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A major concern with preterm birth is the risk of neurodevelopmental disability. Poor cerebral 
circulation leading to periods of hypoxia is believed to play a significant role in the etiology of preterm 
brain injury, with the first three days of life considered the period when the brain is most vulnerable. 
This study focused on monitoring cerebral perfusion and metabolism during the first 72 h after 
birth in preterm infants weighing less than 1500 g. Brain monitoring was performed by combining 
hyperspectral near-infrared spectroscopy to assess oxygen saturation and the oxidation state of 
cytochrome c oxidase (oxCCO), with diffuse correlation spectroscopy to monitor cerebral blood flow 
(CBF). In seven of eight patients, oxCCO remained independent of CBF, indicating adequate oxygen 
delivery despite any fluctuations in cerebral hemodynamics. In the remaining infant, a significant 
correlation between CBF and oxCCO was found during the monitoring periods on days 1 and 3. This 
infant also had the lowest baseline CBF, suggesting the impact of CBF instabilities on metabolism 
depends on the level of blood supply to the brain. In summary, this study demonstrated for the first 
time how continuous perfusion and metabolic monitoring can be achieved, opening the possibility to 
investigate if CBF/oxCCO monitoring could help identify preterm infants at risk of brain injury.

Premature birth is defined as a gestational age (GA) less than 37 weeks and has shown to strongly correlate 
with the development of adverse neurological outcomes such as cognitive and behavioural deficits and more 
severe disorders such as cerebral palsy1–3. The duration of gestation and an infant’s weight at birth are factors 
that influence the likelihood of adverse effects. One of the most common brain injuries associated withpreterm 
birth is intraventricular hemorrhaging (IVH), which is characterized by bleeding in the germinal matrix and 
surrounding white matter. IVH has been found to occur in 20–25% of preterm infants born with very low birth 
weights (VLBW, < 1500 g) and typically occurs within the first 72 h after birth4. Diagnosis is performed using 
cranial ultrasound (cUS) to visualize and grade cerebral hemorrhages. In most centers, standard practice calls 
for imaging within the first week of life and again within the first month5. A drawback with cUS is that it is not 
a prognostic technique as it only detects damage that has already occurred.

Although the pathogenesis of IVH is multifactorial, unstable cerebral blood flow (CBF), leading to periods of 
ischemia, is considered a contributing factor due to the confluence of a number of factors6: an underdeveloped 
cerebrovascular system7, the absence of adequate cerebral autoregulation (i.e., the ability to maintain constant 
CBF during changes in blood pressure)8, and little tolerance to flow reductions given the already very low basal 
CBF9. Studies have shown the potential of near-infrared spectroscopy (NIRS) monitoring of tissue saturation 
(StO2) as a means of detecting precursors of preterm brain injury10–12. Correlating StO2 to arterial blood pressure 
has demonstrated that a sizable fraction of preterm infants has impaired cerebral autoregulation8. The SafeBoosC 
Phase II randomized clinical trial found that maintaining StO2 above 55% reduced the burden of hypoxia13,14. 
However, a link between StO2 and improved neurodevelopmental outcome has yet to be established15, likely due 
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to inconsistencies in StO2 recordings between oximeters and the fact that StO2 is affected by multiple factors, 
including CBF, blood oxygen content, and tissue metabolism16,17.

Cerebral blood flow can be monitored directly using the flow-sensitive derivative of NIRS, diffuse correla-
tion spectroscopy (DCS)18. In turn, the blood flow index (BFi) obtained from DCS can be combined with StO2 
to measure an index of the cerebral metabolic rate of oxygen19–25. NIRS offers an alternative means of directly 
assessing metabolism by measuring changes in the oxidation state of cytochrome c oxidase (oxCCO), the terminal 
enzyme in the mitochondrial electron transport chain. Due to its low tissue concentration relative to hemo-
globin, hyperspectral (hs) NIRS is optimal for monitoring oxCCO to avoid crosstalk between chromophores26. 
Combining hsNIRS with DCS offers the ability to evaluate the impact of fluctuations in CBF on cellular oxygen 
metabolism. Considering that cerebral energy requirements can be maintained during reductions in CBF by a 
compensatory increase in oxygen extraction27–29, detecting concurrent reductions in CBF and oxCCO could be 
of greater clinical significance—indication of possible hypoxia—than changes in perfusion or oxygenation alone.

With the goal of providing continuous bedside monitoring of CBF and oxCCO, a hybrid hsNIRS/DCS device 
was built (NNeMo: Neonatal NeuroMonitor)30. The aim of this study was to evaluate CBF and oxCCO stabil-
ity within the first 72 h of life in preterm infants less than 32 weeks GA and weighing less than 1500 g. It was 
hypothesized that oxCCO would remain relatively independent of CBF fluctuations due to compensatory changes 
in oxygen extraction. As a corollary, a stronger temporal correlation between CBF and StO2 was expected, con-
sidering the sizable hemodynamic contributions to StO2.

Results
Optical data were acquired from nine preterm infants on the first and third days of life. Between 80 and 90% 
of parents consented to participate in this study. The first monitoring period began on average at 5.9 ± 6.2 h 
after birth (range: 1 to 18 h) and the second at 53.8 ± 8.2 h (range: 44.5 to 61 h). Data from the first patient were 
excluded due to excessive ambient light that resulted in substantial signal artifacts. For subsequent acquisitions, 
the optical probes were covered at the site of contact using a thin blanket to minimize signal from ambient 
light sources. Data from the remaining eight infants are reported in this study. Average clinical parameters are 
provided in Table 1 and individual patient values can be found in the supplementary material (Table S1). On 
average, 233 ± 68 min (range: 145 to 340 min) of data were analyzed on day one and 254 ± 36 min (range: 210 to 
290 min) on day three. One infant was diagnosed with IVH on the first day: a bilateral bleed with Grade II in 
the right hemisphere and Grade I on the left. This infant was the only one given inotropic support. All patients 
survived the neonatal period.

Table 1 also includes cardiac measurements from targeted neonatal echocardiography (TnECHO). Note, 
TnECHO results are from the first seven patients, as imaging data were not recorded from the last infant due to 
an archiving error with the echo machine. Two patients had low left ventricular output (i.e. < 150 ml/kg/min) on 
both days, and one patient had a slightly low ejection fraction (EF = 51%) on day 1. No statistically significant 
change was found between days 1 and 3 for any of the parameters listed in Table 1.

Average baseline BFi was 8.8 ± 3.6 × 10–9  cm2/s on day 1 (range: 4.7 to 16.6 × 10–9 cm2/s) and 
16.8 ± 7.7 × 10–9 cm2/s on day 3 (range: 11.1 to 33.0 × 10–9 cm2/s). There was a significant increase in CBF between 
the two days (p = 0.022). Average baseline StO2 was 73.3 ± 11.9% on day 1 (range: 54.5 to 85.5%) and 80.1 ± 7.0% 
on day 3 (range: 71.9 to 94.5%), with no significant difference. Time courses of StO2, relative CBF (rCBF) 
and change in oxCCO (ΔoxCCO) on the first day of life for one infant are displayed in Fig. 1. This figure also 

Table 1.   Patient demographics and clinical metrics.

Gestational age at birth (weeks + days) 28 ± 2 (24 + 5 to 31 + 1)

Birth weight (g) 1123 ± 344

Sex (n) 5 Male; 3 Female

Apgar score 5 min 6.7 ± 3.2 (1 to 9)

Apgar score 10 min 8.3 ± 1.0 (7 to 9)

Mode of delivery Vaginal (3), Caesarian (5)

Doses of antenatal steroids 1 dose (1), 2 doses (7)

Delayed cord clamping Yes (5), No (0)

Mode of ventilation 6: continuous positive airway pressure,
2: invasive mechanical ventilation

Use of inotrope Yes (1); No (7)

IVH diagnosis (n, grade) 1, Grade II right/Grade I left

Left ventricular output (LVO, ml/kg/min) 214 ± 185, day 1; 185 ± 68, day 3

Ejection fraction (EF, %) 62.7 ± 8.1, day 1; 64.3 ± 5.8, day 3

Presence of patent ductus arteriosus 7/7, day 1; 4/7, day 3

Arterial Blood Pressure (ABP, systolic/diastolic) (mmHg) 55/34 ± 13/11, day 1; 57/31 ± 12/5, day 3

Heart Rate (HR, beats per min) 161 ± 11, day 1; 156 ± 8, day 3

Respiratory Rate (RR, breaths per min) 59 ± 11, day 1; 50 ± 17, day 3

Arterial oxygen saturation (SaO2, %) 92.3 ± 7.3, day 1; 95.5 ± 2.6, day 3
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includes the corresponding wavelet transforms for the three signals. These frequency-time heat maps illustrate 
the pronounced CBF oscillations in a narrow band of very low frequencies (0.0025–0.005 Hz) that were fairly 
consistent across the 5-h period. The standard deviation (SD) of rCBF across the monitoring period was cal-
culated as a means of characterizing the magnitude of the blood flow oscillations, and in this case, SD = 32%. 
These oscillations were also evident in the corresponding StO2 time series but not in ΔoxCCO. For this patient 
(see supplementary Table S1 for their clinical characteristics), the hemodynamic oscillations were considerably 
dampened on the third day (SD = 5.7%; data not shown). A general trend of reduced fluctuations in CBF across 
participants between the two days was observed (SD = 13 ± 11% on day 1 versus 8 ± 7% on day 3); however, this 
trend was not statistically significant.

Figure 2a displays wavelet coherence of rCBF/StO2, rCBF/ΔoxCCO and StO2/ΔoxCCO for the same patient 
presented in Fig. 1. Average coherence from 0.001 to 0.005 Hz is shown in Fig. 2b. For this patient, the coherence 
between rCBF and StO2 was above the statistical threshold of 0.57 for 59% of monitoring period. The correspond-
ing semblance plot (supplementary Fig. S1) indicated that rCBF and StO2 were predominately in-phase, with a 

Figure 1.   (a) Time courses of relative cerebral blood flow (rCBF), tissue saturation (StO2), and change in the 
oxidation state of cytochrome c oxidase (ΔoxCCO) for one patient on the first day of life. (b) Corresponding 
frequency-time plots generated by wavelet transform of rCBF, StO2, and ΔoxCCO. The red box highlights the 
frequency band of notable CBF oscillation (0.001 to 0.005 Hz). The dotted white lines indicate the cone of 
influence. Wavelet values outside this region were considered distorted due to edge artefacts56.

Figure 2.   (a) Coherence between relative cerebral blood flow (rCBF) and tissue saturation (StO2), rCBF and 
oxidation state of cytochrome c oxidase (oxCCO), and StO2 and oxCCO for one patient on the first day of life. 
(b) Average coherence value in the frequency range 0.001 − 0.005 Hz [indicated by the red box in column (a)]. 
The red dashed line indicates the statistical threshold.
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mean semblance of 0.56 ± 0.23, which was greater than for all other patients (inter-subject mean = 0.27 ± 0.18). 
In contrast, the two coherence plots involving ΔoxCCO only reached significance for 4.5% and 4.8% of the 
monitoring period for rCBF/ΔoxCCO and StO2/ΔoxCCO, respectively. Similarly, mean semblance values for 
this patient were 0.02 ± 0.34 for rCBF/ΔoxCCO and 0.05 ± 0.39 for StO2/ΔoxCCO. For comparison, inter-subject 
means were -0.01 ± 0.1 and -0.01 ± 0.09 for rCBF/ΔoxCCO and StO2/ΔoxCCO, respectively.

Figure 3 presents wavelet coherence for another patient who exhibited the greatest coherence with respect to 
CCO. In this case, data are presented from the monitoring period on day 1. Coherence was above the statistical 
threshold for 43% of the time for rCBF/StO2, 22% for rCBF/ΔoxCCO and 46% for StO2/ΔoxCCO. Similar patterns 
were also observed on day 3; that is, significance coherence was found for 32%, 17% and 44% of the monitoring 
period for rCBF/StO2, rCBF/ΔoxCCO and StO2/ΔoxCCO, respectively.

Figure 3.   (a) Coherence between rCBF and StO2, rCBF and oxCCO, and StO2 and oxCCO for one patient on 
the first day of life. (b) Average coherence value in the frequency range 0.001−0.005 Hz. The red dashed line 
indicates the statistical threshold.

Figure 4.   Boxplots of the fraction of time that coherence between two optical parameters reached the statistical 
threshold of 0.57. Data are presented separately for the two monitoring periods and for the three combinations 
of coherence estimates: rCBF/StO2, rCBF/ΔoxCCO and StO2/ΔoxCCO. Statistical outliers are indicated by + , 
and the bars indicate significant differences in coherence duration between rCBF/StO2 on day 1 and rCBF/
ΔoxCCO on days 1 (p = 0.025) and 3 (p = 0.004). Details of each boxplot are as follows: rCBF/StO2 (day 1): 
median: 26.9, 75th percentile: 42.1, 25th percentile: 9.8; rCBF/StO2 (day 3): median: 16.6, 75th percentile: 
27.5, 25th percentile: 11.5; rCBF/oxCCO (day 1): median: 11.0, 75th percentile: 17.0, 25th percentile: 5.5; 
rCBF/oxCCO (day 3): median: 8.3, 75th percentile: 10.4, 25th percentile: 4.0; StO2/oxCCO (day 1): median: 
8.2; 75th percentile: 14.0; 25-th percentile: 4.9; and StO2/oxCCO (day 3): median: 10.3, 75th percentile: 14.1, 
25th percentile: 5.6.
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Figure 4 provides boxplots of the fraction of time that coherence estimates for rCBF/StO2, rCBF/ΔoxCCO and 
StO2/ΔoxCCO were greater than the statistical threshold determined from Monte Carlo simulations. Coherence 
was calculated for the frequency band from 0.001 to 0.005 Hz. A two-way ANOVA revealed that the duration of 
rCBF/StO2 coherence on day 1 was significantly greater that the corresponding coherence durations for rCBF/
ΔoxCCO on both days. The two outliers identified in the StO2/ΔoxCCO coherence boxplots are from the patient 
presented in Fig. 3. If these outliers were excluded, then the rCBF/StO2 coherence duration on day 1 was also 
significantly greater that the values for StO2/ΔoxCCO on days 1 and 3.

Discussion
This proof-of-concept study demonstrated the feasibility of concurrently monitoring cerebral perfusion and 
metabolism in VLBW preterm infants during the first 72 h of life. Continuous monitoring was achieved using a 
hybrid system combining hsNIRS and DCS. While hsNIRS is less common that conventional NIRS system that 
emit light at a few wavelengths, it has the advantage of providing a direct assessment of oxygen metabolism by 
measuring oxCCO, and there is an increasing interest in this metabolic marker in neonatal studies31. The chal-
lenge with combining hsNIRS and DCS is avoiding cross contamination, in particular, blocking the DCS laser 
that can easily saturate the spectrometer used to measure ΔoxCCO28. NNeMo avoids crosstalk by incorporating 
a multiplexing system to collect data from the two subsystems sequentially30. The trade-off with this approach 
is lower temporal resolution compared to hybrid designs that provide simultaneous CBF and StO2 monitoring 
using NIRS techniques involving only a few wavelengths21,32,33. However, the 7-s duration used to collect DCS 
and hsNIRS data was sufficient for monitoring very low frequency hemodynamic and metabolic fluctuations 
(i.e. those less than 0.01 Hz).

The primary outcome of the study was to confirm the hypothesis that cerebral metabolism remained relatively 
independent of cerebral blood flow in the majority (7/8) of patients, indicating that adequate oxygen delivery was 
maintained despite fluctuations in cerebral hemodynamics. Evidence is provided by the low coherence between 
ΔoxCCO and both rCBF and StO2, as shown in Fig. 4. The most dramatic illustration of the independence of 
oxCCO from CBF is the data set presented in Figs. 1 and 2. This patient exhibited large and sustained oscillations 
in rCBF throughout most of monitoring period on the first day. They had the lowest left ventricular output and 
tachypnea on day 1 (P5 in Table S1), which could contribute to flow instabilities given that impaired cerebral 
autoregulation is common in preterm infants8. Independent of the possible cause, this study demonstrated 
that the corresponding oxCCO time course exhibited only small variations (less than 0.1 μM) despite large 
blood flow fluctuations. To put the magnitude of these changes in context, reductions in oxCCO of the order of 
1–1.5 µM were reported during desaturation events in term infants with hypoxic-ischemic encephalopathy34. 
The implication of stable oxCCO during variable CBF indicates that this patient was not experiencing cycles of 
cerebral hypoxia, which has been postulated to contribute to IVH6. In contrast to oxCCO, Fig. 2 illustrates that 
StO2 was strongly affected by fluctuations in CBF, as indicated by the significant rCBF/StO2 coherence through-
out the five hours. This was confirmed by the rCBF/StO2 semblance plot (Fig. S1) that showed strong positive 
correlations between rCBF and StO2. A positive correlation is expected when there is no change in metabolism 
since increases in CBF will cause a greater oxygenation of venous blood and, vice versa, reduced CBF will lower 
venous oxygenation.

Of the eight patients, only one exhibited hemodynamic/metabolic coherence that was comparable in dura-
tion to the coherence between rCBF and StO2 (Fig. 3; P5 in Table S1). Furthermore, the time series of average 
coherence for rCBF/StO2, rCBF/ΔoxCCO and StO2/ΔoxCCO followed similar patterns with good agreement in 
terms of the specific times of significance coherence. Interestingly, this infant had the lowest baseline BFi, which 
was 47% lower than the group average. This finding suggests that cerebral metabolism is less tolerant to hemo-
dynamic instabilities in patients with low baseline CBF, presumably because at low flow the brain is close to the 
lower threshold of sufficient oxygen delivery. More studies are required to confirm this postulate considering this 
patient did not develop IVH. In all likelihood, any link between flow/metabolic coherence and the development 
of brain injury shortly after birth will depend on the duration of coherence and the magnitude of CBF changes. 
It would also be useful in future studies to acquire continuous recordings of ABP and SaO2 to investigate which 
clinical features are likely driving the rCBF/ΔoxCCO coherence. Nevertheless, these preliminary results highlight 
the value of directly monitoring CBF with DCS, as opposed to relying on StO2 as a surrogate marker. It should 
be noted that although DCS does not measure CBF in classic units of perfusion, BFi has been shown to closely 
track CBF in both neonatal animal models and human infants24,35–38.

Average StO2 values (73.3 ± 11.9% on day 1 and 80.1 ± 7.0% on day 3) were comparable to values reported by 
Roche-Labarbe et al. (between 75 to 83%) for preterm infants less than a GA < 30 weeks and Noori et al. (mean 
of 79%) for infants less than 27 weeks of age20,39. However, a larger study reported average StO2 closer to 65% 
during the first 72 h of life for preterm infants40. Discrepancies are likely related to differences in NIRS devices 
(hsNIRS in the current study, frequency-domain NIRS in the Roche-Labarbe study, and continuous-wave systems 
in the other two studies), source-detector distances, and patient populations. Similar to previous studies39,40, 
we found no significant difference in StO2 between the two monitoring periods that were 6 and 54 h after birth, 
respectively. In contrast, a significant increase in CBF of 45% was found between the two monitoring periods. 
To the best of our knowledge, this is the first study to monitor cerebral perfusion directly during the first 72 h 
of life in preterm infants. The mean baseline BFi on day 3 (16.8 ± 7.7 × 10–9 cm2/s) was in good agreement with 
a previous DCS study involving preterm infants41, but lower than the value reported for healthy term infants 
(27.1 ± 15.6 × 10–9 cm2/s)42. This difference could be due to brain maturation, although BFi estimates will also be 
affected by the chosen µa and µ′

s values.
As a feasibility study, the sample size was too small to assess the relationship between flow/metabolism cou-

pling and the occurrence of IVH. In fact, only one patient was diagnosed with Grade 1 IVH, which was detected 
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by cUS at the beginning of the monitoring period on day 1 (P3 in Table S1). This patient exhibited similar stability 
metrics compared to the rest of the patients with a relative duration of significant rCBF/StO2 coherence of 41% 
and a corresponding rCBF/oxCCO coherence of 12%. Despite the limited sample size, the study demonstrated 
that monitoring CBF, StO2 and oxCCO could begin shortly after birth and continue for extended periods. A 
monitoring period of 6 h was selected for this initial study; however, the amount of usable data was reduced to 
233 ± 68 min on the first day and 254 ± 36 min on day three due to signal artefacts related primarily to patient 
handling. No evidence of skin irritation caused by the probe holder was found in any of the sessions, indicating 
that continuously monitoring throughout the first 72 h is achievable.

An alternative to measuring oxCCO is to calculate the cerebral metabolic rate of oxygen from CBF, SaO2 and 
StO2 measurements, which has the advantage that StO2 can be measured by more common NIRS technologies 
than hsNIRS19–25. Despite measuring CBF and StO2 in the current study, a comparison between these two meta-
bolic markers was not conducted as the required SaO2 data could not be retrieved from the clinical monitors. This 
study limitation highlights a potential advantage to measuring oxCCO since it is a direct marker of metabolism 
that does not require other input parameters. Clinical interest in oxCCO monitoring will likely increase given 
the feasibility of using low-cost spectrometers43,44.

In summary, this is the first study to demonstrate how continuous cerebral perfusion and metabolic moni-
toring in VLBW preterm infants can be performed by combining hsNIRS and DCS. The application of wavelet 
coherence analysis demonstrated that the temporal correlation between StO2 and rCBF on the first day of life 
was significantly greater than the corresponding correlation between ΔoxCCO and either rCBF or StO2. This 
finding indicates that cerebral oxygen metabolism is generally independent of hemodynamic fluctuations. How-
ever, significant coherence between ΔoxCCO and rCBF was found in the patient with the lowest baseline blood 
flow index, suggesting that the combination of low cerebral blood flow and hemodynamic instability can affect 
metabolism. Further studies are required to determine if CBF/oxCCO monitoring could help identify preterm 
infants at greater risk of IVH.

Methods
Patient population.  This study was approved by the Western University Health Sciences Research Eth-
ics Board, which adheres to the guidelines of the Canadian Tri-Council Policy Statement: Ethical Conduct for 
Research Involving Humans in accordance with the Declaration of Helsinki. Patient recruitment was conducted 
in the neonatal intensive care unit at the Children’s Hospital, London Health Sciences Center. Informed -paren-
tal consent was obtained for all patients recruited for this study. Participants were infants born less than 32 weeks 
GA and weighing less than 1500 g. Neuromonitoring consisted of two periods, each up to 6 h in duration, that 
were within the first 72 h of life. The first period started as soon as clinically feasible following birth and resus-
citation, and the second period started at 48 h post-natal age. In each session, cUS was performed to diagnose 
cerebral hemorrhaging, which was graded according to the Papile scale45 and targeted neonatal echocardiog-
raphy (TnECHO) used to assess cardiac output (i.e. left ventricular output and ejection fraction) and to screen 
for patent ductus arteriosus46. Heart rate (HR), respiratory rate (RR) and arterial oxygen saturation (SaO2) were 
recorded from the clinical monitor at the beginning and end of each period. Note, the monitors used in the unit 
did not provide the option to save the continuous recordings of these parameters. Arterial blood pressure (ABP) 
was measured non-invasively at the beginning of each period.

Study design.  Once transferred to the NICU from the birthing suite and following initial vitals by nurs-
ing staff, the optical probes were secured to the scalp above the frontoparietal cortex using a 3-D printed probe 
holder and adjustable strap (Fig. 5A). The optical fibers were bent 90° at the point of contact on the head for ease 
of use, and the optical prober holder was designed to be light, flexible and non-abrasive (Fig. 5B; dimension of 
5 × 2 × 1 cm; Flexible Resin, Form 2, Formlabs, Somerville, MA, USA). The design of the probe holder enabled 
it to be used with infants requiring ventilation with continuous positive airway pressure (CPAP) as it could be 
positioned under the CPAP cap and tube. The infant’s eyes were shielded using phototherapy eye goggles as a 

Figure 5.   (a) Premature infant with optical probes secured to the forehead and a phototherapy eye shield, (b) 
schematic of probe holder showing the position of the NIRS (3-cm SDD) and DCS (2-cm SDD) sources and the 
common detection location (shaded circle). Probe holder was 5 × 2 × 1 cm.
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precaution. Two optical fiber bundles (hsNIRS and DCS sources) directed light to the head, while a third (com-
mon detection) collected diffusely reflected light. The source-detector distance was 3 cm for hsNIRS and 2 cm 
for DCS. A smaller distance was chosen for DCS as it inherently has greater sensitivity to the brain47. Power 
levels for the two light sources and spot size incident on the scalp were adjusted to meet ANSI standards for skin 
exposure. Continuous DCS and hsNIRS data sets were saved in one-hour intervals throughout each monitoring 
period. One member of the research team remained at the bedside during data acquisition to log any events or 
clinical procedures that could affect the quality of the optical signals. Following each monitoring period, the 
probe holder was removed, and the skin was assessed for redness or irritation. This workflow was repeated for 
the monitoring session on the third day.

Instrumentation.  The NNeMo system combines hsNIRS and DCS by incorporates a multiplexing shutter-
ing system to cycle between acquisitions from the two subsystems29,30. For this study, hsNIRS and DCS data were 
each acquired at a sampling frequency of 4 Hz in consecutive 3-s intervals, resulting in full data sets every 7 s 
(with a 0.5-s dead-time between subsystems). The hsNIRS system employed a 20-W halogen bulb filtered outside 
of 600 to 1000 nm (Hl-2000-HP, Ocean Insight, Delay Beach, FL, USA) and a spectrometer (iDus 420, Andor, 
Oxford Instruments, Abingdon, UK; 548–1085  nm bandwidth; 1.65  nm resolution; P&P Optica, Waterloo, 
ON, Canada). An optical fiber bundle (2.4 mm outer diameter, core = 30 µM, numerical aperture (NA) = 0.55), 
Loptek, Berlin, Germany) directed light towards the scalp, while a second set of fibers (three linearly aligned fib-
ers; diameter = 2 mm, core = 30 µm, NA = 0.55, Loptek) collected diffusely reflected light. The DCS system con-
sisted of a long-coherence laser (DL785-100-S, CrystaLaser, Reno, NV, USA) and a four-channel single-photon 
counting module (SPCM-AQR-15-FC, Excelitas Technologies, Montreal, QC, Canada). The laser was coupled to 
four fibers (core = 200 µm, NA = 0.22, Loptek), and four single-mode fibers were used for detection (core = 8 µm, 
NA = 0.12, Loptek). The output for the SPCM was fed into a PCIe-6612 data acquisition board that generated 
intensity autocorrelation functions using in-house developed software: LabVIEW 2017 SP1 (National Instru-
ments, https://​www.​ni.​com/​en-​ca/​suppo​rt/​downl​oads/​softw​are products/download.labview.html#306,351) and 
MATLAB 2016b (MathWorks, https://​www.​mathw​orks.​com/​help/​relea​ses/​R2016b/​index.​html48.

Data analysis.  Quantifying StO2 and changes in oxCCO by hsNIRS.  Each monitoring period began by col-
lecting a dark spectrum (darkλ) acquired with the emission source turned off. A reference spectrum (referenceλ) 
was collected to characterize the spectral properties intrinsic to the instrument. Each reflectance spectrum, R(λ), 
was determined by:49

where spectrumλ refers to intensity measurements as a function of wavelength λ.
A derivative spectroscopy approach was applied to R(λ) to quantify the tissue water fraction (WF) and base-

line concentrations of oxy- and deoxy-hemoglobin ( HbOb
2 and Hbb , respectively)24,50. The approach involves 

fitting the first and second derivatives of R(λ) with the solution to the diffusion approximation for a semi-infinite 
homogeneous medium. Light absorption and scattering parameters were input into the model solution as follows:

where µa(�) is the absorption coefficient, ε refers to the molar extinction coefficient of each chromophore, µ′
s(�) 

is the reduced scattering coefficient, α is the scattering power, and A is the value of µ′
s(�) at λ = 800 nm.

Following baseline analysis, a modified Beer-Lambert Law approach based on the UCLn algorithm was 
utilized to determine time-varying changes in the concentrations of HbO2, Hb and oxCCO26:

where Δ denotes a change relative to baseline concentration, DP is the differential pathlength (set to 4.9 based on 
previous literature51), and A is the measured change in attenuation. StO2 as a function of time was determined by:

Monitoring CBF by DCS.  To determine BFi, each normalized intensity autocorrelation curve was converted to 
electric field autocorrelation data using the Siegert relation18:

(1)R(�) =
spectrum

�
− dark�

reference� − dark�

(2)µa(�) = WF · εH2O(�)+Hbb · εHb(�)+HbOb
2 · εHbO2(�)

(3)µ′
s(�) = A ·

(

�

800nm

)−α

(4)

�

�HbO2(t)
�Hb(t)

�oxCCO(t)

�

=
1
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




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...
...

...
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
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


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





(5)StO2 =
HbOb

2 +�HbO2(t)

HbOb
2 +�HbO2(t)+Hbb +�Hb(t)

(6)g2(ρ, τ ) = 1+ β
|G1(ρ, τ )|

2

I(ρ, τ )2
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where g2(ρ, τ) represents the measured normalized intensity autocorrelation as a function of source-detector 
distance (ρ) and correlation time (τ), G1(ρ, τ) is the electric field autocorrelation function, < I(ρ, τ) > is the average 
intensity, and β is the coherence factor. G1 was fit with the solution to the diffusion approximation for a semi-
infinite homogenous medium based on the assumption of pseudo-Brownian motion of light scatterers52,53. The 
fitting was performed by incorporating changes in µa(�) determined by hsNIRS and assuming µ′

s(�) = 8 cm-1. 
The average BFi for the first 15 min of data acquisition was used to define the baseline BFi . All BFi values were 
normalized to BFi to generate a time series of fractional changes in CBF: rCBF =

(

BFi − BFi
)

/BFi.

Data processing and statistical analysis.  The first step was to remove data sections that exhibited sub-
stantial signal artifacts. The criteria were based on large signal variations in either a hemoglobin time course or 
the corresponding blood flow index that exceeded four times the temporal standard deviation and persisted for 
at least 15 min. A comparison to the clinical log was conducted to establish the most likely cause of each artifact 
(see supplementary Fig. S2 as an example). The most common cause, which occurred at least once in every 
monitoring period, was patient handling related to checking vital signs, patient repositioning, and responding 
to desaturation events (i.e., a decrease in SaO2 below 85%). In addition, six periods were disrupted by clinical 
procedures including cUS and x-ray imaging, phototherapy and surfactant treatment. Data corresponding to 
any identified artifact were subsequently removed from all time courses. The second step was to filter the StO2, 
rCBF, and ΔoxCCO time courses using an inverse wavelet transform with a Morlet wavelet (the MATLAB func-
tion cwt)54–56 to remove frequencies greater than 0.01 Hz and less than 0.001 Hz. The final step was to correct 
each time course for motion artifacts using an algorithm that utilizes a moving standard deviation and spline 
interpolation57.

Absolute baseline measurements of BFi and StO2 were determined for each monitoring period by averaging 
across the first 15 min of data acquisition. A paired t-test was used to compare baseline BFi and StO2 values from 
the two periods, as well as all other physiological parameter measured on days 1 and 3. All statistical analysis 
was conducted using a statistical toolbox (MATLAB R2020b) and significance was defined as p < 0.05. All data 
are presented as mean ± standard deviation.

Wavelet coherence, which has been used in a number of neonatal brain monitoring studies23,58–60, was used to 
assess the temporal correlation between the three dynamic signals across the frequency range 0.001 to 0.005 Hz: 
rCBF and StO2, rCBF and ΔoxCCO, and StO2 and ΔoxCCO. Coherence ranges from 0 to 1 and reflects the cross-
correlation between two time series as a function of frequency, with a value of 0 indicating no correlation and 
1 indicating complete agreement. Statistical significance coherence values were determined from Monte Carlo 
simulations of 1000 data pairs of simulated red noise. Coherence was computed for each pair, and the statistical 
threshold for the experimental data was based on values greater than 95% of the simulated values56. The final 
step was to calculate the duration of significance coherence for rCBF/StO2, rCBF/ΔoxCCO and StO2/ΔoxCCO 
for each patient and monitoring session. A two-way analysis of variance (ANOVA) was used to investigate differ-
ences in coherence durations for rCBF/StO2, rCBF/ΔoxCCO and StO2/ΔoxCCO from the two sessions. Boxplots 
were used to display the results with statistical outliers determined as points greater than q3 + w × (q3 − q1) or 
less than q1 − w × (q3 − q1) where q is the quartile number and w is the whisker length.

To assess the phasic relationship between the signals, wavelet semblance was calculated55. Semblance is the 
instantaneous phase difference and ranges from − 1 for signals completely out of phase to 1 for signals in-phase.
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