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Abstract: Nano-sized drug transporters have become an efficient approach with considerable com-
mercial values. Nanomedicine is not only limited to drug delivery by means of different admin-
istration routes, such as intravenous, oral, transdermal, nasal, pulmonary, and more, but also has
applications in a multitude of areas, such as a vaccine, antibacterial, diagnostics and imaging, and
gene delivery. This review will focus on lipid nanosystems with a wide range of applications, taking
into consideration their composition, properties, and physical parameters. However, designing
suitable protocol for the physical evaluation of nanoparticles is still conflicting. The main obstacle
is concerning the sensitivity, reproducibility, and reliability of the adopted methodology. Some
important techniques are compared and discussed in this report. Particularly, a comparison between
different techniques involved in (a) the morphologic characterization, such as Cryo-TEM, SEM,
and X-ray; (b) the size measurement, such as dynamic light scattering, sedimentation field flow
fractionation, and optical microscopy; and (c) surface properties, namely zeta potential measurement,
is described. In addition, an amperometric tool in order to investigate antioxidant activity and the
response of nanomaterials towards the skin membrane has been presented.

Keywords: nanoparticles; solid lipid nanoparticles; gels; ethosomes; liposomes; nanostructured lipid
carriers; cubosomes; nanotechnology; novel drug delivery system

1. Introduction

Researchers worldwide are working to protect the whole humankind from numerous
diseases by designing novel strategies or by improving the existing medicine systems to
enrich patient safety and compliance. A drug carrier plays a very essential role in accom-
plishing good therapy. Substantial development has taken place to combat a number of
diseases using different drug cargos, which maintain the concentration, time, and releasing
rate of therapeutically active molecules at targeting sites. The main motive of drug delivery
systems is to distribute the active moiety to a targeted site within a suitable time window
along with a higher concentration in the infected sites and as low as possible in the healthy
tissues [1–3]. The established and commercially available conventional drug transport
systems can increase plasma drug concentration to maintain a therapeutic window for a
definite time, and then start declining to an ineffective level followed by the same event on
the second administration. However, the achievement of adequate drug concentration for
a consistent time during disease state is the major failure in drug therapy. Moreover, con-
ventional drug delivery systems cannot meet certain requirements such as targeted drug
delivery, bio-distribution, controlled release, enhanced bioavailability, and mean residence
time [3,4]. The design of a suitable drug transporter with the capability of maintaining drug
concentration efficiently for a required duration at the desired site without affecting normal
cell and body organs is much needed. Nano transporters hold the potential of precise
drug delivery through various administration routes, providing benefits including (i) cargo
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protection and its accumulation at the target site, (ii) improved pharmacokinetics and
bio-distribution, reducing dose frequency, (iii) enriched drug transport across biological
membranes, and (iv) prolonged or controlled drug release. Thus nanocarriers excellently
drive the drug to its target by balancing safety and efficacy [5,6]. Over the past three
decades, nanotechnology has been explored a lot by researchers worldwide for biomedical
applications. Nanomedicine is not only limited to drug delivery by means of different
administration routes such as intravenous, oral, transdermal, nasal, pulmonary, and more,
but also has applications in a multitude of areas such as a vaccine, antibacterial, diagnostics
and imaging, and gene delivery.

This review will focus on the development of various lipid-based nanosystems with a
wide range of applications, but most importantly, on the advancements and challenges of
physical characterization techniques and some other techniques that might be supportive
in the shift of lab to industrial scale production.

2. Nanoscale Carriers

Based on their composition and properties, nanoscale carriers can be divided into
two major categories, namely: organic nanoparticles, such as polymer-based particles [7,8],
micelles [9], liposomes [10–15], ethosomes [16], solid lipid nanoparticles (SLN) [17], nanos-
tructured lipid carriers (NLC) [18], and dendrimers [19]; and inorganic nanoparticles, such
as carbon nanotubes [20], graphene nanomaterials [21], gold nanoparticles [22], magnetic
nanoparticles [23], and quantum dots [24]. Moreover, their use is proposed for many
applications such as diagnostics and therapy.

2.1. Drug Delivery

In the field of drug delivery, lipid-based nanosystems have gained a lot of interest
thanks to the biocompatibility of the components used in their formulation and to the large
therapeutic application and administration routes involved.

Some of the widely investigated lipid-based drug delivery systems along with their
physicochemical properties, characterization, and applications have been discussed in
this section. Summarized in Table 1 are the principal methods of lipid-based nanoparticle
production, together with their advantages and limitations.

Table 1. Principal methods of lipid-based nanoparticle production together with their advantages and limitations.

Nano-Carrier Method of
Preparation Merits Demerits References

Liposomes

Ethanol injection

- Simple and safe
- Reproducibility
- No oxidative degradation
of lipid

- Heterogeneous population
- Very diluted liposomes
- Difficulty in complete
ethanol removal

[25–27]

Direct hydration - Simple
- Production speed

- Not transposable on
industrial scale
- Require further sonication
or extrusion

[28,29]

Reverse phase

- Uniformity of size and
Lamellarity
- High aqueous
space-to-lipid ratio
- More embedding of
aqueous material

- Denaturation of loaded
proteins due to exposure of
organic solvents

[27,30]
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Table 1. Cont.

Nano-Carrier Method of
Preparation Merits Demerits References

Ethosomes

Cold Method
- Simple approach
- No sophisticated
instrumentation required

N/A

[31,32]

Hot method

- Ehanolic mixture is heated
to 40 ◦C
- Useful for both hy-
drophilic/hydrophobic drugs

N/A

SLN/ NLC

Hot high-Pressure
Homogenization

- Scaling up feasible
- No use of organic solvent

- Extremely energy intensive
process
- Drug degradation owing to
high temperature
- Limited drug loading

[33]

Cold high-pressure
homogenization

- No drug degradation
- Useful to load hydrophilic
drugs
-No alteration in crystallization

- Larger diameter of particles
- Extensive size distributions [34,35]

Micro emulsion-based
method

- No energy required
- Good theoretical stability

- Very much susceptible
towards alterations
- Low yield of nanoparticles
- High dilution of final
dispersion

[35,36]

MAD/ Cubosomes

Top-down approach
- No aggregation
- Higher encapsulation
efficiency

- High energy input
- Not applicable for
thermo-sensitive moieties
- Poor cubosomes quality due
to use of high temperature
(40 and 60 ◦C)

[37–39]

Bottom-up approach

- Required less energy inputs
- No high temperature
requirements
- Long term stability
- Homogenicity

- Higher dilution used [37]

2.1.1. Liposomes

Liposomes are the very first successful product of nanotechnology that have been
launched into the market for clinical applications. Liposomes are phospholipid-containing
vesicles widely accepted for various biomedical applications. Liposomes can be classified
into many types depending upon the lipid composition, charge on the surface, diameter,
and fabrication process. Phospholipid composition makes them free-moving entities across
the biological barriers within the body, hence they are biocompatible [40]. Liposomes have
been introduced to research along with various advantages as a successful biomimetic
approach. They can be modified to achieve certain aims such as loading of the drug and its
target-specific precise release by avoiding rapid clearance [41,42].

Being foreign entities, liposomes are usually cleared out immediately, so a suitable
coating material, such as synthetic phospholipids, polyethylene glycol (PEG), or chitin
derivatives, is required. Much explored is the ability of PEGylation to escape liposomes
from uptake by macrophages to enhance circulation time. Furthermore, the biodistribution
of PEGylated liposomes has been adopted successfully in the production of commercially
available doxorubicin-loaded liposomes such as Doxil (Janssen Biotech, Inc., Horsham, PA,
USA) or Caelyx (Schering- Plough Corporation, Kenilworth, NJ, USA) for the treatment
of solid tumors [43]. After administration, liposomes head towards the extravasation
into tumor interstitium followed by the uptake via tumor-associated macrophages (TAM).
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Finally, the intracellular trafficking of liposomes either with endosomes or lysosomes results
in the release of drug in the cytosol and infiltration to the nucleo-cytoplasmic membrane
with possible DNA destruction [44]. TAM is a contributing factor for tumor growth that
alters the tumor microenvironment to diminish growth barriers to protect cancer cells from
targeted immune responses. Liposomes can intrude these biological interactions within
tumors by altering TAM phenotypes via polarization. This “macrophage polarization”
can switch this growth-promoting phenotype to the cancer cell killing phenotype [10].
Particularly, in the case of liposomes, in spite of differences on chemical composition, many
groups observed M2-like polarization in macrophages isolated from liposome-treated
mice [10,45].

Additionally, liposomes responsive to external stimuli, such as temperature and pH,
can be functionalized in order to increase cell permeability. In terms of mild hyperthermia,
the vascular permeability of cancer cells will significantly increase the mean residence time
of liposomes. Hence, the triggered release of anti-cancer agents on the target site can ensure
the effectiveness of this approach [11].

Concerning the biodistribution of liposomes, an approach has been established [12]
where liposomes can release drugs, peptides, nucleic acids, or markers directly in the
endoplasmic reticulum (ER) membrane in 30 min after entering into cells. In this approach,
the composition of the liposomes is very important, because the lipid used should resemble
the ER membrane and perform endocytosis into target cells. The membrane fusibility of
liposomes is quite challenging because of the complexity of the natural biomembrane and
glycoproteins. However, Chen-Yen Wang and colleagues [13] described in their study that
liposomal fusion with the membrane could be obtained in the presence of polyhistidine
under acidic conditions only. Moreover, the surface charge of liposomes represents an
important challenge to increase the interaction with biological membranes. In this regard,
negatively-charged liposomes (with the anionic lipid phosphatidylserine) have shown the
highest fusion [13]. Furthermore, a study has been conducted to assess the electrostatic
adhesiveness of charged liposomes to healthy and colitis-induced intestinal epithelium.
Anionic liposomes over cationic and neutral liposomes have presented better results.
Additionally, triggered drug release by disease-associated enzymes is another approach to
activate prodrugs [46].

2.1.2. Ethosomes

In the 2000s, modification in the production of liposomes with ethanol fraction has
emerged as the most preferable approach towards effective transdermal delivery. This
second generation of liposomes, along with flexible phospholipid vesicles, is known as
ethosomes. The intactness of organized vesicles with 50% of ethanol and the fluidic state of
a phospholipid membrane (elastic nature) due to the lowering of transition temperature by
ethanol has been verified by 31P NMR and differential scanning calorimetry analysis [47,48].
For comparison, both the ethosomes and elastic liposomes have been loaded with a hepatitis
B surface antigen for transcutaneous delivery. Both these formulations have shown the
ability to stimulate T helper response after uptake by dendritic cells recorded as a protective
response against an immune response. However, among both types of carrier systems,
ethosomes have been reported for higher internalization and immunogenicity [49].

Additionally, a recent study regarding the development of ethosomes for percutaneous
delivery of Coenzyme Q10 revealed that 90% of the drug remained associated with multi-
lamellar ethosomes, possibly because of the high interaction of a drug with ethanol and
phospholipids. All results from this study reflect that ethosomes loaded with Coenzyme
Q10 are very promising in the treatment of oxidative stress [50]. Ethosomes accomplishment
is related to the combined functioning of ethanol, vesicle, and skin lipids. The ethanol effect
generates the interaction between ethanol and the polar head region of stratum corneum (SC)
lipids that reduce their transition temperature, ultimately leading to the state of fluidity
and decreased density of the lipid multilayer. Secondly, the ethosomes effect includes the
fusion of ethosomes with skin lipids, resulting in opening new pathways facilitating drug
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release more deeply into the skin [51]. Furthermore, the presence of intact elastic vesicles
within the SC has been demonstrated, but claims that intact elastic vesicles can permeate
through the viable epidermis to the blood circulation are more controversial [52].

Transethosomes have been developed as a combination of deformable liposomes
(designed with edge activators also called transferosomes) and ethosomes. The edge
activators in transferosomes, such as span 60, span 25, span 80, tween 20, tween 60, tween
80, sodium deoxycholate, and sodium cholate, can be helpful to make vesicles more flexible,
but are still unable to deliver drugs more deeply, so synergism along with ethanol can
solve this issue [53]. The skin permeation of nano-sized formulations has always remained
conflicting. To make ethosomes a realistic approach, the microneedle-driven delivery of
different ethosomes has been investigated, since authors have claimed that all nano-carriers
are not able to cross SC barriers. Therefore, the utilization of microneedles of appropriate
sizes is helpful to cross the SC and release the drug into the probable deepest layers of
the dermis [54]. It is very important here to underline that even after crossing the SC,
the role of edge activators (Tween®80 and sodium cholate) and ethanol cannot be denied,
which makes the transethosomes more preferable among other nano transporters. More
precisely, cationic nano-carriers with ethanol and edge activators have been chosen as the
most promising transdermal drug delivery system [54].

2.1.3. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC)

As described in literature, lipid nanoparticles can be divided in two branches, namely
SLN and NLC, in the course of their scientific evolution. SLN with a diameter between 10
and 1000 nm have emerged as an alternative to colloidal or vesicular drug delivery systems
comparable to liposomes, lipid emulsions, and polymeric nanoparticles. They contain
physiologically tolerated lipids dispersed in an aqueous phase containing stabilizers. Due
to their ability to embed both hydrophilic and lipophilic molecules, they became outstand-
ing prototypes for controlled and targeted drug delivery [55]. The biomimetic property of
SLN is valuable for penetration through various biological barriers. These characteristics of
lipid nanoparticles make them an effective drug delivery system, particularly for lipophilic
active moieties that also offer distinguishing properties such as a small diameter, large
surface area, and high drug loading [56]. SLN are O/W type nano-dispersions, in which
dispersed lipid nanoparticles constitute a heterogeneous system with an inner lipid phase
and an outer aqueous phase, stabilized by one or two surfactants [57].

In order to establish synergistic results in the delivery of different active compounds,
combination therapy is a much-appreciated approach. This concept of co-delivery is also
feasible in the case of lipid-based nanoparticles. Recently, clotrimazole and alphalipolic
acid were entrapped into cationic lipid-containing SLN. A prolonged release was recorded
without any burst effect. In-vitro testing on 25 strains of Candida albicans demonstrated that
the anti-microbial capacity was well maintained on loading into SLN. Thus, the findings
of studies agree that topical dual drug delivery through SLN as vehicle is an effective
approach against microbial infections related to C. albicans [58].

However, a limit of SLN is represented by their physical instability. In fact, during
storage, the solid lipids constituting SLN are subjected to crystallization. The formation of a
rigid core takes place, limiting the movement of active molecules within the core, resulting
in the expulsion of the drug into dispersion media. This serious problem of instability af-
fects the entrapment efficiency of the system [59]. For further understanding, the theoretical
models of SLN and NLC have been established using sophisticated analytical techniques
including differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS).
These techniques are capable of identifying the polymorphic forms of lipid matrix, which
are dependent on the specific ratio and composition of lipid and surfactant used. More-
over, Cryo-transmission electron microscopy (Cryo-TEM) describes the morphology of
nanoscale objects [60]. The polymorphic state of the lipid depends on its compatibility
with other oils and stabilizers. Crystallinity throughout the manufacturing process of
lipid nanoparticles and their storage determines the drug incorporation and its release
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pattern [61]. The crystallization pattern of the lipid inside the nanoparticles is different
compared to that in bulk. Crystallization is highly dependent on the critical crystallization
temperature required to obtain rigid nanoparticles after the homogenization step—liquid
state particles (supercooled emulsion) will be produced if a specific temperature is not
reached. The choice of surfactant is another crucial factor that influences the kinetics of
the polymorphic transition of lipids [62]. The inappropriate concentration of lipid and
surfactant can affect the overall internal structure of lipid nanoparticles. This transition
from b’-form to b-form could be responsible for drug expulsion. A smart way is adopted
in designing the SLN (by controlling temperature and water loss) with the initiation of
transformation from a- to b-forms [63]. Thus, it has been drawn as a conclusion that drug
incorporation decreases in the following order:

Supercooled melt < a-form < b’-form < b-form

The cutaneous utility of lipid nanoparticles holds several benefits, such as the preven-
tion of chemical degradation of the active, the increased deposition in the stratum corneum,
and the reduced flux, attributed to some very interesting outputs such as prolonged contact
with the skin surface and film-forming properties to prevent water loss. The mechanism of
mixing lipid nanoparticles and lipids of stratum corneum promotes the penetration of the
active into deeper tissues. Lipid nano-transporters can establish adjacent contact with the
superficial junctions of SC and furrows between corneocyte islands, allowing a uniform
distribution of the drug. They also offer a widening of inter-corneocyte gaps [64]. Because
of physiological lipid composition, SLN/ NLC offer an easy attachment to the SC on form-
ing its lipid rearrangement, allowing embedded drug molecules into the deeper skin layers.
Furthermore, their nanoscale diameter also contributes to the enhancement of the influx
through the skin. Nonetheless, the adequate selection of lipid composition concerning
the molecule’s physicochemical properties also significantly affects skin penetration. The
film-formation, namely an occlusive film property of SLN/ NLC on the SC surface, avoids
the evaporation of water and also fills the imperfections in the skin [57]. Furthermore,
Lademann and co-workers have concluded in one study that the hair follicles (particularly
in the scalp, calf, and forehead regions) are better drug depots than the stratum corneum.
They have considered that nanoparticles are well suited for driving the drugs into deeper
functional structures and even accumulate for some days [65].

2.1.4. Monoolein Aqueous Dispersions (MAD) and Cubosomes

Monoolein aqueous dispersions (MAD) are lipid dispersions able to provide matrices
for sustained drug release. Particularly, MAD are heterogeneous systems obtained by
dispersing in water an amphiphilic lipid, such as monoolein. MAD are typified by a mixture
of complex lyotropic liquid crystalline nanostructures like micellar, lamellar, hexagonal,
and cubic phases. It has to be underlined that the prevalence of one nanostructure over
another mainly depends on both temperature and system water content [66,67].

Indeed, surfactants and lipids can undergo various assemblies resulting in micelle
or lyotropic crystalline phases by hydration. The packing parameters or spontaneous
curvature represents the type of assemblies. For instance, monoolein (unsaturated long-
chain monoglycerides dispersed in water) has a tendency to create bicontinuous cubic
phases on addition of water, resulting in being a good candidate to increase solubility and
responsible for controlled and precise drug delivery [68]. A recent study describing MAD to
deliver quercetin showed that that quercetin was completely associated with the dispersed
phase [69]. Furthermore, the choice of emulsifier with optimum concentration has been
studied, where sodium cholate was employed at two different concentrations, 0.15% and
0.25%, with respect to the total weight of the formulation. Certainly, MAD formulated
with the lowest percentage of sodium cholate were represented as a mixture of vesicles
and cubic structures, whereas MAD with the highest concentration of emulsifier have
shown the unilamellar vesicular structures. Interestingly, MAD produced with different
concentrations of emulsifier were able to retain quercetin more than 65% after 100 days
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of the storage period. Quercetin containing MAD can be proposed to attain semisolid
products to treat skin disorders such as psoriasis or dermatitis [69]. In a similar manner, a
comparative study on the delivery of two flavonoids, namely quercetin and rutin, via MAD
has been proposed. It has been confirmed by Cryo-TEM that sodium cholate concentration
affects the morphological aspect of MAD. Moreover, diffusion studies have revealed that
both MAD systems were suitable for cutaneous applications and the presence of quercetin
or rutin did not affect the structural organization of MAD [70]. In another study, it was
reported that monoolein/poloxamer/sodium cholate mixtures were suitable for achieving
the high encapsulation of curcumin and to avoid the drug degradation for six months.
Xanthan gum, selected in order to make the MAD dispersion more viscous, controlled the
release of curcumin very efficiently [71].

The emulsification of the cubic lipid phase (transparent and isotropic phase’s crystals)
into the aqueous phase makes the system physically stable. They can be administered
via various routes such as oral, parenteral, and percutaneous and are biocompatible and
can control the release of drugs very efficiently [72]. Cubosomes dispersions have been
chosen to entrap indomethacin by emulsifying monoolein and Poloxamer 407 in water. The
study of cubosomes’ inner structure conducted by Cryo-TEM revealed the typical ordered
cubic texture, while the presence of indomethacin did not influence the ultrastructure of
the disperse phase. The prolonged anti-inflammatory activity was shown by cubosomes
with indomethacin, and tape stripping has helped in quantifying the decreased amount
of indomethacin by time ensured the successful permeation of the system across stratum
corneum [72]. Furthermore, the role of two alternate emulsifiers, namely sodium cholate
and sodium caseinate in the cubosome production, was studied for the cutaneous appli-
cation of crocin [73]. The sodium cholate has produced transparent dispersions while the
combination of both aforementioned emulsifiers has given an opaque milky appearance.
The encapsulation efficiency was more than 80% in both cases. Concerning the internal
structure, the transition in morphology took place from the cubosomes to hexosome upon
the addition of crocin. No aggregation phenomena have been observed during the six
months of the storage period. As per literature, sodium caseinate is known for its own
antioxidant activity potential—even empty cubosomes with sodium caseinate have shown
some antioxidant activity. Hence, this kind of composition can be considered as a new strat-
egy to vehiculate the crocin and to protect it from degradation [73]. Similarly, cubosomes
have been designed in order to deliver curcumin by cubosomes, and the various mixtures
of sodium cholate, sodium caseinate, bentonite, and poloxamer have been employed. The
resulting dispersions characterized by vesicles, cubosomes, and sponge type phases, based
on the composition, were investigated by cryo-TEM and X-ray studies.

2.1.5. Gene Delivery

Gene delivery involves the delivery of nucleic acids such as DNA, RNA, or antisense
oligonucleotides to appropriate cells [74]. The gene therapy mechanism is based on the
incorporation of a gene that encodes a functioning protein significantly involved in the cure
or prevention of any disease progression. Certainly, gene modulation seems to be a very
promising method; however, it has some obstacles regarding its delivery to the desired
site. The main limitations are rapid clearance, site-specific targeting, and degradation by
nucleases, which affect the serum half-life of siRNA to 5–60 min and unmodified DNA
to 10 min [75]. However, ligand approach or hydrodynamic injection can minimize these
shortcomings, well-designed biocompatible vehicles with the capability to escape from
the removal by the immune system, enhanced transgene expression is still required [75].
Moreover, obstructions in non-viral gene delivery are linked to DNA that can be lost due
to a lack of strong complexation with cationic lipid, and DNA–Cationic lipid complex can
be eliminated from the circulation before binding to the cell surface. Additionally, the
internalization of the complete complex is uncertain after invading the cell membrane.
Following endocytosis, a fraction of delivering DNA may be degraded because of acidic
pH or cytoplasmic DNAse. Improvement in transfection efficiency can be attained with
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modification in particle chemistry, size control, surface charge, shape, and ligand modifi-
cation [76]. Advancements in nanocarriers offer plentiful possibilities and the flexibility
to choose a target [6]. Due to biodegradability, ease in synthesis and functionalization,
and scale-up production, polymers could be an alternative. Moreover, the use of PEGyla-
tion to promote polymeric nanoparticle interactions at the cellular level is a well-defined
mechanism. However, certain limitations are also associated with the use of polymers
that cannot be avoided, including the high costs of manufacturing adding on biological
analyses and process development, as well as the lack of understanding of the mechanism
of degradation that leads to a generation of toxic metabolites. Furthermore, the toxicity
and stability of polymers in a protein-rich biological medium are still conflicting [77]. No-
tably, some investigations conducted on lipid nanocarriers for gene delivery eliminate all
these problems. For instance, a cationic surfactant composing liposomes conjugated with
lambda DNA exposed to endo and exo-nucleases present in serum remained intact and
stable without causing any toxicity. Thus, transfection by liposomes is a well-established
technique [78].

2.2. Diagnostic Applications

Concerning diagnostic applications, nanotechnology has gained considerable inter-
est. The imaging procedures are categorized based on morphological, functional, and
molecular levels, which provide the biological detail of a disease with a non-invasive
approach. Nano-sized particles are spherical entities made of inert silica, metals, or crys-
tals. In particular, Magnetic Nanoparticles (MNP) are an interesting tool with numerous
biomedical applications, including magnetic hyperthermia, cell separations, magnetic
resonance imaging (MRI) to track tumor cells or lesions by comparing the overall magnetic
response of MNP between pathological and normal tissues, tissue engineering, and drug
delivery to very specific areas. MNP can be categorized as pure metals, metal oxides, and
magnetic nanocomposites. Moreover, MNP—primarily composed of Co, Fe, Ni, Ti, iron
oxide, and some ferrites (BaFe12O19 and CoFe2O4)—have gained the highest attention in
the biomedical field [79]. In general, magnetic materials are considered as multi-magnetic
arrangements within one structure. However, after conversion to the nanoscale with di-
ameters of around 10–15 nm, these magnetic materials act as a single magnetic domain
structure. They are responsive only under the influence an external magnetic field, indi-
cating their paramagnetic behavior. Therefore, they can be controlled very precisely via
an external magnetic field [80]. The MNP are available in three major forms named as
magnetite (Fe2O3), maghemite (γ-Fe2O3), and hematite (α-Fe2O3). Magnetite (Fe2+ and
Fe3+ ions in the 1:2 ratio) is primarily preferred among the three forms of iron oxides.
If ferromagnetic material is exposed to an external magnetic field and later turns it off,
it still holds the magnetization for a short period, which gives the possibility to control
heat and magnetic effect in-vivo [81]. Hyperthermia is a well-established phenomenon,
whereby applying high-frequency alternating magnetic field results in heat production by
MNP. This transformation of the electromagnetic energy into heat due to MNPs oscillation
is very useful in cancer therapy, as tissues exposed to conditions of high temperature
(41–47 ◦C) may undergo apoptosis of the tumor cells. However, the precise control of
magnetic heating can be accomplished by controlling some nano-magnetic parameters
such as size (V), anisotropy (K), saturation magnetization (MS), and coercivity (HC) during
the entire process, but could also damage neighboring cells. The principle of heat diffusion
should cause the maximum destruction or killing of tumor cells by avoiding the damage
of normal cells [82]. It is worth noting that surface-engineered MNP can be useful for
various purposes, including the linking of antibodies, specific peptides, drug molecules,
fluorescent dye, and computerized tomography (CT) contrast agents (Figure 1). More than
one target can be achieved simultaneously on a single delivery of MNP in the body, as
shown in Figure 1 [83].
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Figure 1. Schematic representation of functionalized MNP. The surface of MNP can be functionalized
by the insertion of specific molecules, such as antibodies, peptides, drugs, fluorescent dye, and/or
contrast agents for computerized tomography.

In addition, the pivotal concept of artificial engineering has been explored based on
the iron oxide nanoparticles as an ultra-sensitive nanoprobe, where antibodies can be
linked to MNP. The proposed biomarkers could enhance the real-time visualization of
certain biological events including cell trafficking, cancer metastasis, and cellular signaling
at both the molecular and cellular levels [84]. Apart from various advantages, MNP
also experienced certain challenges, including rapid agglomeration due to large surface-
to-volume ratio, chemical reactivity, and high surface energy, all of which resulted in
magnetism loss. Hence, the improved functionalization of MNP by applying a suitable
coating can make them more biocompatible for in-vivo use [85]. For instance, Byoun et al.
have modified MNP by incorporating them into the silica matrix and functionalize them
with a fluorescent dye. The multi-Fe3O4@SiO2 nanoparticles have outstandingly retained
dual functioning, namely fluorescence and magnetism. Moreover, MNP below 10 nm
with paramagnetic behavior were susceptible to rapid clearance from the kidney because
of a smaller size. Conversely, the increased dimensions with the application of polymer
or lipid as a coating material have been proved to be supportive to maintain a longer
shelf life in the blood circulation [86]. Some most explored coating material for MNP are
dextran and PEG [87], dextran-spermine biopolymer [88], β-cyclodextrin, chitosan [23],
and poly (lactide-co-glycolide) (PLGA) as a magnetic core surrounded by a folate-chitosan
conjugate shell [89]. Moreover, some techniques, such as electrospinning [90], can also be
considered since natural and synthetic nanoparticles may have a significant impact on the
production process.

3. Parameters to Consider for the Characterization of Nanoparticles

The physical evaluation of nanoparticles is the foundation of their further utiliza-
tion. A good understanding of physical parameters could be helpful in foreseeing the
in vivo behavior of nanoparticles with improved efficacy [89]. For example, the stiffness of
nanoparticles can affect bio-distribution patterns, resulting in inadequate internalization
and finally drug resistance. Li and Zhang have tailored the hardness of different nanoma-
terials, namely polymeric nanoparticles, liposomes, dendrimers, and solid nanoparticles,
and demonstrated that only rigid nanomaterial can attain better and thorough endocyto-
sis. The possible explanation could be that the shape deformation of soft nanomaterials
occurred due to the receptor–ligand interaction. Unlike the case of liposomes, where their
penetration into the lipid bio membrane facilitates the interaction between the hydropho-
bic segments of the liposomes and the lipid tails. Furthermore, the feeble interaction
between nanomaterial and drug molecules could give rise to the leakage of drug molecules
before their internalization [91]. Soft biological substances cannot be phagocytosed by
macrophage and they hardly undergo full wrapping [91,92]. The alterations in stiffness can
be evaluated by changing the cross-linking density in order to modify the hardness of hy-
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drogel particles. In the case of liposomes, stiffness considered by particle stability depends
upon the diameter, phospholipid composition, and presence of cholesterol. The hardness
of liposomes is inversely proportional to size while directly proportional to the transition
temperature of the liposomal bilayer [68]. Nankano and Tozuka have reported a unique
method to assess the hardness of liposomes by combining atomic force microscopy (AFM)
and dynamic light scattering (DLS) techniques [68]. Therefore, hardness and softness are
both crucial parameters that diverge based on the target and type of delivery system.

Other physical aspects such as size, shape of nanoparticles, agglomeration state, and
growth kinetics can be confirmed by TEM; structural properties, crystal structure, and
element chemical composition can be confirmed by XRD. Furthermore, the charge on the
surface can be measured by zeta potential measurements, whereas the 3D visualization
of nanoparticles can be possible with SEM and the number of heterosized population of
nanoparticles can be traced by DLS [92–94]. The various techniques for physical evaluation
of nanoparticles are indicated in Figure 2.
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The specificity has been always conflicting because more than one technique can be
employed to assess a single characterization parameter. Therefore, the shortcomings with
scaling up of nanoparticles with their analysis, such as the absence of reference materials for
calibration and difficulty in data interpretation, cannot be overlooked [92]. Plenty of analyz-
ing techniques have been approved, but a robust strategy for a complete characterization
profile of nanoparticles is still an unmet task. Not only limitations of existing techniques
are responsible but also nanomaterial properties lead to the misrepresentation of results.
The reason for variability in diameter is based on type of nanoparticles, surface area, and
surface charge density [95]. In depth, surface properties highly depend on a nanoparticle’s
microenvironment, functional groups, and reactivity; finally, aging can also be responsible
for occurrence of several abnormalities such as swelling, shrinking, depletion of impurities
on surface, agglomeration/aggregation, and multipolar deformations.

The diameter of the nanoparticles can be defined as the inversely proportional rela-
tionship between surface, volume, and surface energy of the nanomaterial, which has a
higher energy state than the bulk material. Indeed, it has been recognized that most of the
atoms in the nanomaterial remain near or on their surface, so the surface composition and
structure of the nanoparticles play a crucial role during storage and exposure to different
environments [96–98].

More importantly, the size is not associated only with the core of nanoparticles but also
with the substances adsorbed on the surface of nanoparticles such as stabilizers and the
mobility of electrical double layer (solvation shell) along with the particle. The thickness of
the electrical double layer and its impact on the final results depends on the substances
present in the colloid and on the surface of the nanoparticles [93].

The fate of lipid nanomaterials is a very important aspect highly relevant to physical
change over time. In this manner, physical evaluation should be performed at every step of
nanoparticle development (from the preparation to storage of nanoparticles) to understand
the degradation pattern of nanoparticles.

In Figure 2, various physical characterization techniques for nanoparticles have been
given. The main parameters to be considered are size distribution, porosity, surface
charge, aggregation, dispersion ability, etc. The porosity has great relation with zeta
potential values. In the case of mesoporous silica nanoparticles, alteration on pore size and
porosity can result in the substantial reduction in zeta potential up to 25% lower than the
theoretical zeta potential predictions for a flat surface at the corresponding ionic conditions
in moderate pH range. The zeta potential values for pore openings are different from the
solid surface around mesoporous silica nanoparticles [99].

Furthermore, the comparison and utility of techniques have been discussed in order
to make a protocol for better evaluation of nanomaterials [93]. The morphology of nanopar-
ticles can be investigated by TEM, SEM, and X-ray studies while the size can be measured
using DLS, SdFFF, and optical microscopy. To understand surface charge chemistry, zeta
potential measurements are helpful. However, NMR, ESR, and confocal microscopy can
be useful to establish a complete understanding of physical parameters as well as in vivo
investigation of nanoparticles.

4. Morphological Characterization of Nanoparticles
4.1. Cryo-Transmission Electron Microscopy

Electron microscopy allows the direct visualization of nanomaterials; therefore, it is an
important means of investigating nanosized pharmaceutical forms. This technique allows
the obtaining of information about the shape, inner structure, and surface of particles that
could not be identified otherwise.

Particularly, scanning electron microscopy (SEM) is useful to investigate the shape,
surface, and size distribution of dry microparticles [100], and, more importantly, it can allow
the visualization of the outer and inner structure of sectioned particles, therefore obtaining
information about the organization of the components of the particle and verifying if the
particle is a “sphere” or a “capsule” (see Figure 3).
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Cryogenic transmission electron microscopy (Cryo-TEM) is a useful method for analyz-
ing liquid dispersions in a very close way to their native state, revealing morphology and
inner details. Milky nanosized liquid dispersions can be accurately identified by cryo-TEM.
Indeed, the possibility of vitrifying the samples brings the frozen sample very close to what
the real dispersion is [101]. Uni- or oligo-lamellar vesicles, lamellar phases, cubic phases,
cubosomes, exosomes, etc. can be visualized and measured one by one (see Figure 4).

Pharmaceutics 2021, 13, x 13 of 32 
 

 

 

Figure 3. SEM photographs of polymeric microparticles, namely eudragit RS (a,b) and hydroxy-

propylmethylcellulose (c), and lipid-based microparticles, namely tripalmitin:glyceryl monostarate 

2:1 by weight (d–f). Bar represents 20 μm in panels (a,b), 10 μm in panel (c,d), and 40 μm in panel 

(e,f). 

In the case of vesicles, especially ethosomes, multilayered vesicles have been ob-

served because of lamellar organization exhibited by phosphatidylcholine. Furthermore, 

unilamellar or multilamellar structure depends upon lipid/surfactant composition of 

phosphatidylcholine bilayer system [32,102]. 

 

Figure 4. Cryo-TEM images of empty liposomes (a), ethosomes (b), and cubosomes (c). 

A very short wavelength of accelerated electrons can provide very high resolution 

imaging [103]. The morphology of nanosystems is highly dependent on the type of lipid 

and other components employed. The study aimed at production of NLC using different 

solid lipids (i.e., tristearin, compritol, precirol, or suppocire) and a liquid lipid (i.e., 

caprylic/capric triglycerides) for the cutaneous delivery of α-tocopherol. The NLC mor-

phology was investigated via cryo-TEM and the shape appears discoid in the top view 

and more electron-dense and rodlike in the edge-on view, while a roundish shape has 

been observed in the case of NLC made up of tristearin, both for unloaded and loaded 

NLC. Ovoid and triangular structures were observed in NLC with compritol and preci-

rol. Lastly, in the case of NLC with suppocire, besides the presence of some irregular 

structures, spherical structures were detected, resembling vesicles rather than solid par-

ticles [94]. 

a b c 

f d e 

b a c 

Figure 3. SEM photographs of polymeric microparticles, namely eudragit RS (a,b) and hydroxypropy-
lmethylcellulose (c), and lipid-based microparticles, namely tripalmitin:glyceryl monostarate 2:1 by
weight (d–f). Bar represents 20 µm in panels (a,b), 10 µm in panel (c,d), and 40 µm in panel (e,f).

In the case of vesicles, especially ethosomes, multilayered vesicles have been ob-
served because of lamellar organization exhibited by phosphatidylcholine. Furthermore,
unilamellar or multilamellar structure depends upon lipid/surfactant composition of
phosphatidylcholine bilayer system [32,102].
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A very short wavelength of accelerated electrons can provide very high resolution
imaging [103]. The morphology of nanosystems is highly dependent on the type of lipid
and other components employed. The study aimed at production of NLC using differ-
ent solid lipids (i.e., tristearin, compritol, precirol, or suppocire) and a liquid lipid (i.e.,
caprylic/capric triglycerides) for the cutaneous delivery of α-tocopherol. The NLC mor-
phology was investigated via cryo-TEM and the shape appears discoid in the top view
and more electron-dense and rodlike in the edge-on view, while a roundish shape has
been observed in the case of NLC made up of tristearin, both for unloaded and loaded
NLC. Ovoid and triangular structures were observed in NLC with compritol and precirol.
Lastly, in the case of NLC with suppocire, besides the presence of some irregular structures,
spherical structures were detected, resembling vesicles rather than solid particles [94].

Figure 5 shows cryo-TEM images of tristearin SLN and tristearin-Miglyol812 NLC
dispersions [104]. The particles are projected in two-dimensions; therefore, on the basis of
the angle of observation in the vitrified samples, the particles appear differently assuming
hexagonal, elongated circular platelet-like (top view) or “needle”-like forms (side views). It
should be underlined that the NLC side view (needles) seem more elliptically shaped com-
pared to the SLN side views, likely due to the presence of the oil component (Miglyol 812)
forming compartments sticking to the surfaces of the nanoparticles solid matrix [105,106].
The nanoparticle thickness is generally between ≈5 and 40 nm, but it is very difficult to
measure it exactly due to the tilt of the particles.
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Figure 5. Cryo-TEM images of SLN (a) and NLC (b).

Cryo-TEM images were also useful to discriminate the morphology of MAD obtained
following two different methods of preparation, namely hydrotrope or hot homogenization.
The hydrotrope method consists of the use of compounds, such as sodium cholate, that
are able to solubilize hydrophobic molecules in water by means other than the formation
of micelles. As shown in Figure 6, it is evident that—notwithstanding what is reported
in literature by some researchers indicating that both methods resulted in the production
of cubosomes when poloxamer 407 is used as surfactant—in the case of the hydrotrope
method, uni- or bi-lamellar vesicles were obtained [107,108].
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Figure 6. Cryo-TEM images of MAD obtained with hydrotrope (a) or hot homogenization (b) method
in the presence of poloxamer 407 as surfactant.

On the other hand, the dispersion obtained by the hot homogenization method gave
rise to the formation of coexisting vesicles, spherical, and cubosome particles. The presence
of vesicles fused on the surface of cubosomes possibly undergoes well-ordered particles
over time [72,109].

The images taken from cryo-TEM observation are useful also to measure particle
dimensions by a scale bar. Particularly, it is evident that two different populations are often
present: the former is mainly of large cubosomes and the latter of smaller cubosomes and
vesicles of 100 nm and below.

Indeed, the most important benefit of microscopic technique is that it is feasible to
know about the morphology and the diameter of the particles within the same run. How-
ever, preparing the sample is very important—nanoparticles should cover the substrate
precisely and reagents used in sample preparation should be appropriate [110,111]. In
addition, it should be mentioned that microscopic techniques used for the characterization
of nano-sized materials could be challenging if the sample to be analyzed is polydispersed
due to aggregation.

4.2. X-rays Diffraction Studies

X-ray diffraction studies were frequently conducted on lipid dispersions in past
decades [112,113]. It is well known that the morphology of nano-sized drug carriers directly
influences the release and encapsulation efficiency of the active molecule. Therefore, an
investigation of the internal structural organization of nanosystem becomes very important.
X-ray diffraction analysis is the most explored tool to achieve this task. Generally, in lipid-
based formulations, lipids can aggregate into many structures via interplay parameters
including temperature, water concentration, or the presence of different components. The
phase stability is described by these lipid arrangements. Lipid phases are most often
detected in drug delivery nanosystems such as lamellar, hexagonal, and cubic phases [114].

The number of phases observed in lipid-water systems as a function of composition
and temperature is quite large [67,115]. The phases can be described and classified accord-
ing to different criteria. In this case, a reference to the ability of lipids to segregate in water
into specific regions (called “structure elements”) is considered together with the position
in which they combine a periodically ordered long-range organization of the structure
elements (in 1, 2, or 3 dimensions) and a highly disordered short-range conformation of
the hydrocarbon chains (see Table 2).
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Table 2. Structural properties of some lipid phases.

Phase Type Structure Elements Class

1D: lamellar - Lamellae -

2D: hexagonal I or II Infinitely long rods Rod-like

3D: Cubic, P4332 II Rod network and micelles Mixed rod-like and micellar

3D: Cubic, Pm3n I Micelles Micellar

3D: Cubic, Pn3m II Intertwined rod networks Bicontinuous
(IPMS * Diamond-surface)

3D: Cubic, Fd3m II Micelles Micellar

3D: Cubic, Im3m II Intertwined rod networks Bicontinuous
(IPMS * Primitive-surface)

3D: Cubic, Ia3d I or II Intertwined rod networks Bicontinuous
(IPMS * Gyroid-surface)

* IPMS = infinite periodic minimal surfaces.

The structural elements of the lamellar phase are lamellae and the phase is described
as an ordered 1D succession of planar sheets of lipid and water. The hexagonal phase is
characterized by cylindrical micelles packed in a 2D hexagonal lattice. Particularly, in the
type I phase (direct), the hydrocarbon chains are inside the cylinders and water is outside,
while in the type II phase (inverse), each cylinder contains water and the region between the
cylinders is filled with the hydrocarbon chains. Cubic phases are a mixture of micellar and
bicontinuous cubic phases [116]. In cubic phase type I, micelles are filled with hydrocarbon
chains and separated by water (Pm3n); while cubic phase type II is characterized by water
inside and hydrocarbon chains outside (Fd3m). Bicontinuous cubic phases are described
as convoluted (folded) surfaces and presented as the infinite periodic minimal surfaces
(IPMS) [67,115]. However, their structure is conveniently visualized as two 3D networks of
connected rods, mutually intertwined and unconnected [116]. Depending on the type of
rod junction, different IPMS are obtained, namely gyroid G-surface for co-planar junction 3
by 3 (Ia3d cubic phase), diamond D-surface for tetrahedral junction 4 by 4 (Pn3m cubic
phase), and primitive P-surface when the rods are cubically joined 6 by 6 (Im3m cubic
phase). The Ia3d bicontinuous cubic phase exists either as type I (oil-in-water) or type II
(water-in-oil).

It is very important to verify the impact of presence of drug molecules on the over-
all structural organization of nanosystems. The scaling up study aimed at fabricating
progesterone-containing NLC and SLN at a pilot scale has been accomplished, where the
lamellar structural organization of lipid nanoparticles has been confirmed. Furthermore,
the obtained data indicated that the presence of progesterone has slightly affected the unit
cell dimensions [117]. In another study, two different compositions have been employed
for the production of NLC in order to embed ellagic acid for dermal delivery. Tristearin
was solid lipid in both cases while liquid lipid tricaprylin and labrasol have been chosen
alternatively. The influence of different lipid blends on overall stability, release profile,
and activity have been examined. In SAXS studies, loaded as well as unloaded NLC
preparations were very similar; therefore, it can be emphasized that neither the different
lipid composition nor the presence of ellagic acid as a drug molecule alter the structural
organization of lipid nanoparticles. Note that considering the very low solubility of ellagic
acid in water, the data suggest a solubilization of the active inside the paraffinic region of
the lipid layer [118]. Furthermore, the structural organization of both SLN and ethosomes
has been studied for the delivery of caffeic acid. In the case of unloaded and loaded SLN, a
bilayer-to-bilayer repeat distance has been calculated from Bragg peaks, independently
from the presence or the absence of caffeic acid. Conversely, in the case of ethosomes, very
disordered positional correlations between adjacent bilayers and/or few stacked multi-
lamellar structures have been traced out. Interestingly, the addition of caffeic acid modifies
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the surface charge density of the ethosomal bilayers and balances the attractive and repul-
sive forces between adjacent membranes. As found by other authors, the association of
phenolic compounds with vesicular systems organized in bilayers can positively influence
the bilayer organization [32,119]. The Cryo-TEM results can corroborate the SAXS results,
giving information on the morphology and structural organization of the nanomaterials.
Furthermore, our recent study aimed to design liposomes for targeting synthetic quorum
sensing inhibitors, using different surfactants (either anionic and cationic) to reach the
best composition and activity against P. aeruginosa biofilm formation showed that by
small-angle X-ray scattering, it was possible to see the effect of type of charged surfactant
on the structural organization of liposomes by getting different types and number of bands.
For example, in the case of plain liposomes, a multi lamellar structure was found, while in
the case of cationic surfactant, there was a loss of positional correlations between adjacent
bilayers, likely due to surface charge density conferred to the bilayers upon surfactant
insertion. Hence, unilamellar structures have finally been observed in the case of anionic
surfactants, in which the absence of a scattering signal observed indicates a complete loss
of structure [102].

In this way, the fusion between the TEM and X-ray results can provide information on
the internal structure but also on the localization of lipids and drugs within the nanostructure.

5. Size Measurements

Commonly, the size of nanomaterials being utilized for drug delivery purposes ranges
from 10 to 200 nm. These size specifications can be considered as per molecular filtration
size and the reticuloendothelial system uptake cut-off [120]. Moreover, it is very important
to determine the strengths and weaknesses of employed methods for nanomaterial charac-
terization in order to distinguish their limits; for example, analytical ultracentrifugation
and flow field fractionation methods are disadvantaged by objects like too minuscule
particle size owing to the particle charge [121]. Diameters can be measured by various
techniques such as Sedimentation Field Flow Fractionation (SdFFF), Photon correlation
spectroscopy (PCS), and (once again) cryo-TEM.

5.1. SdFFF

The Sedimentation Field Flow Fractionation (SdFFF) technique is meant for the sepa-
ration and characterization of nanoparticles based on gravitational or centrifugal force as
an external force (see Figure 7).

Particularly, in FFF techniques, the separation occurs by the retention of the particles
inside the channel, retention that is due to the application of an external field perpendicular
to the flow and counterbalanced by the diffusion phenomenon in the liquid carrier. The
factors most influencing the FFF analysis can be summarized as (a) sample preparation,
(b) properties of the liquid carrier, (c) channel size, and (d) influence of the applied external
field [122].

SdFFF is not only limited to analyze size distribution but also useful in various tasks
such as the fractionation of proteins (40–300 nm), nucleic acids (<70 nm), polysaccharides
assemblies (0.1–1 µm), cells (10–20 µm), and virus-like particles (10–80 nm) [123,124].

In one study concerning lipid-based fluorescent nanoparticles designed to access in-
vivo biodistribution via fluorescent luminescent imaging and in vitro uptake on hCMEC/D3
cell line, SdFFF was utilized to determine the size distribution of particles by converting the
fractograms and it was useful to study the influence of different compositions on the overall
diameter. For instance, authors were able to confirm that the lipid component and the
presence of both fluorescent and tween 80 slightly affected nanoparticle dimensions [110].
Furthermore, the attained fractograms at fixed density values have been converted into
PSD plots (the amount of material per unit change of diameter, according to well-verified
equations) by transforming the retention time in a size.
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Figure 7. SdFFF operation diagram (a) and instrument configuration set up (b).

Similarly, NLC with different protocols have been prepared to embed a prototypical
cannabinoid drug [111]. In order to get more accurate results, the data obtained from PCS
have been corroborated with SdFFF. Both the data agreed with each other very well in terms
of the number of populations detected by both techniques. Changes in the composition and
passage of production of NLC (by alternatively adding the lipid phase into the aqueous
(direct protocol) or the aqueous phase into the lipid (reverse protocol) have shown very
similar patterns with both the techniques [111].

5.2. Dynamic Light Scattering/ Photon Correlation Spectrometry

The measure of diameter is a crucial step to distinguish nanoparticles from bulk
materials. Particularly in DLS, the laser light scatters when it passes through a colloid.
The intensity of the inflected scattered light is determined as a function of time, and the
hydrodynamic diameters of particles can be measured [125].

Charge on the surface of nanomaterial and their dimensions are the two most im-
portant parameters to be considered, as they are highly responsible for several biological
factors including cellular uptake, toxicity, and dissolution. These factors are subsequently
accountable in drug release at the target site. Furthermore, biological matrices could
modify both parameters with different mechanisms, such as protein adsorption causing
the characteristic corona or the interaction of nanosized particles with certain biological
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molecules, leading to coronas that manage a certain control and interfere with the living
system [126,127].

The mathematical equation derived from DLS results are highly based on viscosity of
the solvent, instrument, temperature, and the refractive index of materials [128,129].

Generally, in DLS, autocorrelation function (ACF) of the scattered light can be fitted
by the cumulant and/or CONTIN method as a mathematical algorithm and analysis.
The cumulant method is where the cumulant term is provided with mean diameter and
polydispersity [130]. However, this method is not suitable in the case of heterogeneous
polydisperse samples [131]. The difficulty in polydisperse and heterogeneous samples can
be overcome using the CONTIN algorithm method. Here, the correlation function is fitted
against a longer time duration and gives size distribution analysis with average size and
width for every peak, whereas in the cumulant method, the initial part of the ACF is fitted
into a single exponential decay [132]. Interestingly, both methods should be suitable for
completely monodisperse samples. Therefore, results obtained with these two algorithms
are usually different. The polydispersity values obtained from the results describe the
intensity of light being scattered by particles of different diameters and is calculated by
the ratio (width/mean)2 for each peak [131]. Furthermore, there are various parameters
that need to be considered that subsequently affect the results; such factors are discussed
in Table 3.

Moreover, the detection limits of two sophisticated techniques, DLS and UV-Vis spec-
troscopy, have been checked on silver nanoparticles and colloids as mixture of nanoparticles
with different sizes: 10 nm and 55 nm and 10 nm and 80 nm, respectively. Practically, the
potential to observe small objects (10 nm) in the presence of large ones (55 nm and 80 nm)
have been focused.

Table 3. Factors affecting accuracy of DLS measurements.

Factor Description References

Solvent used in sample

It should be underlined that some solvents (toluene) have tendency to
scatter the light up to certain extent, which can create background noise in
results. Secondly, dimethyl sulfoxide can alter viscosity of the sample at

different temperature conditions

[133,134]

Concentration of sample

Higher concentration of sample corresponds to higher number of particles.
It means that light hit so many times before reaching to detector and finally

loses intensity. Too diluted sample cannot produce scattered light to be
analyzed. DLS is only useful in case of diluted samples.

[135,136]

Agglomeration
Nanomaterials have tendency to undergo agglomeration. The bigger size

of agglomerate scatter light with great extent. Even it can destroy the
detector also.

[99]

Type of cuvette
Use of organic solvent or temperature conditions higher than 50 ◦C can

interfere with Cuvette made up of plastic. Cuvette should be clean
properly with detergent or distilled water.

[103,131]

As expected, it was very difficult to characterize polydisperse colloidal particles
since the scattered light through bigger particles was more intense than the light coming
through smaller ones. Therefore, it was not possible to detect a higher fraction of smaller
nanoparticles because of the interference created by a small fraction of bigger particles,
limiting the precision and accuracy of the results of both the techniques. Particularly,
UV-Vis was not able to separate out the peaks of different diameters of particles. Hence,
UV-Vis should not be considered in analyzing polydisperse colloidal systems. The better
alternative could be AFM or TEM [99].
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5.3. Cryo-TEM

The above reported microscopic technique allows at the mean time the achievement
of the morphology and the diameter of the particles. In this view, the sample preparation
is very important [99,137,138].

It is worth underlining that in the previous work done by our research group, we
used all three aforementioned techniques to control the diameter of lipid nanoparticles
and we concluded that all the techniques have their own limitations. For example, the
diameter of nanoparticles was recorded in the case of SdFFF and largest in the case of PCS
and the diameter assessed by TEM was in the middle of both. The possible explanation
could be that different principles are involved in different techniques. The comparison and
limitations of the techniques are described in Table 4.

Table 4. Comparison between SdFFF, DLS, and cryo-TEM.

Technique Principle References

SdFFF

Based on separation of nano/ micro scale particles as a
function of their specific mass with known particle density
by assuming that particles are spherical. The dimensions
illustrate the diameter of an equivalent sphere. It gives

higher resolution comparably to PCS because it fractionates
different sized particles first more specific for the
dispersions having multimodal size distributions.

[110,139]

PCS/DLS

It measures the particle diameter by light scattering could
give misleading interpretation with systems having

non-spherical particles. Moreover, larger spheres
monopolize the scattering behavior of the sample, small
numbers of large nanoparticles result in a considerable
enlargement of size and dispersity of nano-dispersion.

[110,140]

Cryo-TEM

It is not possible for all the particles to be imaged because
larger particles can be neglected in the analysis. Therefore,

usage of cryo-TEM for estimating diameter could give
uncertain results because distances or geometries may be

over- or under assessed.

[103,110]

6. Zeta Potential and Surface Charge

The interface of particles becomes electrically charged when immersed in specific
fluid. It possibly takes place because of a sum of mechanisms, such as the adsorption of the
charged surfactants to the particle surface or ionization of surface groups that consequently
leads to surface charge density. There is no way to measure surface charge directly, but
it can be made possible by creating an electrical field around a particle. Surface charge
generally measured in terms of voltage [95]. The zeta potential measurement technique is
based on electrophoresis. More precisely, particles in their respective suspending media
are exposed to the electrical field. Charged moieties will exhibit drift under the influence
of this external electrical field (positive bodies will travel toward negative electrodes and
vice-versa). Interestingly, the thin layer of ion and solvent around the particle will drift
along with the particles [141].

However, getting high-quality results from zeta potential measurements is very chal-
lenging and highly dependent upon various crucial factors including the formation of
aggregates low signal-to-noise and the blackening of the electrodes can occur at high ionic
strength. Upon aggregation, particles become very large in diameter and undergo settle-
ment; subsequently, the suspending media are too diluted to attain adequate signal-to-noise
ratio and could not remain dispersed longer. Moreover, the aggregation process is dynamic;
thus, it keeps changing with the passage of time. The rate of aggregation can be controlled
by modifying the concentration of solution in which the nanoparticles are dispersed [142].
An investigation has been reported, where the reproducibility of zeta potential results
has been tested on four different types of nanoparticles. Drastic changes in zeta potential
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values occurred at extreme dilutions. This shift was not because of change taking place
in properties of nano-suspension, but due to the limitation of the instrument because of
signal contribution arising from the extraneous particles present in the liquid media.

Hence, basic characterization should be done for every new sample in order to find
the best concentration of the sample with reliable reproducibility [143]. It can be pointed
out here that the obtained zeta potential results will not change by optimizing the value
for concentration at which particle is aggregating. Therefore, zeta values will not fluctuate
during analysis and more reliable results can be obtained [142–147]. Furthermore, the
charge density is associated with particle properties while ionic strength and composition
are linked to the suspending medium.

Furthermore, functionalized nanoparticles possess certain functional groups/surface
cites that can turn charged moieties on dispersal into water. This charge variation highly
depends on the pH of the solution. Indeed, the same group can have a different charge
(positively or negatively) at different pH values. For instance, the hydroxyl group turns
into protonated/positively charged at low pH and negatively charged at higher pH. These
surface sites become neutral at a specific pH called isoelectric pH. Measuring this isoelec-
tric pH is always challenging [148,149]. Furthermore, the properties of active molecules
entrapped in nano-carriers can affect the overall pH of the dispersion and finally the zeta
potential values. The two carriers, namely SLN and ethosomes, have been designed to load
caffeic acid. The pH value of unloaded SLN and ethosomes were around 5.5 and the zeta
potential values were −13.83 ± 0.02 and −16.21 ± 4.5 mV, respectively. Interestingly, upon
the addition of caffeic acid, the pH values shifted to 3.7 and the zeta potential values were
nearby to neutral charge (Table 5). In this manner, negatively-charged surface possessing
nanosystems are capable of embedding positively-charged drug molecules. This factor
can enhance the overall encapsulation efficiency of drug delivery systems [32,119]. Some
examples from literature related to lipid-based nano-sized drug carriers are summarized
in Table 5.

Table 5. Z-average and zeta potential values of some nanoparticles reported in literature.

Type of Nanoparticle (np) Active Molecules Z-Ave (nm) 1 ζ Potentia (mV) 2 Reference

SLN caffeic acid 201 ± 11 −4.92 ± 0.01 [119]
ethosomes caffeic acid 219 ± 21 +1.99 ± 2.48 [119]
liposomes QSi 3 230 ± 12 +55.8 ± 0.4 [102]
liposomes Peptides 200–350 17.8 ±13 [144]

cationic particles Peptide Nucleic Acids 870–1140 +27.9 ± 4.2 [145]
chitosan Enoxaparin 135.2 ± 3.1 31.67 ± 4.6 [146]

stearylamine lipid 180.3 ± 3.6 −13.52 ± 2.3
polymer lipid hybrid Selegiline 178.7 ± 3.4 −25.07 ± 3.4 [147]

thiolated chitosan 215 ± 34.7 +17.06
1 Zeta average diameter (mean size). 2 Zeta Potential. 3 Quorum sensing inhibitors.

7. Characterization of Magnetic Nanoparticles
7.1. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR is a very advantageous analytical technique for quantitative and structural
architecture analysis of nano-sized materials. The NMR phenomenon is shown by nuclei
having non-zero spin under the influence of an external strong magnetic field, which create
variation in energy between the spin up and down states. Transition between these two
phases can be sensed by electromagnetic radiations. In the field of physical characterization
of nanosystems, NMR can be applied in order to investigate the interactions or coordination
between the ligand and the surface of diamagnetic or antiferromagnetic nanoparticles [150].
The high-resolution technique becomes a useful tool for gathering information regarding
mobile or dissolved constituents, especially in solid-state.

NMR is perfectly suitable to characterize the solid particles in terms of molecular
mobility as well as the rotational diffusion of the particles [151]. It can be employed for
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structural characterization of lipid nanoparticles. Particularly, interaction of entrapped
drug molecules with the lipid core can be examined with the help of this tool. With this
regard, coenzyme Q10 has been incorporated into a solid lipid matrix of nanoparticles. The
association of Q10 with lipids was confirmed by observing spin diffusion pattern between
protons of lipid and protons of Q10, which has further assured that more than 60% of drug
was found to be associated with lipid matrix while the rest of amount formed separate
domains [152].

Furthermore, NMR can be employed to characterize functionalized lipid nanopar-
ticles such as stabilization of nanoparticles via PEGylation. The blend of lipid namely
tripalmitin, lecithin, and poly(ethylene glycol) (PEG)-stearate has been used to produce
lipid nanoparticles by an emulsification-solvent evaporation technique. Wherein, it was
feasible to trace out tripalmitin in the core of nanoparticles as a major component and
whereas PEG-stearate was inflexibly adhered to the surface of the nanoparticles, producing
a hydrated polymeric layer. On the other hand, it can also be revealed that the density of
PEG coating can be altered by the fraction and the molecular weight of the PEG-stearate
used in the nanoparticulate dispersion [153].

Additionally, the NMR based approach can be useful in the characterization of gold
nanoparticles functionalized with PEG designed for anti-cancer therapy. NMR was ba-
sically employed to understand specific intermolecular interactions and the location of
the active molecule in the nanoparticles. The analysis revealed the co-existence of two
microenvironments of entrapped drugs, namely proteasome inhibitor bortezomib, pre-
cisely by binding the PEG portion of the coating and by absorption on the nanoparticles
surface. This study could be useful to analyze the sustainability of drug molecules [154].
Furthermore, Nafion-based lipid nanoparticles have been proposed for creating an ionic
connection between the perfluorosulfonic acid resin and the protonable phosphine 1,3,5-
triaza-7-phosphaadamantane (PTA), suitable for the coordination of platinum. Nafion is
a charged surfactant in which the hydrophilic head is typified by the sulfonic functional
groups and the hydrophobic portion by the tetrafluoroethylene structure. Therefore, in the
lipid domain, the lipophilic portion of Nafion interacts with the lipid core of the particles,
while its polar moiety is present on the surface of nanoparticles. The presence of the
sulfonic groups on the surface could therefore be used to interact with Pt-coordinated PTA.
In this study, the capability of Nafion-containing nanoparticles to selectively protonate PTA
on nitrogen and the coordination ability of the NAF/PTAH+ system to Pt was assessed by
NMR. Notably, this study could be foundation for loading and detaching of platinum via
alterations in pH or ionic strength [155].

7.2. Electron Spin Resonance (ESR)/Electrone Paramagnetic Resoanance (EPR)

The use of magnetic moments of unpaired electrons can describe the electrical, optical,
and magnetic behavior of the respective materials. This technique is based on resonance
absorption of the magnetic components of external electromagnetic radiations by a spin
system, useful for characterization of materials having unpaired electrons in the systems.
Therefore, samples containing paramagnetic material are well accepted because they can
propagate ESR signals [156,157]. ESR can be used to assess magnetic nanoparticles for
in vivo biodistribution in the case of drug targeting. This technique is very sensitive and
able to detect both endogenous (iron-protein complex) as well as exogenous source of
iron. It can quantify magnetic nanoparticles concentration in biological samples. One
approach has been explored to quantify the magnetically driven nanoparticles in brain
tumor targeted in rats at lowest concentrations approximately 30 nmol Fe/g tissue [158].

One important concern associated with nanomaterial is biological toxicity under
certain experimental conditions. The possible reason could be nanoparticles can facilitate
electron transfer and produce free radicals. For instance, nanoparticles under biological
environment can give rise to reactive oxygen species such as superoxide, hydroxyl radical,
singlet oxygen and hydrogen peroxide that are powerful oxidants able to induce damage
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at cellular level. Hence, ESR can be a promising technique to identify and quantify the ROS
generated under chemical as well as biological environment [159].

ESR is not only limited to quantify ROS but can also be employed in order to assess
antioxidant capacity of nanomaterials. The hydroxyl ion scavenging by nanomaterials
have been assessed via spin trapping technique in ESR. The capacity of nanoparticles to
interact with ROS is highly dependent on size because particles with diameter around
9 nm were able to show maximum antioxidant activity. More specifically, antioxidant
properties of the gold nanoparticles in oligochitosan solutions depend on the particle
size [160]. Furthermore, specific coating of surfactant over magnetic nanoparticles can
affect resonance properties. The magnetic nanoparticles have been coated with gold,
sodium-oleate and methoxypoly(ethylene glycol), and in all cases the coated magnetic
nanoparticles have shown super-paramagnetic behavior with strong surface effect on
magnetic behavior of nanoparticles. Moreover, along with particle size reduction, surface
to volume ratio increases. This effect was higher in the case of gold-coated magnetic
nanoparticles because of the strong interactions between gold atoms and Fe3O4 particles.

Two important parameters have been also assessed, namely the resonance field (de-
creasing by coating) and the line width (increasing) of the ESR spectra [161]. Interestingly,
ESR can be applied in order to investigate cell penetration and endocytosis performed by
nanomaterials. Wherein, the detail about the number of nanoparticles entering the cells
and concentration of drug molecules being released within the cell microenvironment can
be evaluated. Additionally, as described earlier, it can also be used in order to assess the
radical scavenging activity during inflammation or cancer state. It is an interesting point
to note down that structure and intensity of ESR spectra keep changing along with the
process steps of endocytosis. The various stages could be described as follows. Firstly,
when the spin label is not bound to the cell it gives single narrow spectra. Secondly, when
the spin label attaches to the surface of the cell a wide triplet is formed. Thirdly, when the
spin label is inside the cell (endosome or lysosome), gives a narrow triplet spectrum and
fourthly, when the spin label enters inside the mitochondria of the cell the concentration
of spin label starts declining because of their reactions with free radicals. The ESR can be
useful in various types of cells such as cancer, endothelium and yeast cells. This strategy
can also describe the toxicity associated with the nanomaterials [162].

The EPR experiments have been performed to check influence of dibucaine (a long-
acting local anesthetic) on organization of lipid core of structural on SLN and NLC by
incorporating stearic acid-derivatives spin labels probes into lipid core. Using label probes,
it has been suggested that bilayer lipid core has a tendency to retain maximum dibucaine.
EPR can also be used to evaluate stability of drug molecules inserted into lipid cores on
heating and cooling of nanoparticles. Hence, no lipid reorganization as a function of
temperature occurs [163].

8. Miscellaneous
8.1. Confocal Microscopy

Confocal laser scanning microscopy is an imaging technique used to generate images
from cells or tissues, providing higher resolution and at selective depth more beneficial
than conventional microscopy or fluorescence microscopy. This technique is based on the
principle of striking incident beams with photons at a given wavelength over a sample. The
interaction between illuminated photons and atoms from the sample produces new photons
of lower wavelength finally identified by the detector. Point by point scanning is possible
by reconstructing images in optical sectioning [164]. Thanks to this optical sectioning, it is
possible to track the nanoparticles under the skin. Confocal microscopy can enhance the
localization, visualization and penetration of nanomaterials into skin [165]. This technique
is very much useful in uptake studies. The uptake of cubosomes into fibroblasts and
macrophage cell lines (native state with no fixing) has been explored via live cell imaging
associated with the confocal microscopy and individual fusion events have been examined
through visualization. Furthermore, the results obtained were corroborated very well along
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with results from fluorescent-activated cell sorting technique. The uptake mechanism of
cubosomes has been revealed by confocal imaging in the case of fibroblast via blending
of cubosomes lipid bilayer with cell membrane. The fluctuation in fluorescent pattern by
multiple time represents cubosomes uptake followed by immediate recycling (transfer
to lysosomes) [166]. Similarly, confocal microscopy has been linked to flow cytometric
analysis in the case of uptake studies for camptothecin loaded nanoparticles [167]. Since
the cancer cells possess numerous portions, they can be considered as excellent targets for
therapy and imaging. The main obstacles to drug delivery into these sites are poor blood
flow, high interstitial fluid pressure and damaged blood vessels in these areas. These were
overcome by designing c(RGDfK) labeled chitosan capped gold nanoparticles and they
have shown their enhanced and selective uptake into MCF-7 and HUVEC cells compared
with non-targeted chitosan capped gold nanoparticles [168]. Along microscopic techniques,
it can be mentioned the possibility of using other for uptake study of ethosomes loaded
with Coenzyme Q10 on fibroblast, such as TEM. With this electron microscopy technique,
the passage of ethosomes undergoing endocytosis was clearly visible. The results led to
conclude that both loaded and unloaded ethosomes did not affect the organization of
cell membrane. Therefore, ethosomes are very promising for entering through narrow
constriction because of high flexibility [50].

8.2. Amperometric Approach

To assess the permeation of polyphenols through the skin, an amperometric approach
can be used. More specifically, an oxygen electrode coated with pig skin can be used for this
purpose, in this case the skin will act as a source of catalase and peroxidase enzyme. This
tool can be exploited in order to analyze the kinetics of polyphenol permeation across the
stratum corneum and its participation in antioxidant reactions mechanism within the skin
in the presence of hydrogen peroxide, H2O2. More precisely in the skin covered oxygen
electrode (SCOE), an electrode allows the registration of variation in oxygen concentration
because of hydrogen peroxide-polyphenol reactions in the skin membrane [169–171]. After
achieving baseline current correspondent to 0.26 mM of dissolved O2 in the solution, H2O2
is added to the buffer system to mimic the inflammatory conditions, wherein the SCOE is
already dipped. H2O2 passes through skin and interacts with catalase enzyme naturally
present in skin, giving rise to oxygen production. The oxygen produced from the reaction
will be sensed by oxygen electrode and the reduction current will be increased. While in
second phase with addition of polyphenol after completion of hydrogen peroxide response
will bring decrease in reduction current. The possible reason could be that in the presence
of two molecules of H2O2 and enzyme like peroxidase, polyphenol will be getting oxidized.
The sequence of the reaction described up to now leads to the amperometric response
reported in Figure 8. This kind of model can be employed to assess antioxidant activity of
polyphenols especially when they are entrapped within different nano-sized carriers. This
strategy has been employed first time for ethosomes and SLN [119].

Recently, caffeic acid loaded into ethosomes and SLN have been investigated. The re-
lease of caffeic acid from respective nanosystems and its further involvement in antioxidant
activity has been studied [119]. Interestingly, ethosomes were more promising over SLN
and have shown fast release of caffeic acid. Additionally, ethosomes have more capability
to retain the stability of caffeic acid than SLN. Furthermore, this experiment allows for
calculating lag time and apparent diffusion coefficients. Lastly, the reversible gluing or
blending of ethosomes and SLN to skin membrane in terms of change in skin resistance has
been measured. This strategy is very beneficial to study how these nanosystems interact re-
versibly with skin and how they change the skin resistance for a short time period without
affecting skin integrity [32,119]. The integrity of the skin in terms of skin impedance have
been measured by four electrode assembly [119,172].
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9. Conclusions

Although nanomedicine is still at an initial phase of development, many therapeutic
active agents that exploit nanotechnology have been accepted and commercialized. Their
clinical translation is still a big question because the physical and in vitro characterization
is not capable enough to predict their clinical efficacy. Therefore, several controversies
regarding the selection of characterization protocols arise. Moreover, the inherent nature
of nanoparticles may cause challenges to their consistent production and application in
reproducible studies. Awareness of dynamic instability of suspended nanosystems could
eventually be solved or addressed thanks to the knowledge of the chemical characteristics
of the system surface. The application of a well-defined and thoughtful characterization
plan together with the collection of storage information could be useful tools for addressing
reproducibility problems or identifying possible variations.

In this review, we tried to cover several techniques for the physical characterization of
nanosystems and the challenges associated with them. By means of this review, illustrating
the use of the characterization methods of lipid-based nanosystems together with their
advantages and limitations, we also tried to explain how they can be effectively combined
and complement each other. It has been demonstrated that the techniques presently
available strongly help the comprehension of the structure, the behavior, and the stability
of the produced nanosystems. Presenting each technique in a comparative way, this review
can be used as a guide, helping researchers in choosing the most suitable technique for
their characterization and a precise evaluation of their use. However, the modalities of
interaction between the nanosystem matrix and the loaded molecules are still and there are
open questions regarding the selectivity, reliability, and reproducibility of each technique.
Indeed, researchers are increasingly aware of what needs to be measured. Therefore, for
significant progress to be made toward this goal, much more effort is needed to establish
testing criteria, validate efficacy, and accumulate safety data. Obviously, the accuracy and
resolution of many techniques will need to be further improved in the future, and we hope
that this review will also help define which techniques are worth the effort for further
technical improvements. It would be better to pay attention to optimizing the best-fitting
techniques for achieving new research goals.
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