel for diagnosis.
February 2021 | Volume 12 | Article 630791
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Metabolomic Alteration in Response
to TNF Inhibitors Treatment
Subsequently, we examined how TNF inhibitors treatment affected
the serum metabolites in the 32 AS patients. There are no obvious
outliers, however, unlike the separation in AS vs. HCs, there is no
apparent separation in pre vs. post-treatment samples in PCA
(Supplementary Figures S1A, B). In OPLS-DA models, the post-
treatment samples could bemostly distinguished from pre-treatment
samples (Supplementary Figures S1C, D) with good discrimination
and predictive ability (R2Y = 0.871, Q2 = 0.327 in positive ionmode;
R2Y=0.660,Q2=0. 176 innegative ionmode). Itwas verified that the
models were not over-fitted in permutation tests (Supplementary
Figures S1E, F). ThemetabolismofASpatientswas altered after TNF
inhibitors treatment, albeit not as conspicuous as the difference
between AS patients and HCs. A total of 33 metabolites exhibited
abundance shifts after theadministrationofTNFinhibitors treatment,
with 10 upregulated metabolites and 21 downregulated metabolites.
Among these significantly altered metabolites, 21 metabolites were
significantly restored in the directions concordant with HCs. As
observed in Supplementary Figure S2A, the abundance of 10
metabolites (including L-leucine, glycerophosphocholine, m-
chlorohippuric acid, D-threitol, D-fructose, D-mannose, palmitic
acid, cholesterol 3-sulfate, D-mannitol, D-quinovose) were not
significantly different between HCs and post-treatment AS patients.
However, 11 metabolites (taurine, L-glutamate, hypoxanthine, L-
phenylalanine, nicotinamide, eicosapentaenoic acid, L-
palmitoylcarnitine, SOPC, L-pyroglutamic acid, succinate, L-
glutamine) remain significantly different (Supplementary Figure
S2B). The results provided further evidence that TNF inhibitors
treatment can reverse the aberrant metabolism state toward that of
the controls, albeit in an insufficient way.

Furthermore, we aimed to identify potential metabolite
biomarkers to predict response to TNF inhibitors. The patients
were divided into TNF inhibitors sensitive (n=21) and resistant
(n=11) groups according to the Assessment of Spondylarthritis
international Society (ASAS) Response Criteria for a 20%
improvement (ASAS20). However, the PCA did not show
discrimination among the two groups and the OPLS-DA
models were overfitted. The results suggested that serum
metabolomics might not be able to predict responses to TNF
inhibitors in AS patients.
Correlation Analysis of Metabolites With
Clinical Parameters
We analyzed the correlation of the abundance of 55 differential
metabolites with several AS clinical parameters, including BASFI,
BASDAI, ASDAS, CRP, ESR, and fat-saturation score. As shown in
Table 2, BASFI was positively correlated with L-glutamate and
tyramine (p<0.05). Besides, a significantly positive correlation was
observed between tyramine with ASDAS (r = 0.358, p = 0.044) and
CRP (r = 0.389, p = 0.028). The abundance of two
glycerophospholipid metabolites, namely 1-stearoyl-sn-glycerol-3-
phosphocholine and lysoPC(18:0/0:0) were negatively correlated
with ESR (r = −0.394, p = 0.026 and r = −0.404, p = 0.022) and
positively correlated with fat-saturation score (r = 0.329, p = 0.066
and r = 0.357, p = 0.045). These results suggested that these
Frontiers in Immunology | www.frontiersin.org 6
discrepant serum metabolites were associated with the extent of
inflammation and chronic lesions.

Enrichment and Pathways Analysis
To visualize the correlation between AS-associated metabolites,
we construct a correlation-based network with the 55 differential
serum metabolites. In this network, only serum metabolite pairs
of moderate correlation or above (correlation coefficient ≥0.6 or
≤−0.6, p <0.05) were included (Figure 4). The metabolites
frequently correlated with other metabolites tend to contribute
to the development of the disease. According to the number of
correlated compounds linked to the certain metabolite (defined
as degree centrality), the most interconnected metabolites were
arachidonic acid (degree=15), L-glutamate (degree=14), choline
(degree=11), succinate (degree=9), nicotinamide (degree=9),
eicosapentaenoic acid (degree=9), taurine (degree=8), PC(18:1
(9Z)/18:1(9Z)) (degree=7), L-pyroglutamic acid (degree=7),
L-phenylalanine (degree=6), 12-HETE (degree=5).

Pathway enrichment analysis was performed with the serum
differential metabolites data in AS. As is presented in Figure 5A,
perturbed metabolic pathways of 55 metabolites mainly involved
aminoacyl-tRNA biosynthesis, nitrogen metabolism, D-
glutamine and D-glutamate metabolism, biosynthesis of
unsaturated fatty acids, glycerophospholipid metabolism,
valine, leucine and isoleucine biosynthesis and alanine,
aspartate and glutamate metabolism. Finally, a schematic
scheme of proposed metabolic pathways was presented to
visualize the interaction between the differential metabolites
(Figure 5B). The metabolites with significant changes were
mapped onto several biochemical processes including amino
acid biosynthesis, glycolysis, glutaminolysis, fatty acids
biosynthesis, choline metabolism, and purine metabolism,
which were also partly influenced by TNF inhibitors.
DISCUSSION

In this study, a cohort of 72 participants including 32 AS
patients (pre- and post-treatment samples were collected) and
TABLE 2 | The correlation analysis of differentiated metabolites and clinical
parameters among AS patients.

Metabolites Clinical parameters r p

BASFI L-Glutamate 0.463 0.008**
Tyramine 0.500 0.004**

ASDAS Tyramine 0.358 0.044**
CRP Tyramine 0.389 0.028**

1-Stearoyl-sn-glycerol-3-phosphocholine −0.297 0.099*
LysoPC(18:0/0:0) −0.312 0.082*

ESR Tyramine 0.337 0.060*
1-Stearoyl-sn-glycerol-3-phosphocholine −0.394 0.026**
LysoPC(18:0/0:0) −0.404 0.022**

Fat-saturated 1-Stearoyl-sn-glycerol-3-phosphocholine 0.329 0.066*
LysoPC(18:0/0:0) 0.357 0.045**
February 2021 | Volume 1
2 | Article
AS, ankylosing spondylitis; BASDAI, Bath Ankylosing Spondylitis Activity Index; BASFI,
Bath Ankylosing Spondylitis Functional Index; ASDAS, Ankylosing Spondylitis Disease
Activity Score; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; r: correlation
coefficient; *p < 0.1, **p < 0.05.
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40 healthy volunteers were enrolled. We utilized a more
sensit ive untargeted metabolomics platform, ultra-
performance LC-MS, to profile a spectrum of metabolites in
the serum of AS patients and controls. This detection procedure
yielded a total of 55 significantly different metabolites, including
amino acids, carbohydrates, fatty acyls, glycerophospholipids,
purines and purine derivatives. Much to the frustration of
patients and clinicians, the diagnosis of AS is often delayed,
which hinders the timely intervention, given that biologics have
proven highly effective. Based on LASSO analysis, we generated
a diagnostic panel comprising five metabolites (L-glutamate,
arachidonic acid, L-phenylalanine, PC(18:1(9Z)/18:1(9Z)), 1-
palmitoylglycerol), capable of discriminating healthy
individuals from AS participants. The ROC analysis of the
panel revealed a high diagnostic value for AS (AUC=0.998,
95%CI : 0.992–1.000). We propose that the combination of the 5
compounds is potentially a novel biomarker panel for the
diagnosis of AS. Furthermore, treatment with TNF inhibitors
can help to restore the equilibrium of the 21 metabolites.
However, there is no specific metabolic phenotype that
predicts outcomes following initiation of anti-TNF therapy.

As recently reviewed, it has been suggested that metabolomics
analysis is a promising tool for better understanding of AS
pathogenesis (14). In our study, the level of most disturbed
metabolites was elevated in patients versus HCs as well as in
pre-treatment versus post-treatment. The results appeared to imply
the active biosynthetic demands in the disease, which relieves after
TNF inhibitors treatment. As the most prominent discriminatory
Frontiers in Immunology | www.frontiersin.org 7
metabolites, most amino acids were up-regulated in serum fromAS
subjects, which was consistent with the previous findings (15). L-
Glutamate, a metabolite in the LASSO-based model, was one of the
most correlated metabolites in the network (degree=14). Besides,
pathway analysis also indicated the disease was highly correlated to
D-glutamine and D-glutamate metabolism. It could be inferred
that glutaminase 1 is over-activated in AS, the first enzyme in
glutaminolysis which converts glutamine to glutamate, from the
increased level of glutamate and decreased level of glutamine in AS.
Glutaminolysis is considered to be the main source of energy
production in tumor cells (16) and also a well-known source of
energy for effector T cells and facilitates Th17 development (17).
Previous research reported that glutaminolysis played a key role in
the cell growth of fibroblast-like synoviocytes in rheumatoid
arthritis (RA) (18). This finding could also account for the
tumor-like metabolic characteristic of AS to some extent. The
specific mechanism of glutaminolysis in AS was never reported and
warrants future studies. In line with the prior report (15), L-
phenylalanine, a significant biomarker in the diagnostic model,
was up-regulated in patients. Tyramine, a product of tyrosine
(Figure 5B), was also increased in AS and positively correlated
with BASFI, ASDAS, CRP and ESR. Tyrosine and phenylalanine
are precursors for catecholamines including tyramine, dopamine,
epinephrine, and norepinephrine. Therefore, we speculated that the
catecholamine system in AS may be active. Two branched-chain
amino acids (BCAAs) (leucine and valine) were elevated in patients
and did not change with the treatment. Noteworthy, the findings
were in line with the recent literature (19). BCAAs were observed to
FIGURE 4 | The correlation analysis of 55 serum differential metabolites. The correlation-based network deduced from 55 differential serum metabolites. Only
moderate correlation or above (correlation coefficient ≥0.6 or ≤−0.6, p <0.05) serum metabolite pairs were included. Red edges denote correlation coefficient ≥0.6.
Purple edges denote correlation coefficient ≤−0.6. The width of edge represents the intensity of correlation. Nodes denotes metabolites. The color depth and the
sizes of nodes represent the number of correlated metabolites linked to the certain metabolite (degree).
February 2021 | Volume 12 | Article 630791
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increase in multiple chronic diseases and recognized as the
biomarkers and causal agents of cardiometabolic diseases (20).

Several unsaturated fatty acids (including eicosapentaenoic
acid, g-linolenic acid, and arachidonic acids) and one saturated
fatty acid (palmitic acid) were altered in AS. The perturbed fatty
acid metabolism was also observed in previous literature (21).
Arachidonic acid was a hub metabolite in the correlation
network and the diagnostic model, reported to present a
positive correlation with BASDAI (22). These fatty acids could
mediate inflammation, platelet aggregation and immune
function either directly or upon its conversion to eicosanoids
(prostaglandins, thromboxanes, and leukotrienes) (23).

Intriguingly, evidence of altered carbohydrate metabolism in
patients with AS was also observed, with higher levels of glucose,
D-lactate, D-mannitol, and succinate along with lower levels of
D-mannose and D-fructose metabolites in patients. As the
Frontiers in Immunology | www.frontiersin.org 8
anaerobic oxidation products of glucose, the elevated D-lactate
reflected the oxygen shortage in AS patients. The increased levels
of glucose and succinate indicated the patients could not utilize
glucose effectively, resulting in ATP insufficiency.

Notably, choline metabolism was significantly perturbed.
The concentration of choline, betaine as well as multiple
phospholipids were increased in AS. Choline is a basic
constituent of lecithin (namely phosphatidylcholine) and can
be oxidized to form betaine, which is a methyl source for many
reactions. The elevated choline was also observed in the fecal
samples of AS and IBD patients, which was associated with the
level of intestinal inflammation (24, 25). Two kinds of
phosphatidylcholine, lysoPC(18:0/0:0) and lysoPC(16:0) were
increased, which stood in contrast to the previous findings
(15). We observed an inverse correlation between serum
lysoPC(18:0/0:0) and inflammatory markers (CRP and ESR).
A

B

FIGURE 5 | The pathways analysis of 55 serum differential metabolites. (A) The plot of significantly disturbed pathways using MetaboAnalyst. The x-axis
displays the pathways. The y-axis displays the −log of p-value calculated by hypergeometric test. The orange dots connected by a thin line represent the
ratio, which is calculated as follows: the number of differential metabolites in each pathway, divided by the total number of metabolites in the pathway. (B)
Schematic scheme of disturbed metabolic pathways. Metabolites marked in red, green and black indicate metabolites significantly increased, decreased,
unchanged or not measured in ankylosing spondylitis patients compared with control, respectively. Metabolites in grey box represent metabolites significantly
altered after TNFi treatment.
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The discrepancy might result from the different status of disease
activity of studies. Altogether, the choline might play a role in the
inflammation and required further validation.

Some limitations should be noted in our study. The sample
size was insufficient, hindering subsequent subgroup analysis.
It was a limitation that we did not perform an independent
cohort validation. Further research concerning the mechanism
was also required to understand the effect of these metabolites in
AS. We are just beginning to understand the functional
implications of these alterations, with much more work to be
done exploring the potential clinical significance and therapeutic
implications of abnormalities of important metabolites.
Considering that the nature of our study is a case-control
association study, we could draw no definitive causal
conclusions and the results might be open to interpretation.
This was not the first study describing metabolic signature in AS
patients. However, to our knowledge, this is the first study
reporting the metabolomics signatures associated with TNF
inhibitors treatment in AS patients. Although no metabolites
were identified to predict the response to TNF inhibitors, the
similar metabolic status between the sensitive and resistant groups
may suggest the baseline metabolic status is insufficient to predict
outcomes following anti-TNF therapy. The strength of this study
is that all AS patients were disease-active and naïve to the
treatment of TNF inhibitors at the time of enrollment. Apart
from that, we performed a correlation analysis of metabolites with
clinical parameters. These analyses gave clinical significance to our
findings. Furthermore, a network with differential metabolites was
beneficial to understanding the pathogenesis of AS.

In summary, this study characterized the serum metabolomic
pattern of AS. We developed a five-metabolites-based panel that
could distinguish AS patients from healthy controls. The panel
could serve as a promising diagnostic tool and a complement test
for detection of AS. This study has also yielded new knowledge
about the pathogenesis of the disease and the systemic effects of
TNF inhibitors. Therefore, further research regarding the
disturbed metabolic pathway will provide new strategies for the
treatment of AS.
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