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ABSTRACT

Identifying the genomic regions and regulatory fac-
tors that control the transcription of genes is an
important, unsolved problem. The current method
of choice predicts transcription factor (TF) binding
sites using chromatin immunoprecipitation followed
by sequencing (ChlP-seq), and then links the binding
sites to putative target genes solely on the basis of
the genomic distance between them. Evidence from
chromatin conformation capture experiments shows
that this approach is inadequate due to long-distance
regulation via chromatin looping. We present CisMap-
PER, Which predicts the regulatory targets of a TF us-
ing the correlation between a histone mark at the
TF’s bound sites and the expression of each gene
across a panel of tissues. Using both chromatin con-
formation capture and differential expression data,
we show that CisMAPPER is more accurate at predict-
ing the target genes of a TF than the distance-based
approaches currently used, and is particularly ad-
vantageous for predicting the long-range regulatory
interactions typical of tissue-specific gene expres-
sion. CisMAPPER also predicts which TF binding sites
regulate a given gene more accurately than using
genomic distance. Unlike distance-based methods,
CisMaPPER can predict which transcription start site
of a gene is regulated by a particular binding site of
the TF.

INTRODUCTION

Transcription factors regulate gene transcription by bind-
ing to specific regions of DNA called regulatory elements.
This binding then activates or inhibits the action of tran-
scriptional machinery at the transcription start site (TSS)
of each gene it regulates. Particular TF binding sites are of-
ten unique to a specific cell type, condition, developmental
stage or tissue (for brevity hereinafter referred to as a ‘tis-

sue’), and defective binding due to mutations in the bound
region (e.g. ‘regulatory SNPs’ (1)) or in the TF itself (2) can
cause dysregulation of genes and pathological phenotypes.
Thus, two key questions are (i) which genes does a given
TF regulate in a particular tissue, and, for a given gene, (ii)
which binding sites of the TF affect its expression?

The current preferred method for determining the regu-
latory actions of a TF begins with predicting where it binds
the genome in a given tissue using a chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) assay (3). The
next step usually assumes that each such predicted TF bind-
ing site (TFBS) regulates the closest gene, or that each gene
is regulated by the closest TFBS, where distance is measured
in bases (b) along the chromosome between a TSS of the
gene and the TFBS.

This ‘nearest neighbor’ assumption works fairly well in
practice for predicting the gene targets of a TF, since many
TFs regulate by binding in the promoter of the target gene.
However, a good deal of regulation is via distal enhancer
regions and involves chromatin looping (4,5), which causes
these distance-based methods to make incorrect predic-
tions. In one human cell line (GM12878), fully 41% of chro-
matin loops connecting a non-promoter region to a pro-
moter skip one or more intervening promoters (6), violat-
ing the ‘closest gene’ assumption. Similarly, if the target
gene has multiple TSSs, distance-based methods cannot tell
which TSS is the actual target of a TF bound at a nearby
enhancer. Finally, if a TF binds at multiple locations near
a gene, there is no guarantee that the closest site actually
regulates the gene, as the ‘closest TFBS’ method assumes.

A number of methods for linking regulatory elements
(such as enhancers) to target genes have previously been
proposed that are not based on distance alone, but none
have been tested with TFBSs predicted by TF ChIP-seq.
The method of Ernst et al. (7) uses distance plus data
for three histone modifications (H3K4mel, H3K4me2 and
H3K27ac) and gene expression in a panel of tissues. It
requires a supervised learning training step, and was not
tested with regulatory elements predicted in a tissue not in-
cluded in the panel. Similarly, Thurman et al. (8) showed
that cross-tissue correlation of DNasel hypersensitivity
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(DHS) between DHS regions overlapping promoters and
DHS regions not overlapping promoters can predict regu-
latory relationships, but it is not clear how to extend their
approach to linking TFBSs to promoters. DHS data are
also available in far fewer organisms than histone modifi-
cation data, restricting the applicability of that approach.
The PreSTIGE algorithm (9) uses cross-tissue correlation
of H3K4mel and expression, but it was designed for link-
ing enhancers (not TFBSs) to genes, requires CTCF binding
data and only predicts links when both the H3K4mel and
expression signals are specifically enriched in a given tissue.
He et al. (10) and Roy et al. (11) also proposed methods for
training predictors of regulatory links between regulatory
elements and genes using a large number of input features
(e.g. histone modifications, DHS and TF ChIP-seq). These
predictors are more accurate than the simple correlation-
based approaches like PreSTIGE, but require data from
many assays in order to make predictions in a tissue of in-
terest.

We previously described a method for predicting links
between enhancers and genes using cross-tissue correlation
between histone modifications and gene expression (12),
and in the current work we extend and validate that ap-
proach for TFBS-gene links. Our primary goal is to pro-
vide a method for analyzing peaks from TF ChIP-seq ex-
periments that is as easy to use as distance-based methods,
but is substantially more accurate. We propose a method we
call CISMAPPER that, like distance-based methods, only re-
quires the user to provide the genomic locations of predicted
TFBSs. Rather than using distance, CISMAPPER infers reg-
ulatory links from the correlation between the presence of
a selected histone modification (typically H3K27ac) at the
TFBS and the expression of a gene across a panel of tissues
in the same organism. We make available for free down-
load the CISMAPPER software (suitable for OS X, Linux
or Unix) and panels of histone and expression data for hu-
man (13) and mouse (14) from ENCODE, and for human
from the Roadmap Epigenomics Project (15). We show that
CISMAPPER is substantially more accurate than distance-
based methods for predicting regulatory links between a
TF’s binding sites and specific TSSs, that the target tissue
need not be present in the tissue panel, and that the tar-
get TF need not be expressed in all the panel tissues. We
also show that accuracy increases with the number of tissues
in the panel, and that CISMAPPER predictions can improve
gene enrichment analyses.

MATERIALS AND METHODS
The CISMAPPER algorithm

Given a set of ChIP-seq peaks for a TF in some tissue along
with auxiliary information in the form of expression and hi-
stone modification data for each of a panel of tissues in the
same organism, CISMAPPER computes a score for a (peak,
TSS) link using the correlation of expression at the TSS and
the presence of the histone modification at the peak across
the panel of tissues (Figure 1). Specifically, the score of a
(peak, TSS) link is the p-value of the Pearson correlation
coefficient between the log of the histone modification sig-
nal at peak and the log of the expression at the TSS. (Details
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are given in the Supplementary Material). We also tested us-
ing the Spearman rank correlation coefficient, but found it
to give worse results (data not shown).

Here, we study using the active enhancer mark H3K27ac
(16), the poised enhancer marks H3K27me3 and Zent-
ner2011 (17), and the active promoter mark H3K4me3
(18), but in principle any histone mark could be used with
CISMAPPER. (Note that CISMAPPER only uses data for a
single histone mark at a time.) Using the P-value of the cor-
relation as the score normalizes for panel size, allowing us
to compare the effect of the score threshold across experi-
ments with varying panel sizes. Although the correlation of
a histone mark a ChIP-seq peak with expression at a TSS
can be positive or negative, with positive correlation imply-
ing that the mark increases expression, since we are using
histone marks indicative of active enhancers and promoters
we restrict our analyses here to positive correlations.

CISMAPPER generates four ranked lists of predictions
from the set of scored (peak, TSS) links. Two ‘target’ lists
rank TSSs and genes, respectively, as potential targets of
the ChIP-ed TF. The target score for a TSS is the minimum
(best) score of any of its links. The target score for a gene is
the minimum (best) target score of any of its TSSs. Two ‘el-
ement’ lists rank TF ChIP-seq peaks as potential regulators
of TSSs and genes, respectively. The regulatory element lists
group all the links for a given TSS or gene together, and sort
within each group in increasing order by link score. Details
of list creation are given in the Supplementary Material.

For practical reasons, it is necessary to restrict the set of
possible (peak, TSS) links for which CISMAPPER computes
link scores. First, in this work we restrict CISMAPPER to
links where the TF ChIP-seq peak and the TSS are on the
same chromosome and separated by at most 500 Kb. We do
this to reduce the required compute time as well as to reduce
the number of possible links with low (good) link scores
merely due to chance. We note that previous studies that
predicted enhancer-promoter links also chose to limit the
maximum link length considered for similar reasons (e.g.
125 Kb in Ernst et al. (7), 500 Kb in Thurman et al. (8)
and 2 Mb in He et al. (10)). Second, following related work
by (19), CISMAPPER only computes scores for links where
there is non-zero variation in the histone level at the peak
and the variation in expression at the TSS meets certain cri-
teria. (See Supplementary Methods for details.) Subject to
the above caveats, CISMAPPER computes link scores for all
possible (peak, TSS) pairs, so each peak can be linked to
multiple TSSs, and vice-versa.

Validating predictions using chromatin contacts

We look for direct evidence of physical contact between
CISMAPPER high-scoring (peak, TSS) pairs from promoter
capture Hi-C (CHiC) data. We use these data to study (i)
the coverage and accuracy of CISMAPPER predictions, (ii)
the necessity of the target (ChIP-ed) tissue in CISMAPPER’s
panel and (iii) whether the ChIP-ed TF needs to be ex-
pressed in the panel tissues. The chromatin contact data
we use are for GM 12878 cells (6), which was the highest
resolution data available when this study was conducted.
To measure accuracy, we use the positive predictive value
(PPV), which is equal to one minus the false discovery rate
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Figure 1. Schematic of the CISMAPPER method. CISMAPPER predicts regulatory links in tissue X between TF ChIP-seq peaks (red) and TSSs of genes by
measuring the correlation of histone levels (shown as colored tracks) that overlap peaks (highlighted in red) with expression levels across a set (‘panel’) of
tissues. Tissue X need not be present in the panel. *Distance limit is user configurable with 500 Kb chosen for this work.

(1-FDR), where a predicted link is confirmed if its two ends
overlap the two ends of a promoter-other chromatin con-
tact in the Mifsud et al. (6) data. The CISMAPPER panel
consists of eight tissues—GM12878, Ag04450, HI-hESC,
HeLa-S3, HepG2, HUVEK, K562 and NHEK—and the
histone (H3K27ac) and expression data (CAGE) come from
ENCODE (Supplementary Table S2 lists data sources). TF
ChIP-seq peaks are for the 19 TFs in Supplementary Table
S1 with ENCODE ChlIP-seq data in GM 12878 cells. Fur-
ther details are given in Supplementary Methods.

Validating predictions using differential TF activity

Sikora-Wohlfeld et al. (20) developed the ‘differential TF
activity’ evaluation method and used it to evaluate a large
number of distance-based predictors of regulatory interac-
tions from TF ChIP-seq data. This evaluation method uses
sets of TSSs that are differentially expressed in two tissues in
which the ChIP-ed TF is active. They reasoned that if a TF
is active in both tissues, some of the changes in gene expres-
sion between those tissues should be due to changes in ac-
tivity of the TF. Hence, the top 500 differentially-expressed
TSSs should be enriched for direct targets of the ChIP-
ed TF. The figure of merit is the size of the overlap be-
tween the top 500 differentially-expressed TSSs and the top
500 predictions of predictor being evaluated, minus size of
overlap expected if the predictor guessed randomly. Sikora-
Wohlfeld et al. (20) found that the differential TF activity
evaluation method gave results consistent with other eval-
uation methods that use TF perturbation data, functional
homogeneity of target genes or consistency of target gene
predictions across multiple ChIP-seq data sets, respectively.

Note that although we use the evaluation method of Sikora-
Wohlfeld et al. (20), we do not use their data or results. A
diagram (Supplementary Figure S2) and further details are
given in Supplementary Methods.

Validating predictions using gene enrichment analysis

We analyze the enrichment of genes predicted by CISMAP-
PER or GREAT (21) to be associated with TF ChIP-seq
peaks for p300 in embryonic (E14.5) mouse neocortical tis-
sue from Table S1 of Wenger et al. (22). For CISMAPPER we
use Mouse ENCODE histone (H3K27ac) and expression
(long polyA+) for a panel of 22 mouse tissues listed in Sup-
plementary Table S11 and a distance limit of 500 Kb. We
use the target gene list produced by CISMAPPER with a link
score threshold of 0.01. We then apply the DAVID (23,24)
on-line gene enrichment tool to the gene targets predicted
by CISMAPPER to determine enriched Gene Ontology (25)
terms. For comparison, we perform enrichment analysis on
the same TF peaks using GREAT with its default region-
gene association rule. This associates each peak with every
gene whose ‘genomic region’ it overlaps. GREAT defines
the genomic region of a gene as a basal domain of —5 Kb
to +1 Kb around its TSS, which it then extends that up to
1 Mb in either direction, stopping if it encounters another
gene’s basal domain.
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Figure 2. Distribution of the accuracy of peak-TSS links of different maximum lengths predicted by CISMAPPER for 19 TFs in GM 12878 cells. The plot
shows the distribution of the accuracy (PPV) of predicted links with lengths less than a given distance and CISMAPPER link scores less than or equal to 1,
0.1, 0.01, 0.001, 10~*, 10=3, 10~1% or 10=2 (blue to purple boxplots, from left to right for each distance). Links are validated using CHiC contact data.
The red box plots (score < 1) correspond to predicting that TF peaks regulate every TSS within the given distance from them. All CHiC and TF ChIP-seq
data are from GM 12878 cells. CISMAPPER links were scored using H3K27ac histone and CAGE expression data from a panel of eight tissues including
GM 12878, and only positive correlations are considered. The box plots summarize the results for 19 sets of TF ChIP-seq peaks; boxes show the range of
the middle quartiles with a line at the median, and dots are outliers further than 1.5 times the interquartile range (the whiskers) from the median.

RESULTS

CISMAPPER accurately predicts contacts between promoters
and TF-bound regions

We first demonstrate that CISMAPPER can accurately pre-
dict the long-distance contacts between TF-bound regions
and promoters to be expected when a distal TFBS regulates
a gene. For validation we use CHiC chromatin contact data
(see Materials and Methods), and observe that CISMAPPER
predicted (peak, TSS) links are greatly enriched for chro-
matin contacts compared with links predicted by distance.
Using a panel of eight tissues and TF ChIP-seq peaks for
19 TFsin GM 12878 cells, the potential regulatory links pre-
dicted by CISMAPPER with link scores less than 0.01 are at
least 73% more likely to be confirmed by CHiC chromatin
contact data than all links of the same length (Figure 2).
High-confidence CISMAPPER links (score < 1077) shorter
than 50 Kb have a median PPV of 0.57 across 19 TF ChlIP-
seq data sets, whereas all potential (peak, TSS) links shorter
than 50 Kb have a median accuracy of only 0.21 (2.7-fold
improvement).

As shown in Figure 2, the median accuracy of
CISMAPPER-predicted links is higher than that of all
similar length links for all tested score thresholds (from
0.1 to 1072%) and for all tested link lengths (50-500 Kb).
The maximum improvement in accuracy is seen for short
links (d < 50 Kb) and score thresholds below 0.001 (2.7-
fold improvement in median PPV). Prediction accuracy
increases with decreasing link length and increasing score
stringency, with a maximum median PPV of 59% for links
shorter than 50 Kb and a score threshold of 10~ or lower.
The higher accuracy of CISMAPPER predictions relative to
distance-based predictions is consistent across the 19 TF
ChIP-seq data sets analyzed here (Supplementary Figure
S4C). The PPV of all CISMAPPER links predicted at a score
threshold of <1073 ranges from a high of 37% for RXRA
to a low of 12% for ZBTB33. For all 19 of the TFs studied
in this experiment, the PPV of CISMAPPER predictions

is higher than that of links predicted using a distance
threshold yielding a similar length distribution (350 Kb).

CISMAPPER’s approach is clearly superior to using dis-
tance alone for predicting specific regulatory interactions
between a bound TFs and TSSs. What is more, predicted
links can easily be thresholded on both link score and link
length (as done in Figure 2) to select links with high prob-
ability (>50%) of corresponding to contacts between pro-
moters and TF-bound regions (Supplementary Figure S6).
In this experiment, prediction accuracy for links predicted
using a CISMAPPER score threshold of 0.01 drops below
10% (see Supplementary Figure S5) for the subset of links
with lengths in the range 450-500 Kb. While this level of ac-
curacy is still nearly twice as high as using a distance thresh-
old alone, the 500 Kb limit on link length we have chosen
here may be a reasonable value in practice.

Although the coverage (recall) of CISMAPPER is relatively
low compared to using a simple distance threshold (Sup-
plementary Figure S4A and B), we would argue that this is
a reasonable trade-off in circumstances where a set of pre-
dicted regulatory links is desired for further examination.
Higher PPV means lower FDR, so if predictions will be
tested via expensive wet-lab experimentation, a smaller set
of predicted links of higher precision may be preferable to a
larger set of links that contains a higher proportion of false
positives.

The target tissue need not be present in the panel

We wondered if CISMAPPER could successfully predict po-
tential regulatory interactions using TF ChIP-seq data from
a tissue not included in its panel. If true, this would greatly
expand its utility. To examine this question we repeated the
CHIC validation experiment after removing the target tis-
sue (GM12878) from CISMAPPER’s panel. As seen in Fig-
ure 3, using a score threshold of 10~> CISMAPPER’s pre-
dictions are still substantially more accurate at all distance
thresholds than distance alone. On the other hand, includ-
ing the target tissue in the panel does increase accuracy, es-
pecially for links shorter than 50 Kb. It is clear, therefore,
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Figure 3. Including the ChIP-ed tissue in CISMAPPER’s panel improves ac-
curacy. The plot shows the distribution of the accuracy (PPV, y-axis) of pre-
dicted links with lengths less than a given distance (x-axis) and CISMAPPER
link scores less than or equal to 1 (red, distance-only) or 10~ when we ex-
clude (purple) or include (dark purple) the ChIP-ed tissue (GM12878) in
the tissue panel. The data and methods are the same as in Figure 2.

that CISMAPPER is useful for analyzing TF ChIP-seq peaks
from tissue types not included in its tissue panel, but accu-

racy will be better if the panel includes the tissue in which
the TF was ChIP-ed.

The ChIP-ed TF need not be expressed in all panel tissues

We also wondered if the ChIP-ed TF needs to be expressed
across CISMAPPER’s tissue panel. Consequently we exam-
ined the relationship between the accuracy of predicted reg-
ulatory links and the level of expression of the TF across the
panel for the CHiC validation experiments. As can be seen
in Figure 4, there is no discernible relationship between ac-
curacy (PPV) and the expression of the ChIP-ed TF across
the panel. For example, the median expression of a single
TF varies by four orders of magnitude (from 0.01 to 100
reads-per-million, Figure 4, blue), but this has no consis-
tent effect on the accuracy of CISMAPPER’s predictions. The
TF for which CISMAPPER’s predictions are most accurate is
RXRA, which has the smallest median and third smallest
maximum of expression across the panel of tissues used by
CISMAPPER (data not shown). In fact, RXRA has no mea-
surable expression (according to the ENCODE CAGE data
used here) in two of the eight tissues, including in GM 12878,
the tissue in which it was ChIP-ed. Two other TFs have no
measurable expression in five out of eight tissues (data not
shown), yet they rank third (BCL11A, PPV = 0.33) and
eighth (PU.1, PPV=0.27) in accuracy among the 19 TFs
tested here (Supplementary Figure S4C).

Some TFs show highly tissue specific expression, so we
wondered if CISMAPPER could predict regulatory links for
them even if they were not expressed in any tissue in-
cluded in its panel. We therefore repeated our validation
using chromatin contacts after removing any tissue from
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Figure 4. Accuracy does not depend strongly on expression of the ChIP-
ed TF in the tissue panel. Each point shows the accuracy (PPV) and either
the maximum (red) or median (blue) level of expression (reads-per-million,
RPM) of a single TF across the panel of eight tissues used by CISMAPPER
to predict regulatory links (score < 10~7) between ChIP-seq peaks for the
TF and TSSs in GM 12878 cells. The TFs are labeled and their points are
connected with a gray line. The data are from the same experiments as in
Figure 2. (The median expression of BCL11A is zero and is not plotted).

the panel where the ChIP-ed TF showed measurable expres-
sion. In this new experiment, we selected five additional TF's
(RUNX3, PAXS, IRF4,IKZF1 and BATF) with ENCODE
ChIP-seq peaks in GM 12878 because these TFs have mea-
surable expression in GM 12878 and at most two other panel
tissues. When we exclude these tissues, each panel contains
at least five of the original eight panel tissues (but the num-
ber and identities of the tissues varies depending on the TF).
CISMAPPER’s predictions are still more accurate at all dis-
tance thresholds than distance alone (Supplementary Fig-
ure S8) for these five ‘tissue specific’ (with respect to the
panel) TFs. The ability to make predictions for a TF not
expressed in any tissue in the histone/expression panel is
likely due to the fact that the TF binds in enhancer regions
that are active (and varying) across the panel.

CISMAPPER is more accurate than distance-based methods

We next explore how CISMAPPER accuracy compares
with distance-based approaches. A recent survey of
distance-based methods for linking TF ChIP-seq peaks to
genes studied six methods and found two—LINEAR and
CLOSESTGENE—to be consistently superior to the others
they tested (20). The window-based LINEAR method sim-
ply adds a value between 0 and 1 to a gene’s score for each
peak within 10 Kb of the gene’s TSS, where the value added
decreases linearly with the peak-TSS distance. The CLOSES-
TGENE method assigns each peak to the nearest gene, then
scores the peak based on how well the distance fits the ob-
served distribution of peak-TSS distances, and finally sums
all the peak scores for each gene. We applied CISMAPPER,
LINEAR and CLOSESTGENE to ChIP-seq data for 27 TFs in
a variety of tissues (Supplementary Table S1), and estimated
the accuracy of the predictions using Sikora-Wohlfeld et al.
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plots. All CISMAPPER maps are built using H3K27ac histone data and CAGE expression data, and the differentially expressed TSS sets are also based on

CAGE data.

(20)’s “differential TF activity’ evaluation method (see Ma-
terials and Methods).

Overall, CISMAPPER predictions are substantially more
accurate than those made by CLOSESTGENE (Figure 5) or
LINEAR (Supplementary Figure S9). The median accuracy
of the TSS target predictions made by CISMAPPER is higher
than that of CLOSESTGENE for 26 out of 27 TFs tested (P
< 1079, sign test), and higher than that of LINEAR for 25 of
27 TFs tested (P < 107, sign test). For 26 out of 27 TFs,
CISMAPPER correctly identifies between 1.5 and 26.5 more
TSS targets than CLOSESTGENE, and correctly identifies 10
times more TSS targets on average (Supplementary Table
S4). CISMAPPER is also more accurate than CLOSESTGENE
for predicting gene (rather than TSS) targets for 20 of 27
TFs (Supplementary Figure S10, P < 0.01, sign test). Here
the CISMAPPER panel of tissues draws from six of the eight
following tissues: Ag04450, GM 12878, H1-hESC, HeLa-
S3, HepG2, HUVEC, K562 and NHEK; the CAGE ex-
pression and H3K27ac histone data is from the ENCODE
sources listed in Supplementary Table S2 (see Supplemen-
tary Methods for details).

To check the consistency of our two evaluation methods,
we looked at how they ranked the accuracy of CISMAP-
PER predictions on the 19 TF ChIP-seq data sets that we
evaluated using both methods. In both these evaluations,
CISMAPPER based its predictions on an enhancer mark
(H3K27Ac), so we divided the 19 TFs into two groups
according to their preference for binding in enhancer re-
gions, based on data from Ernst ez al. (26). Supplemen-
tary Table S5 shows that for six of the seven TFs that bind
preferentially in enhancer regions, CISMAPPER predictions
are ranked highly by both evaluation methods. The no-
table exception is that the two evaluation methods disagree
strongly on the accuracy of the CISMAPPER predictions for
the RXRA ChIP-seq data set. This anomaly may be due
to poor quality of the RXRA ChIP-seq data set. There
is no significant enrichment of any of the known motifs
for RXRA from the JASPAR database (27) in the RXRA

ChIP-seq peaks based on a CentriMo (28) motif enrich-
ment analysis (data not shown). The high PPV of the links
predicted by CISMAPPER in the RXRA data set according
to the chromatin contact evaluation method suggests that
those ChIP-seq peaks frequently contain regions in contact
with neighboring genes. The low accuracy according to the
differential TF activity evaluation is not surprising given
the lack of evidence of actual RXRA binding in the peaks.
Thus, with the exception of the RXRA data set, both eval-
uation methods estimate the accuracy of CISMAPPER pre-
dictions based on an enhancer mark to be generally highest
for TFs binding primarily in enhancer regions, as would be
expected.

CISMAPPER can use a variety of histone marks

Thus far we have only presented results based on using
the active enhancer histone mark H3K27ac in CISMAP-
PER’s tissue panel. When we repeat the TSS target predic-
tion experiment above using histone data for the active pro-
moter histone mark H3K4me3 in place of the H3K27ac
data used above, CISMAPPER is more accurate than CLOS-
ESTGENE, although the comparative advantage is smaller
than when using H3K27ac (Supplementary Figure S11).
For 21 of 27 TFs, the median accuracy of CISMAPPER pre-
dictions is higher than that of CLOSESTGENE (P < 0.003,
sign test), compared with 26 of 27 TFs when CISMAPPER
uses H3K27ac data (Figure 5). We also examined using hi-
stone marks H3K27me3, associated with poised enhancers
(29) and H3K36me3, associated with active enhancers and
transcribed genes (17). We found that the accuracy of pre-
dicted links was somewhat lower using these two marks
(data not shown). These results suggests that CISMAPPER
can be used effectively with ChIP-seq data for histone marks
other than H3K27ac should data for that mark not be avail-
able for enough tissues to build a panel (see next section).
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Figure 6. Accuracy increases with panel size. The plot summarizes the dis-
tribution of the median adjusted overlap score (y-axis) for the top 500 gene
target predictions of 19 TFs as the number of tissues used by CISMAP-
PER (‘Panel Size’, x-axis) increases. The TFs used are those with three or
more ChIP-seq peak sets in Supplementary Table S4. The expression data
used for validation comes from CAGE expression in ENCODE tissues.
CISMAPPER gene target predictions use histone (H3K4me3) and expres-
sion (long polyA+) data from subsets of the 38 tissues from the Roadmap
Epigenomics Project. Smaller panels are always a subset of the next larger
panel, and values in the figures are averages over 15 independent nested
panel sets.

Increasing panel size improves CISMAPPER coverage and ac-
curacy

We assumed that CISMAPPER coverage and accuracy
should increase with the size of the panel of tissues it uses for
computing peak-TSS correlations. To test this we again used
the differential TF activity method, but switched to data
from the more extensive Roadmap Epigenomics Project (15)
to allow us to create panels of from 5 to 30 tissues using hi-
stone ChIP-seq data for H3K4me3, and polyA+ RNA-seq
expression data. Since RNA-seq data does not identify the
TSS as accurately as CAGE data, we use the gene target list
output by CISMAPPER rather than its TSS target list in this
evaluation. (See Supplementary Methods for details.)

The accuracy of CISMAPPER target predictions increases
with the panel size (Figure 6). The median of the adjusted
overlap score almost triples over the range of panel sizes
we tested (5-30). What is more, the coverage of CISMAP-
PER target predictions increases with the panel size (Supple-
mentary Figure S12A), as might be expected due to the in-
creased statistical power of larger panels. A similar increase
in accuracy between tissue panels of size 5 and 30 is seen
for each of the 19 individual TFs we tested (Supplementary
Figure S12B). Although we observe a plateau in the accu-
racy of CISMAPPER gene target predictions when the panel
size reaches 25 tissues (Figure 6), for most of the 19 TFs we
tested, the number of gene targets predicted by CISMAPPER
at a link score threshold of 0.001 more than doubles. This
plateau is probably due to limitations in the available data
reducing the diversity of any additional tissues added to the
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Figure 7. Score calibration does not depend on panel size. Each point rep-
resents a single TF, and shows the median link score of the 500th ranked
target (x-axis) versus the median accuracy of CISMAPPER of those 500 tar-
get gene predictions (y-axis), averaged across all ChIP-seq peak sets for the
TF, with tissue panels of size 5 (grey) or 30 (blue). The data are from the
same experiments as in Figure 6.

panel beyond 25. (See Supplementary Methods for further
discussion of this issue.)

CISMAPPER scores are calibrated

Using data from the previous section, we checked that
CISMAPPER scores are ‘calibrated’ in the sense that a given
score corresponds to the same accuracy regardless of panel
size. This is evidenced by the scatter plot in Figure 7, which
shows the accuracy (y-axis) of gene target predictions using
the link score threshold given on the x-axis. Each point rep-
resents the median CISMAPPER results for one TF ChIP-seq
data set, averaged over the different tissue subset panels, as
described above. The X-value of each point is the median
of the link score of the 500th gene in the target list, and the
Y-value is the median accuracy (adjusted overlap scores).

Two things are clear from Figure 7. First, there is a
very strong correlation between the CISMAPPER link score
threshold and gene target prediction accuracy. Secondly,
the slope of this correlation is essentially unchanged when
CISMAPPER uses a panel of five tissues (grey points) or 30
tissues (blue points). This implies that the prediction accu-
racy when using a given link score threshold does not de-
pend strongly on panel size. Therefore, a reasonable choice
of link score threshold will remain so regardless of how
many paired histone-expression data sets are provided as
input to CISMAPPER. Thus, the main effect of increasing
panel size is to increase the coverage (number of predic-
tions) at a given link score, while maintaining the accuracy
of those predictions.
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CISMAPPER predictions can improve gene enrichment analy-
ses

Perhaps the most common downstream analysis applied to
TF target gene predictions is gene enrichment analysis, and
we wondered if this type of analysis would benefit from
the improved accuracy of CISMAPPER predictions. To ad-
dress this, we compare gene enrichment analysis of gene tar-
gets predicted by CISMAPPER with a similar analysis using
the distance-based enrichment analysis tool GREAT (21).
The TF ChIP-seq peaks are for p300 in embryonic (E14.5)
mouse neocortical tissue (22). Given the tissue and stage of
neocortical development, we expect p300-bound regions to
regulate many neural-development related functions.

In this example, the gene enrichment analysis based on
the CISMAPPER predicted targets appears more informa-
tive than analysis based on distance-based target predic-
tion (see Supplementary Tables S8, S9 and S10). Although
the GREAT tool identifies many neural-related biological
processes and molecular functions enriched among its pre-
dicted 4676 gene targets (22), the 938 gene targets predicted
by CISMAPPER are enriched for important neural-related
processes and functions that are not identified by GREAT.
For example, only the CISMAPPER-predicted targets are en-
riched for genes involved in the neural projection biologi-
cal process (Supplementary Table S8), a critical process in
neuron formation within the cortex (30). CISMAPPER also
scores a key regulator of neural projection in neuron devel-
opment, Fezf2 (31,32), as a top target.

Furthermore, CISMAPPER predictions identify genes pri-
marily enriched in ion transport and charge potentiation
molecular functions (Supplementary Table S9), crucial to
the excitatory function of pyramidal neurons in the neocor-
tex (33). These are missing from the GREAT predictions,
which mainly identify transcription-related functions.

Finally, there are no enriched cellular component terms
among the GREAT-predicted gene targets, whereas terms
highly relevant to neocortical neurons such as ‘neural pro-
jection’, ‘plasma membrane’ (the location of ion channels),
‘axon’ and ‘synapse’ are enriched among the CISMAPPER-
predicted gene targets (Supplementary Table S10).

DISCUSSION

Several previous studies have sought methods for accurately
identifying the gene targets of regulatory regions (7-11,34)
using auxiliary data on gene expression, TF binding, DNa-
sel hypersensitivity and histone modifications. Although
demonstrably more accurate, these methods have not sup-
planted simple distance-based association of TF ChIP-seq
peaks with putative target genes in practice. This is prob-
ably due mainly to the relative simplicity of distance-based
methods, as well as to the fact that the more advanced meth-
ods have not been explicitly validated on regulatory regions
defined by TF ChIP-seq peaks. We developed CISMAPPER
to provide a method that is more accurate than simple
distance-based methods, but that places a minimum bur-
den on the user to provide auxiliary data. CISMAPPER uses
only data for a single histone modification and gene expres-
sion across a small panel of tissues, requires no training step
and has been extensively evaluated here as an alternative to
distance-based methods for analyzing TF ChIP-seq peaks.
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CISMAPPER can analyze TF ChIP-seq peaks to predict
regulatory links between TF binding sites and the TSSs of
genes. [t predicts these links using cross-tissue correlation
between histone marks overlapping the TF binding site and
expression at the TSS. The target lists output by CISMAP-
PER can be used to predict either which TSSs or which genes
a given TF regulates. Similarly, the regulatory element lists
it outputs can be used to predict which specific TF binding
sites are most likely to regulate a given TSS or gene.

We have shown that the regulatory links predicted by
CISMAPPER coincide with chromatin contacts at a higher
rate than links predicted based on the distance between the
binding site and the TSS, the current method of choice. Di-
rect chromatin contact between a bound TF and a TSS
is highly suggestive of a possible regulatory interaction,
which is what CISMAPPER is intended to predict. We also
report experiments using the differential TF activity evalu-
ation method to show that CISMAPPER’s lists of the gene
and TSS targets of a TF have higher accuracy than pre-
dictions made by distance-based methods. We have also
shown that CISMAPPER is especially accurate for predicting
long-distance regulatory links that are beyond the reach of
distance-based prediction methods, and that as more his-
tone and expression data become available across a larger
number of tissues, the accuracy of CISMAPPER’s regula-
tory predictions will improve. Based on these results, we be-
lieve that CISMAPPER is a valuable addition to the standard
bioinformatic toolkit for analyzing TF ChIP-seq data.

Importantly, we have shown that CISMAPPER requires
neither histone nor expression data from the tissue of inter-
est, only the genomic loci of the ChIP-seq peaks for a TF
in that tissue. However, if such histone and expression data
are available, it can and should be included in CISMAPPER’s
input, as we expect it to improve prediction accuracy.

We have also shown that CISMAPPER does not require the
TF to be expressed in any of the panel tissues to accurately
predict regulatory links to its TFBS. This suggests that even
if a TF’s expression is tissue specific, CISMAPPER can still
detect when it binds to enhancers showing varying activity
across CISMAPPERs tissue panel.

Suitable compendia of histone mark and expression data
currently exist for using CISMAPPER to analyze TF ChIP-
seq data from human, mouse, fly and worm. For ana-
lyzing human data, extensive histone and expression data
are available from the Roadmap Epigenomics Project (15),
from ENCODE (13) and from FANTOMS ((35); expres-
sion data only). Data for mouse are available from the
mouse ENCODE project (14), and a mouse blood-specific
compendium has been published recently (36). The mod-
ENCODE project provides data for both fly (37) and worm
(38). Each of these compendia contain matched histone and
expression data from seven to over 100 tissues, and our re-
sults show that CISMAPPER can make useful regulatory pre-
dictions when provided with such data for as few as five tis-
sues in the organism of interest.

While we have shown that CISMAPPER predictions are
more accurate than distance-based predictions, the cover-
age of CISMAPPER and distance-based methods is quite dis-
tinct. On the one hand, distance-based methods are con-
founded when chromatin looping causes a TF binding site
to regulate a TSS other than the nearest one. On the other
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hand, CISMAPPER can only predict a regulatory link be-
tween a TF binding site and a TSS when there is vari-
ation in their histone mark and expression, respectively,
across the tissues in the histone/expression compendia pro-
vided to CISMAPPER. Consequently, the regulatory predic-
tions made by CISMAPPER are somewhat complementary
to those made by distance-based methods.

Due to the complementarity of the distance- and
correlation-based approaches to regulatory interaction pre-
diction, a future version of CISMAPPER will integrate ge-
nomic distance directly with histone-expression correlation
in calculating the link score. We anticipate this will improve
CISMAPPER’s coverage. In the mean time, we recommend
analyzing TF ChIP-seq peaks with both CISMAPPER and
a distance-based method. The CISMAPPER predictions will
provide a higher quality set of predicted targets and reg-
ulatory binding sites, and the union of those predictions
with the distance-based predictions will provide a higher-
coverage, albeit less-accurate, set.

CISMAPPER predictions of regulatory links are also com-
plementary to those inferred from chromatin conformation
capture (CCC) data because they are based on completely
different types of evidence. Specifically, the link score that
CISMAPPER calculates for a pair of loci indicates how re-
lated histone and expression levels are between the loci,
whereas, the read count for a pair of loci produced by a
conformation capture assay, after conversion to a score that
corrects for distance-dependent and other biases, can be
used to infer if the two loci are in contact. Thus, CISMAP-
PER and chromatin conformation capture assays (e.g. 3C
(39), 4C (40), 5C (41), Hi-C (42), ChIA-PET (43) or CHiC
(6)) provide scores that are independent predictions of reg-
ulatory interactions between pairs of genomic loci. This in-
dependence suggests that intersecting the sets of loci pairs
predicted by CISMAPPER with those predicted by CCC in
the same tissue should yield an even more accurate set of
predicted regulatory interactions.

Analyses of the regulation of expression by a transcrip-
tion factor should benefit from CISMAPPER’s more accu-
rate and highly specific predictions of regulatory links be-
tween its binding sites and particular TSSs. For example,
when searching for regulatory SNPs, it is reasonable to as-
sume that those contained in TF binding sites predicted by
CISMAPPER to be regulatory are more likely to be impor-
tant biologically. (Note that we assume that the binding sites
can be identified within the TF-bound regions predicted by
CISMAPPER via standard motif-based methods (44).) Like-
wise, gene ontology analysis (25) performed using the more
accurately predicted target gene set provided by CISMAP-
PER should better elucidate the biological roles of the ChIP-
ed TF. Finally, when validating predicted regulatory bind-
ing sites via genome editing (e.g. using CRISPR /Cas (25)),
CISMAPPER’s ability to associate specific binding sites with
a gene and to rank them by regulatory potential should
prove invaluable.

The use of CISMAPPER need not be restricted to the anal-
ysis of TF ChIP-seq data. CISMAPPER can take as input
any set of loci (expressed as a BED file) from the genome of
interest, and will generate lists of the TSSs and genes that
those regions may regulate. Previously we showed that the
cross-tissue histone-expression correlation approach used
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by CISMAPPER can predict regulatory links between en-
hancers and TSSs (12), providing the first validation of this
idea (19,45). As noted above, distance-based methods can-
not reliably distinguish which TSS might be regulated by
a given locus due to the possibility of chromatin looping.
This ability to make TSS-specific predictions of regulation
by arbitrary genomic loci is a novel feature of CISMAPPER.

A second novel feature of CISMAPPER is that it can uti-
lize data for any type of histone mark in making its predic-
tions, and the regulatory links it predicts will depend on the
histone mark chosen (e.g. H3K27ac or H3K4me3). By con-
trast, distance-based methods do not make predictions that
take into account the histone state of the predicted regula-
tory loci. In future work we will explore running CISMAP-
PER using a series of distinct histone marks in order to clas-
sify links according to their ‘histone profiles’—the set of his-
tone marks that identify the given link. This may allow us to
group regulatory links into biologically relevant classes (e.g.
activating, repressing, promoter-specific, enhancer-specific,
etc.) in a way analogous to previous work that uses his-
tone profiles to assign genomic loci to classes such as pro-
moter, enhancer, insulator, etc. (46,47). In principle, this
link-profiling approach might be used to classify links pre-
dicted by CISMAPPER from TF binding sites (ChIP-seq
peaks), enhancers, disease-associated SNPs or chromatin
conformation contact data.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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