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Abstract

Objectives: In the context of the gradual development of artificial intelligence in

health care, the clinical decision support systems (CDSS) play an increasing crucial

role in improving the quality of the therapeutic and diagnostic efficiency in health

care. The fuzzy logic (FL) provides an effective means for dealing with uncertainties

in the health decision‐making process; therefore, FL‐based CDSS becomes a very

powerful tool for data and knowledge management, being able to think like an expert

clinician. This work proposes an FL‐based CDSS for the evaluation of renal function in

posttransplant patients.

Method: Based on the data provided by the Department of Nephrology of the Uni-

versity Hospital Federico II of Naples, a statistical sample is selected according to

appropriate inclusion criteria. Four fuzzy inference systems are implemented monitor-

ing the renal function by the level of proteinuria and the glomerular filtration rate (GFR).

Results: The systems show an accuracy of more than 90% and the outputs are pro-

vided through easy to read graphics, so that physicians can intuitively monitor the

patient's clinical status, with the objective to improve drugs dosage and reduce med-

ication errors.

Conclusions: We propose that the CDSSs for the assessment and follow‐up of

kidney‐transplanted patients built in this study are applicable to clinical practice.
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1 | INTRODUCTION

The computer science is able to help clinicians in the formulation of a

diagnosis in order to make the correct decisions for therapeutic pur-

poses and for the prediction of outcome, becoming an indispensable

support for modern medicine to solve complex clinical problems

too.1 Among the most widely used IT tools in the medical field, there

are the clinical decision support systems (CDSS), defined as computer

programmes assisting physicians in making decisions, exhibiting

sophisticated reasoning capabilities in order to improve clinical deci-

sion making, thus promoting more efficient care practices.2 Early

CDSSs are designed by researchers on expert systems, with the aim

of programming the computers with rules that allow it to “think” like

an expert clinician when it compared with a patient.3 The CDSSs
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provide several modes of decision support such as critical values alerts,

advice for drug prescribing, comments on existing health care orders,

and suggestions for various active care issues.4 In literature, different

decision‐making support tools can be found, and most of them were

based on IT programmes and algorithms to analyse and elaborate bio-

medical data and signals5-10; some of them can also be based on

multicriteria decision‐making methods, like analytic hierarchy process,

or can be even used in combination with management approaches, like

Lean and Six Sigma, finding applications in different areas like health

technology assessment,11, re‐engineering of health care processes,12,13

and improvement of clinical outcomes or patient satisfaction.14-17

Since the 1950s, there have been multiple attempts to construct a

programme that would assist clinicians with their decisions concerning

diagnosis and therapy. Ledley and Lusted published a pionieristic work

evolving around this idea.18 However, the first operative CDSS did not

appear until the 1970s, when de Dombal et al19 developed “Leeds

Abdominal Pain System,” using Bayesian reasoning on the basis of sur-

gical and pathological diagnoses.19 In the 1990s, the so called “HELP

system” was perfected to integrate the Hospital Information System

(HIS) with the ability to generate alerts when data abnormalities in

the patient record are noticed. Along with this line, different systems

are currently in use.20 For example, in the emergency department

(ED) of Saudi Arabian hospitals, a CDSS to deal with acute coronary

syndrome (ACS) was implemented to give to emergency physicians

the ability to improve their practices, to assist them in dealing with life

threatening diseases, and to provide accurate decisions in real time in

order to save a patient's life.21

The standards of judgement of a CDSS are widely reported in the

literature. Among them, the most important are the improving patient

safety through reduced medication errors and test ordering, improving

quality of care by increasing available time for direct patient care, and

improving efficiency in health care delivery by reducing costs and test

duplication.22

A characterizing element of a CDSS is the knowledge, which allows

the system to provide specific information on filtered patients in an

intelligent way, in order to improve their effectiveness. Indeed, there

are two types of CDSS: knowledge‐based and non‐knowledge–based

CDSS. The latter uses the artificial intelligence principles to machine

learning through neural networks or genetic algorithms.

Among the knowledge‐based systems, there are the fuzzy logic

(FL)‐based CDSS. These systems are based on rules mostly in the

form of if‐then statements, and the data are usually associated with

these rules.23

The use of FL‐based CDSS in health systems has spread success-

fully in recent years by investing almost all medical fields, following

some examples of FL‐based CDSS are reported. Soesanti et al24 pre-

sented a FL method for magnetic resonance imaging (MRI) brain images

segmentation. Sizilio et al25 developed a fuzzy method that provided

breast cancer prediagnosis with 98.59% sensitivity where the predic-

tion of the risk is based on a set of judiciously chosen fuzzy rules that

utilized patient age and tumour features. A fuzzy mathematical model

of HIV infection consisting of a linear fuzzy differential equations sys-

tem is used by Zarei at al26 to describe the ambiguous immune cell level

and the viral load that was due to the fuzziness behaviour of the

immune system in HIV‐infected patients. In the pharmacy field,

Mauselth et al27 used fully automated FL‐based closed‐loop insulin

dosing controller that allows clinicians to personalize patients dosing.

In risk classification of renal diseases using FL‐based CDSS, the works

of Ahmed and Narasimhan are of interest. The work of Ahmed et al is

interesting for diagnostic report of the healthiness of a patient's kidney

used as a following input variables set: nephron functionality, blood

sugar, blood pressure, age, weight, and alcohol intake.28 The second

for risk classification of diabetic nephropathy with following input

parameters: plasma glucose concentration, diastolic blood pressure,

body mass index, and age. 29 More recently, Santini et al3 developed

a fuzzy inference machines to improve the knowledge‐based CDSS

actually used in the day‐by‐day clinical care of β‐thalassemia patients

of the Rare Red Blood Cell Disease Unit (RRBCDU) at “AORN A.

Cardarelli” Hospital in Naples. This work shows exemplary results on

the online evaluation of iron overload during the health status assess-

ment and care management of β‐thalassemia patients.3

CDSS can be used as an effective tool in order to reduce morbidity

and mortality rates in patients with renal failures. Indeed, after renal

transplantation, several complications may arise that result in a serious

impaired renal function.30 These dysfunctions may not only appear

very early after transplantation (as early as in the operating room)

but may also arise very late (months later).31

Furthermore, some of the complications may also result in deterio-

ration of renal function as a late permanent event and, hence, very

careful monitoring of patients is required to detect complications

before severe damage happen.30

Among the risks resulting from a renal transplant, the most impor-

tant is certainly rejection, evadable by using immunosuppressant drugs

that have the purpose of controlling the activity of the immune sys-

tem. However, these drugs have significant side effects that can seri-

ously worsen the living conditions of the transplanted. Keeping a

balance between the effective prevention of rejection and the side

effects of immunosuppressant drugs is a key point for long‐term renal

transplantation success.32 Moreover, maintaining this balance is made

even more complex in diabetic patients because hyperglycaemia

causes the excess of glucose that over time forms irreversible end‐

products; the tissue accumulation of these products contributes to

the associated renal and microvascular complications.33

Another consequence of a transplant is hypertension that should

be treated with ACE inhibitor drugs. In addition to blunting the hypo-

tensive effects, these drugs increase the risk of acute renal failure

especially when an NSAID (nonsteroidal anti‐inflammatory drugs) is

coadministered, leading to increased serum creatinine concentrations

and GFR (glomerular filtration rate) decrease. Furthermore, these

drugs can reduce proteinuria and slow the progression of renal pro-

teinuric diseases towards chronic renal failure.34

In addition, not only there is a variety of mechanisms that may

determine the variation of proteinuria and GFR in posttransplant

patients but some of them are difficult to be monitored, such as in

cases of noncompliance, or instrumental clinical investigations, that

cannot be translated into numerical input parameters.
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The aim of this work is to implement a FL‐based expert system in

order to assess and to follow‐up the transplanted patients due to renal

pathology. To this aim, we evaluated how the blood glucose level and

the use of immunosuppressive and ACE inhibitor drugs (considered

among easily determinable clinical parameters, which change the renal

function) can lead to changes in proteinuria and GFR. Different values

of these two notable parameters are associated with the various

stages of renal failure, and therefore, they allow the characterization

of the severity of the renal pathology from which the patient is

affected. For this purpose, it was necessary to implement two case

studies by fuzzy inference systems (FIS).

The present study can be considered innovative because the

CDSS's outputs represent two clinical parameters (level of proteinuria

and GFR) of extreme importance for the evaluation of kidney health

and easy to read for clinicians. Furthermore, all the rules of inference

were carefully agreed with the physicians of the nephrology depart-

ment. The advantages brought by fuzzy‐based CDSS implemented

for the assessment and follow‐up of kidney transplanted patients

can be summarized as follows: (a) improvement monitoring of the pro-

teinuria and GFR thus reducing the risk of rejection and the overdose

of drugs; (b) improvement of complications control with viewing of

alert system easy to read for the patient too; and (c) reduction of costs

of care avoiding test duplication and drug excess.35

2 | METHODS

The FL‐based CDSS's implementation is made with the Matlab

(MathWorks, Version 2.3.1 R2018a) computing environment that

through the FL toolbox provides the tools for analysing, designing,

and simulating systems based on FL. The inference process is devel-

oped by Mamdani‐type FIS. Due to intuitive nature of the rule bases,

Mamdani‐type FIS is widely used for decision support application, as

in the present work where the rules are determined starting from

the analysis of the data and, obviously, from a previous clinic knowl-

edge of the subject.36

The parameters chosen for the evaluation of renal functionality are

proteinuria (which expresses the presence of an abnormal amount of

protein in the urine) and the glomerular filtration rate or GFR (which

is the amount of filtrate formed by both kidneys in 1 minute). This

choice is in accordance with National American Kidney Foundation

of Nephrology and Kidney Disease Improving Global Outcomes

(KDIGO)37 clinical guidelines on the care of the kidney transplant

recipient that recommends to measure proteinuria and GFR.38

In the two case studies, clinical input parameters are chosen to

evaluate the variation of proteinuria. The glycaemia level,39 the blood

level of the m‐Tor inhibitor,40 and the decreasing in the ACE‐inhibitor

dosage are known for their influence in proteinuria alterations. Simi-

larly, the clinical input parameters chosen to evaluate the variation

of GFR are the glycaemia,41 the dosage of calcineurin‐inhibitor,42

and the increase in dose of ACE‐inhibitor drug.43

The statistical sample is selected through the experimental data

provided by the Department of Nephrology of the Hospital Policlinico

of University of Study of Naples Federico II. The department activities

are mainly aimed at carrying out renal de novo transplants and the

follow‐up of patients with renal transplantation. For the follow‐up of

patients with renal transplantation, numerous and repeated annual

accesses to the structure are required. The complete patient set is

made up of 855 units in posttransplant follow‐up, and they are pro-

vided by the Department of Nephrology.

In order to select the statistical sample of two case studies, these

inclusion/exclusion criteria were followed:

• The time elapsed since the transplant between 2 and 6 years, the

upper limit of 6 years allows to include the largest number of cases,

instead cases in the bottom to 2 years after transplantation were

excluded for which it would have been premature to detect the

side effects associated with immunosuppressive therapy.

• The age range of 30 to 60 years of both genders, the upper limit is

determined by the fact that over 60 years the probability of alter-

ation of the clinical parameters under examination for physiological

ageing increases, while under 30 years, there are few cases that

would have led to a statistical inhomogeneity.

• Exclusions:

• Patients who lacked the clinical data of proteinuria in the 24 hours

and of the sirolimus blood level were excluded.

• Similarly patients who did not take the cyclosporine and ACE‐

inhibitor drugs were excluded.

• Patients were also excluded for medical considerations that

showed his/her health strongly influenced by other factors differ-

ent from those of interest.

• Patients belonging to the trial set (that allowed the definition of the

rules of FIS) were excluded.

The inference rules in both case studies are defined starting from a

set of patients with the help of the physicians. Similarly, the fuzzy set of

input and output variables have been defined. Four different FISs were

implemented according to the needs of physicians to monitor directly

the effects of individual drugs on the variation of proteinuria and

GFR. Once the system is defined, its accuracy is assessed in assigning

the patient the level of risk based on proteinuria and GFR values.

The fuzzification of the inputs has been here achieved by using

triangular and trapezoidal membership functions defined in accor-

dance with threshold values provided by medical researcher and cli-

nicians of the Department of Nephrology of the Hospital Policlinico

of University of Study of Naples Federico II. The membership func-

tions can be of different shape, but trapezoidal and triangular mem-

bership functions are most frequently successfully used. Indeed,

some studies provide a based theoretical explanation for this choice

because the interval interpolation function usually has the same

form as interpolation corresponding to the trapezoidal membership

functions.44

The overlap extent of the membership functions has been agreed

with the physicians taking into account the narrow ranges of the dif-

ferent clinical parameters that are usually used for the evaluation of

kidney health.
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2.1 | Knowledge representation

The design of a fuzzy inferential system (FIS) requires, first of all,

the definition of the domain knowledge in cooperation with clinical

experts by means of interviews, questionnaires, and observation of

their day‐by‐day clinical practice.21 The domain of knowledge

embedded into the decision mechanism of the system has been

described in terms of linguistic variables, linguistic values, and

membership functions. A linguistic variable is a variable whose

values are words or sentences in a natural or artificial language that

can be used to ease a gradual transition between states, so as to

naturally.

Definition 1. Linguistic variable.45 A linguistic variable

(also named fuzzy variable) can be characterized by a

quintuple (L; F(L);U; R; M) in which L is the name of

the variable; F(L) is the term‐set of L, that is, the collec-

tion of its linguistic values; U is a universe of discourse;

R is a syntactic rule which generates the terms in F(L);

and M is a semantic rule which associates to every lin-

guistic value X its meaning, M(X), where M(X) denotes

a fuzzy subset of U.

Definition 2. Fuzzy variable.45 A fuzzy variable is

characterized by a triple (L;U; F(L; u)), in which L is

the name of the variable; U is a universe of discourse

(finite or infinite set); u is a generic name for the ele-

ments of U; and F(L; u) is a fuzzy subset of U which

represents a fuzzy restriction on the values of u

imposed by L. F(L; u) will be referred to as the restric-

tion on u or the restriction imposed by L. The assign-

ment equation for L has the form

x ¼ u:F Lð Þ

and represents an assignment of a value u to x subject to the restric-

tion F(L).

In the universe of discourse U, a fuzzy set F(L; u) is characterized

by a membership function μ(F) that assigns a membership value to ele-

ments u, within a predefined range of U, as follows: F = {(u; μF)|u U and

μF: U ➔ [0; 1]}. In practice, a membership function is a curve that

defines how each element in the input space is mapped to a member-

ship value (or degree of membership) between 0 and 1.

In order to grant a simple interpretation of the knowledge

modelled via linguistic variables, linguistic values and membership

functions have been designed following the approach presented by

Gariabaldi et al.46

To perform the fuzzy inference, the knowledge about the medical

decision making has been formalized in terms of fuzzy “if‐then rules”

relying on the structure defined for the domain of knowledge. In so

doing, fuzzy inference relies on rules, defined as conditional state-

ments written in the form “if antecedent then consequent,” where

antecedent is a fuzzy‐logic expression composed of one or more sim-

ple fuzzy expressions connected by fuzzy operators, and consequent

is an expression that assigns linguistic values to the output variables.21

Indeed, FL provides a tool that enables to approximate an inference

process, ie, the mental process by which human reach a conclusion

based on specific evidence.

2.2 | Knowledge reasoning

To create the inferential engine, for the evaluation of some clinical

aspect related to the patients' status, all clinical variables have been

linked in a Mamdani‐style FIS according to different rules and mem-

bership functions.47,48 The Mamdani scheme is a type of fuzzy rela-

tional model where each rule is represented by an “if antecedent

then consequent” relationship. Mamdani method is widely accepted

for capturing expert knowledge. It allows us to describe the expertise

in more intuitive, more human‐like manner.49 In the following, the

Mamdani method is described, and the basic knowledge is imple-

mented into the system. At this stage of the implementation of the

fuzzy inference engine, we refer to a multi‐inputs single‐output deci-

sion model.

Definition 3. Given m “if antecedent then conse-

quent” fuzzy rules R = {R1; : : : ;Rm}, with n continuous

input variables ui, i = 1; : : : ; n, and the output variable

y, the formulation of the fuzzy rules is defined as

follows:

if u1;A1;1
� �

AND u2;A1;2
� �

AND: : :AND un;A1;n
� �

THEN y;B1ð Þ

if u1;Am;1
� �

AND u2;Am;2
� �

AND: : :AND un;Am;n
� �

THEN y;Bmð Þ

where ui are the input variables, y is the output variable, and Aij

and Bi are fuzzy sets of the associated universes of discourse. Now,

to perform inference, the first step is to evaluate the antecedent,

which involves fuzzyfying the input and applying any necessary fuzzy

operators to each rule in R.

Definition 4. Given the information input u = {u1; : : : ;

un}, the strength level or membership αi of the rule Ri is

calculated in terms of the degrees of membership μAij.

If the antecedent clause (the if part) is connected with

AND, then

μi uð Þ ¼ min μAi;1 u1ð Þ; : : : ;μAi;n unð Þ� �
:

Else if the antecedent clause is connected with OR, then

μi(u) = max(_Ai; 1(u1); : : :; _Ai; n (un)).

Each fuzzy rule yields a single number that represents the firing

strength of that rule. The second step is “implication,” or applying

the result of the antecedent to the consequent. Indeed, the strength

level is then used to shape the output fuzzy set that represents the

consequent part of the rule.
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Definition 5. The operator of implication for the rule

Ri is defined as the shaping of the “consequent” (the

output fuzzy set), based on the “antecedent.” The

input of the implication process is a single number

given by the “antecedent” (ie, _i computed as in Defini-

tion 4), and the output is a fuzzy set:

μBi yð Þ ¼ min αi uð Þ;μBi yð Þð Þ;

where y is the variable that represents the support value of output

the membership function μBi (·). Now, in order to unify the outputs of

all the rules, we need to aggregate the corresponding output fuzzy set

into one single composite set. The inputs of the aggregation process

are represented by the clipped fuzzy sets obtained by the implication

process. The aggregation method we exploited in our application is the

max(·) one. Finally, the defuzzification process has been performed

starting from the output fuzzy set resulting from the aggregation

process.

Definition 6. The operations of defuzzification is

computed as the centre of gravity (COG) of the

strength levels:

COG yð Þ ¼
∑
m

i¼1
yμBi

yð Þ

∑
m

i¼1
μBi

yð Þ
:

2.3 | Case study 1

As regards the first case study, the following two systems have been

implemented:

2.3.1 | ProtFIS

The variation of proteinuria is evaluated by loading in input two

parameters: glycaemia and the blood level of the m‐Tor inhibitor.

Based on the above inclusion and exclusion criteria, 63 patients

were evaluated, and they are characterized by

• mean proteinuria of 401.78 mg/24 h (physiological range of pro-

teinuria: 100‐4000 mg/24 h) with standard deviation of 424.19

mg/24 h;

• average normalized sample: 0.13 mg/24 h with standard deviation

0.14 mg/24 h;

• average age: 49 years;

• number of patients with diabetes risk: 12.

Associated membership functions to each of the input‐output var-

iables are used.

For the glycaemia input variable, the following threshold values are

used (reference values used by physicians): normal for values between

70 and 99 mg/dL; impaired for values between 100 and 125 mg/dL;

and diabetes for values greater than 126 mg/dL. Starting from these

data, three fuzzy sets are named in order good, alarm, and danger.

For blood level of the Sirolimus (Rapamune) input variable, the fuzzy

sets are identified on the information provided by European Medicines

Agency,50 according to this agency, and with the medical support, this

range is split in alarm down (0‐5 ng/mL), sufficient (4‐7 ng/mL), good

(6‐12 ng/mL), alarm up (11‐14 ng/mL), and danger (13‐20 ng/mL).

For the proteinuria output variable, the following threshold values

are used (reference values used by physicians): physiological protein-

uria (150 mg/24 h); light proteinuria (150‐500 mg/24 h); moderate

proteinuria (500‐1000 mg/24 h); severe proteinuria (1000‐3000

mg/24 h); and nephrotic proteinuria (>3000 mg/24 h). The five trape-

zoidal and triangular membership functions coupled with these values

are in order: good, sufficient, alterate, alarm, and danger.

A central point in FIS implementation consists in determining the

inference rules. These are defined based on a set trial and of the clin-

ical opinion that is fundamental in defining the basis of system knowl-

edge. The same weight has been associated with all the rules, ie, 1.

The inference rules used in the system are shown in Table 1.

2.3.2 | GfrFIS

The variation of GFR is evaluated by loading two‐parameter inputs,

glycaemia, and the dosage of a calcineurin inhibitor.

Based on the above inclusion and exclusion criteria, 103 patients

were evaluated, and they are characterized by

• mean GFR of 65.98 mL/min (physiological range of GFR: 0‐130

mL/min) with standard deviation of 15.86 mL/min;

• average normalized sample: 0.51 mL/min with standard deviation

0.12 mL/min;

• average age: 45 years;

• number of patients with diabetes risk: 38.

For glycaemia input variable, the same membership functions of

ProtFIS are used.

TABLE 1 Inference rules of ProtFIS

Rule Glycaemia Level Sirolimus Level Proteinuria Level

1 good good good

2 danger danger danger

3 good suff suff

4 alarm alarm up alarm

5 alarm suff alterate

6 good alarm up alterate

7 alarm good suff

8 good alarm down suff
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For dosage of calcineurin inhibitor (cyclosporine) input variable, the

reference drug is Neoral; also in this case, fuzzy sets are identified on

the information provided by European Medicines Agency,51

implementing five fuzzy sets to better characterize the physio‐

pathological behaviour of patients, highlighting the risk related to

the high dosage: alarm down (0‐2 mg/kg), good (1.5‐5 mg/kg), suff

(4‐11 mg/kg), alarm up (8‐15 mg/kg) and danger (12‐20 mg/kg).

GFR output is made by MDRD equation52 using creatinine serum.

Usual threshold values (reference values used by physicians) are stage

1: GFR ≥ 90 mL/min; stage 2: 60 ≤ GFR < 90; stage 3: 30 ≤ GFR <

60; stage 4: 15 < GFR < 30; stage 5: GFR < 15 with five fuzzy set

named in order: danger, alarm 4, alarm 3, alarm 2, and good.

The inference rules (with same weight unitary) are shown in

Table 2:

2.4 | Case study 2

In this case:

• For glycaemia input variable, for proteinuria and Gfr output vari-

ables, the same membership functions of case study 1 are used.

• For ACE‐inhibitor (Ramipril), the reference drug is Triatec, (recom-

mended dose by European Medicines Agency53: 1.25 mg/d, 2.5

mg/d, 5 mg/d, up to a maximum of 10 mg/d). The differences of

ACE‐inhibitor dosage in therapy are split in five fuzzy sets by

increasingly higher differences according to the following levels: 0

(no difference), 1, 2, 3, and 4 (maximum possible variation).

The two implemented systems are the following:

2.4.1 | ProtACE

The variation of proteinuria is evaluated by loading in input two

parameters: glycaemia and the decreasing of the dosage of the ACE‐

Inhibitor drug.

Based on the above inclusion and exclusion criteria, 70 patients

were evaluated and characterized by:

• mean proteinuria of 532.00 mg/24 h (physiological range of pro-

teinuria: 100‐4000 mg/24 h) with standard deviation of 516.00

mg/24 h;

• average normalized sample: 0.15 mg/24 h with standard deviation

0.15 mg/24 h;

• average age: 51 years;

• number of patients with diabetes risk: 13.

The inference rules used in the ProtACE system are shown in

Table 3.

2.4.2 | GfrACE

The variation of GFR is evaluated by loading two‐parameter input,

glycaemia, and the increase in the dose of the ACE‐inhibitor drug.

By the same inclusion and exclusion criteria, 107 patients were

evaluated and characterized by

• mean GFR of 53.54 mL/min (physiological range of GFR: 0‐130

mL/min) with standard deviation of 16.22 mL/min;

• average normalized sample: 0.41 mL/min with standard deviation

0.13 mL/min;

• average age: 48 years;

• number of patients with diabetes risk:16.

The inference rules used in the GfrACE system are shown in

Table 4:

3 | RESULTS

One of the major advantages of decision analysis models is their ability

to rapidly test their assumptions and input data in order to validate the

decision model. To evaluate the accuracy of the implemented systems,

we have inserted in each of the four FISs the input data of all the

selected patients and then the output of each system is subsequently

compared with the clinical experimental data respectively of protein-

uria and GFR. Following the results obtained for both case studies

are reported.

TABLE 2 Inference rules of GfrFIS

Rule Glycaemia Level Cyclosporine Level GFR Level

1 danger danger danger

2 good danger alarm III

3 alarm alarm up alarm IV

4 good suff alarm II

5 good good good

6 alarm good alarm II

7 danger good alarm III

TABLE 3 Inference rules of ProtACE

Rule Glycaemia Level DiffACE Proteinuria Level

1 ‐ 2 suff

2 good 1 suff

3 alarm 1 alterate

4 danger 1 alarm

5 alarm 3 alarm

6 good 3 alterate

7 danger 4 danger

8 good 0 good
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3.1 | Case study 1

3.1.1 | ProtFIS

By way of example, we report a clinical case related to the ProtFIS

illustrated in Figure 1, in which we can see the rule viewer. Each rule

is a row of plots, the first two columns show the membership func-

tions referenced by the antecedent, the third column shows the mem-

bership functions referenced by the consequent, and the last bottom

right plot represents the aggregate decision for the proteinuria, where

the red vertical line represents the defuzzified output.

For this patient, the input values are 90 mg/dL glycaemia and 7.82

ng/mL blood level of Sirolimus. The proteinuria output is 290 mg/24 h,

which is to be compared with the real value provided by the clinical

examination of proteinuria equal to 270 mg/24 h. Furthermore,

ProtFIS correctly predicts the patient's risk level, placing it in sufficient

range, ie, in a light proteinuria level. The overestimation gap of about

5% confirms the good functioning system that tends to place the

patient in a band of further protection.

For 63 patients, characterized by a mean proteinuria assessed by

the system equal to 495.83 ± 598.92 mg/24 h, the correct evaluations

are 57 patients, which is 91%, the errors committed by the system are

six out of 63 patients. To make the output of the system easier to

interpret, itis made a coloured graph (Figure 2), in which different col-

ours are associated with proteinuria's levels of risk (from green—phys-

iological proteinuria, zero risk—to red—nephrotic proteinuria, high

risk), so that physicians can intuitively compare the patient's clinical

status with the “Colour Scale” icon.

TABLE 4 Inference rules of GfrACE

Rule Glycaemia Level DiffACE GFR Level

1 good 2 alarm III

2 alarm 2 alarm III

3 good 1 alarm II

4 alarm 1 alarm II

5 good 3 alarm III

6 danger 3 alarm IV

7 good 4 alarm II

8 good 0 good

9 danger 4 danger

FIGURE 1 Practical example ProtFIS case
study one

FIGURE 2 Proteinuria Output case study one
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3.1.2 | GfrFIS

Also for this system, we need to validate the model's answer, compar-

ing it with the “true” answer provided by clinical data. For example, we

report a clinical case related to the GfrFIS illustrated in Figure 3.

For this patient, the input values are 142 mg/dL of glycaemia and

4.12 mg/kg dosage of a cyclosporine (Neoral). The GFR output is

43.20 mL/min, which is compared with the real value provided by

the clinical examination of GFR equal to 51 mL/min. Then, GfrFIS cor-

rectly predicted the patient's risk level, placing it in an alarm 3 range

corresponding to stage 3. The overestimation gap of about 18% con-

firms the good functioning system (the estimated value falls in the

same risk range provided by the clinical data) that tends to place the

patient in a band of further protection.

Out of 102 patients, characterized by a mean GFR assessed by the

system equal to 72.60 ± 14.86 mL/min, the correct evaluations are 94

patients, corresponding to 92%, the errors committed by the system

are eight out of 102 patients. Even now, the output of the system is

graphed by coloured pattern (Figure 4) where it is associated a colour

with each level of risk (from green—stage 1 GFR, zero risk—to red—

stage 5 GFR, high risk).

3.2 | Case study 2

3.2.1 | ProtACE

For the ProtACE, we show the following clinical case: input 80 mg/dL

of glycaemia and 2.50 difference of ACE‐inhibitor dosage (Triatec)

(Figure 5). The proteinuria output is 316 mg/24 h, while the clinical

examination of proteinuria equal to 315 mg/24 h. So then, ProtACE

correctly predicted the patient's risk level, placing it in sufficient range,

ie, in a light proteinuria level. The overestimation gap is less than 1%

confirming the excellent functioning system.

For 70 patients, characterized by a mean proteinuria assessed by

the system equal to 630 mg/24 h and standard deviation of 538

mg/24 h, the correct evaluations are 65, which is 93%.

3.2.2 | GfrACE

The clinical case related to the GfrACE is illustrated in Figure 6 and has

the following input values: 89 mg/dL of glycaemia and −2.50 differ-

ence of ACE‐inhibitor dosage (Triatec). The GFR output is 43.10

mL/min, which is to be compared with the real value provided by

the clinical examination of GFR equal to 53.60 mL/min. So then,

FIGURE 3 Practical example GfrFIS case
study one

FIGURE 4 Gfr output case study 1
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GfrFIS correctly predicted the patient's risk level, placing it in the stage

3. The overestimation gap of about 19% confirms the good function-

ing system, which tends to place the patient in a band of further pro-

tection again.

Out of 107 patients, characterized by a mean GFR assessed

by the system equal to 51.80 mL/min and standard deviation

of 13.90 mL/min, the correct evaluations are 99, corresponding

to 93%.

FIGURE 5 Practical example ProtACE case

study 2

FIGURE 6 Practical example GfrACE case
study 2
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4 | DISCUSSION AND CONCLUSION

Table 5 shows the results of the performance analysis of the four

implemented systems. For all the systems, an accuracy greater than

90% is obtained; this result is fundamental to trust a CDSS, and it is

necessary that its reliability can be decidedly high. Nevertheless, the

implemented systems in this work do not cover all the possible cir-

cumstances that can cause renal damage to posttransplant patients.

Indeed, the causes that lead to an increasing in proteinuria or a

decreasing in the glomerular filtrate are many and may have more or

less serious consequences. In this work, we analysed those factors

that have the greatest impact on renal diseases of posttransplant

patients; for this, the attention has been focused on the consequences

of high blood glucose values and on the use of immunosuppressive

and ACE‐inhibitor drugs, these notoriously offer benefits, but can also

worsen already critical situations.

However, the systems could offer greater efficiency if we consider

into account additional input variables related to clinical parameters

that could lead to an alteration of proteinuria and GFR. For example,

an additional element that could be evaluated is the incidence of the

sex of patients; in fact, it is known how it significantly affects the ther-

apeutic response. Including more input and output variables, which no

doubt is desirable, would lead to an increase in the number of rules

and membership functions; all this, however, could involve a consider-

able increase in the complexity of the system.

Fuzzy‐based CDSSs implemented for the assessment and follow‐

up of kidney‐transplanted patients could improve complications con-

trol, using exclusively glucose values, easy to perform, reducing the

costs of care and test's duplication, avoiding drugs excess. Moreover,

viewing of the alert system, easy to read for both clinicians and

patients could stimulate the clinicians to discuss treatment options

with patients and consequently make the latter feel more involved

in their medical treatment. The goal of the system is obviously to

provide effective support, rather than to replace the physician,

because, in any case, the physician must filter the information,

review the suggestions, and decide how much to consider it before

acting. With the gradual maturation of AI health care systems, the

CDSSs should play a crucial role in reducing medical errors and in

improving the quality of health care and the efficiency of the health

care delivery system.
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