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ABSTRACT

Background. Urbanization and industrialization are the main anthropogenic activities
that are adding toxic heavy metals to the environment. Among these, chromium (in
hexavalent: Cr*® and/or trivalent Cr*?) is being released abundantly in wastewater
due to its uses in different industrial processes. It becomes highly mutagenic and
carcinogenic once it enters the cell through sulfate uptake pathways after interacting
with cellular proteins and nucleic acids. However, Cr*® can be bio-converted into more
stable, less toxic and insoluble trivalent chromium using microbes. Hence in this study,
we have made efforts to utilize chromium tolerant bacteria for bio-reduction of Cr*®
to Cr'3.

Methods. Bacterial isolate, K1, from metal contaminated industrial effluent from Kala
Shah Kaku-Lahore Pakistan, which tolerated up to 22 mM of Cr®" was evaluated
for chromate reduction. It was further characterized biochemically and molecularly
by VITEK®2 system and 16S rRNA gene sequencing respectively. Other factors
affecting the reduction of chromium such as initial chromate ion concentration, pH,
temperature, contact-time were also investigated. The role of cellular surface in sorption
of Cr®" ion was analyzed by FTIR spectroscopy.

Results. Both biochemical and phylogenetic analyses confirmed that strain K1 was
Staphylococcusaureus that could reduce 99% of Cr®" in 24 hours at 35 °C (pH = 8.0;
initial Cr®" concentration = 100 mg/L). FTIR results assumed that carboxyl, amino
and phosphate groups of cell wall were involved in complexation with chromium.
Our results suggested that Staphylococcusaureus K1 could be a promising gram-
positive bacterium that might be utilized to remove chromium from metal polluted
environments.

Subjects Agricultural Science, Microbiology, Soil Science, Environmental Contamination and
Remediation, Environmental Impacts
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INTRODUCTION

Chromium is of great economic importance for its uses in different industries for various
applications such as textile dyeing, wood preservation, pulp and paper manufacturing,
tanning and chrome plating (Viti ¢ Giovannetti, 2007). However, it is also becoming a
major pollutant due to its untreated and uncontrolled discharge in industrial effluent
in developed as well as in developing countries like Pakistan (Velma, Vutukuru ¢
Tchounwou, 2009; Khan et al., 2015; Fatima ¢» Ahmed, 2018). According to estimates,
more than 170 thousand tons per annum of chromium waste are being discharged
globally into environments due to various anthropogenic activities, thus causing severe
environmental pollution and human health problems. In aquatic environment, chromium
is found either chromium (III) or chromium (VI) (Kaur, Kumar ¢ Kaur, 2014). Trivalent
chromium (Cr™?) is least toxic as it got precipitated whereas chromate (Cr™®) is the
most toxic form of chromium being released into environment by industrial effluents
because of its strong oxidizing power and higher membrane transport (Viti et al., 2014).
Chromate is actively transported across cell membranes both in prokaryotes and eukaryotes
(Cervantes et al., 2001). Sulfate uptake pathways were reported to be involved in transport
of chromate across biological membranes (Ramirez-Diaz et al., 2008) in bacteria such

as Salmonella typhimurium, Escherichia coli, Pseudomonas fluorescens and Alcaligenes
eutrophus (Cervantes et al., 2001). This is due to the fact that chromate is mainly found in
the oxyanion form (i.e., CrO,Q) and, thus cannot be trapped by the anionic components
of cell membrane (Volesky ¢ Holan, 1995). Once it enters the cell, it may cause asthma,
cancer, allergic reactions, nervous and cardiovascular disorders and organ failure (Gupta
¢ Kumar, 2012). According to different environmental protection agencies, removal of
chromium from industrial discharge is pre-requisite before its final dispersal to surface
water bodies (Viti et al., 2014).

The proper treatment of wastewater effluent not only fulfills the demands for agricultural
irrigation but also minimizes the environmental pollution and protects the public health
(Al-Jasser, 2011). However, industrial wastewater treatment is a well-developed engineering
science requiring several techniques and processes to efficiently treat the wastewater (Asarno
& Levine, 1996). Like other developing countries, hardly a few percent (<8%) of wastewater
is effectively treated in Pakistan (Martin et al., 2006), while rest is directly discharged into
surface water bodies without undergoing any sort of treatment (Reinsch ¢ Pearce, 2005).

In developed countries, various physiochemical processes such as filtration,
electrochemical application, ion exchange, evaporation, chemical precipitation, oxidation,
reduction, and reverse osmosis, have been used for removal of toxic metals from
environment (Hassan et al., 2017). These methods are not only expensive but also release
other harmful byproducts leading to environment pollution (Ahluwalia ¢ Goyal, 2007).
On the other hand, bioremediation is gaining attention as an alternative remediation
technique due to its inexpensive and environment friendly nature (Kothe, Bergmann ¢
Biichel, 2005), and, also save the extra cost of secondary pollution removal.

Bioremediation of wastewater using metal resistant bacteria could be considered as
cost-effective and environmentally benign approach. This is due to the premise that
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these bacteria are in continuous contact with wastewater containing toxic metals since
years; therefore, they have already adapted these extreme environmental conditions.
Additionally, these extreme environments could provide novel bacteria that could be
resistant to elevated concentrations of toxic metals. These bacteria could be used for
bioremediation of contaminated wastewater being discharged into surface water bodies.
Therefore, this study was carried out to investigate the presence of chromium tolerant
bacteria in industrial effluent for its subsequent applications in environmental remediation
practices.

MATERIALS & METHODS

Collection of wastewater samples

Wastewater samples (1 = 6) were collected from discharge points of different industries
located in industrial state of Kala Shah Kaku (KSK) near Lahore city, Pakistan (Fig. 1).
Sampling bottles (250 ml) were washed with dilute nitric acid, rinsed with de-ionized water
and again washed three times with the wastewater as described previously (Zhang et al.,
2013). These samples were stored in icebox (at 4 °C) and transported to laboratory for
further analyses.

Isolation of chromium resistant bacteria

Modified serial dilution method was used for isolation of metal resistant bacteria from
collected wastewater samples (Lucious ef al., 2013). Briefly distilled water was used to
prepare dilutions (107!, 1072, 10~% and 10~*) of wastewater samples (Lucious et al., 2013).
Wastewater samples (100 pl) from test tubes of all dilution was poured onto petri plates
containing 20 ml of Tryptic Soy Agar incorporated with 0.5 mM Cr®* (Lucious et al., 2013).
Morphologically different colonies observed on petri plates were purified and were used
for studying their ability to tolerate elevated concentrations of Cr®* by culturing them on
petri dishes. These petri dishes were supplemented with increasing concentrations (0.0,
0.5, 2.0, 5.0, 10.0, 15.0, 18.0, 20, 22 and 23 mM) of chromium (Cr®*) (Zhang et al., 2013).
Only the bacterium that was resistant to elevated concentration of chromium was selected
for further studies (Khan et al., 2015; Zhenggang et al., 2018).

Minimum inhibitory concentration of different metals against
bacterial isolate K1

The bacterial isolate, that was resistant to elevated concentration of hexavalent chromium
(i.e., 22 mM), was purified and was tested for resistance against different metals like
chromium, lead, copper, zinc, manganese, cobalt, silver and mercury by the agar dilution
method (Khan et al., 2015). Briefly Tryptic Soy Agar (TSA) was prepared and respective
metals were mixed with agar in various concentrations (i.e., 0.5, 1.0, 2.0, 4.0, 8.0, 10.0,
12.0, 15.0, 20.0, 22.0 and 23.0 mM). Then the plates were allowed to solidify. Now bacterial
culture was streaked on the surface of TSA plates that were incubated at 35 °C for a period
of 5 to 6 days and observed for growth on daily basis (Khan et al., 2015).
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Figure 1 Sampling sites located at discharge points of different industries at Kala Shah Kaku, Lahore-
Pakistan. This picture is based on GPS coordinates of collection points.

bacteria

Full-size G DOI: 10.7717/peer;j.7726/fig-1
Identification and biochemical characterization of chromium resistant

The bacterial isolate (K1) was identified on the basis of cell morphology and biochemical
tests (Begum et al., 2017). Biochemical tests were performed using VITEK®2 system
(bioMérieux, France) through colorimetric identification. This system uses GP card

containing 43 different carbon sources, enzyme activities for fast and accurate microbial
identification. The test was carried out for 8 h following the manufacturer instructions
ATCC 6538.

in which tested bacterium K1 was tested and compared with control strain i.e., S. aureus
Molecular characterization and phylogenetic analysis of chromium
resistant strain K1

For molecular characterization, genomic DNA was extracted by the Favorgen® genomic

DNA extraction kit following the manufacturer’s guidelines. 16S rDNA gene was amplified

using universal primers set i.e., 27F (5'-AAACTCAAATGAATTGACGG-3") & 1492R
Tariq et al. (2019), PeerdJ, DOI 10.7717/peer|.7726
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(5'-ACGGGCGGTGTGTAC-3') through polymerase chain reaction (PCR) (Eden et al.,
1991). The PCR was performed with initial denaturation temperature of 94 °C for 5 min,
followed by 40 recurring cycles having denaturation of 30 s at 94 °C, 30 s of annealing
at 53 °C and elongation for 30 s at 72 °C. The final extension time was 10 min at 72 °C
followed by 4 °C hold temperature (Moyersoen, Beever ¢ Martin, 2003). After this, PCR
amplicon were visualized under ultra-violet light via Gel Documentation System (Slite
200W), after loading the 5 pl of PCR product on the agarose gels as described previously
(Moyersoen, Beever ¢» Martin, 2003). After confirmation, 25 pl of PCR product was sent
to Macrogen (Korea) for sequencing. The nucleotide sequences were corrected manually
using ChormasPro (v1.7.1) software and were submitted to GenBank for an accession
number. Through NCBI blast analysis, similar sequences were searched and downloaded
for the construction of the phylogenetic tree using partial 16S rDNA gene sequences by the
computer software MEGA (v7.0.) (Tamura et al., 2011).

Determination of Antibiotic Susceptibility of Strain K1

Kirby-Bauer disc diffusion method was adopted to evaluate the antibiotic sensitivity
pattern of Staphylococcus aureus K1 against selected antibiotics (CLSI, 2013). Commercially
available antibiotic discs (Oxoid™ UK) were used in this study including ceftriaxone
(30 pg), ampicillin (10 pg), amoxicillin (30 png), meropenem (10 pg), imipenem

(10 ng), sulphamethoxazole/trimethoprim (25 pg), nalidixic acid (30 pg), cefoxitin

(30 ng), ciprofloxacin (5 ug), ofloxacin (5 ng), ceftazidime (30 g), aztreonam (30
ng), gentamycin (10 pg), vancomycin (30 pg), ertrapenem (10 pg), amikacin (30 pg),
piperacillin/tazobactam (110 pg) and cefepime (30 wg) (Begum et al., 2017). The tests were
conducted following manufacturer instructions. The values obtained for diameter were
compared with CLSI (Clinical and Laboratory Standards Institute) standards (CLSI, 2013)
in order to confirm antibiotic resistance/ or sensitivity pattern of Staphylococcus aureus K1.

Estimation of effect of contact time (hours) on reduction of chromium
(Cr+) by Staphylococcus aureus K1

Effect of contact time (hours) was determined using total 10 sets of conical flasks, each
set comprised of 3 flasks (250 ml) containing Tryptic Soy Broth (100 ml). These flasks
were inoculated with Staphylococcus aureus K1 (1 ml) and were incubated at optimum
temperature (i.e., 35 °C). Overnight culture of Staphylococcus aureus K1 (1ml) was pipetted
in 100 ml of Tryptic Soy Broth (TSB) supplemented with 1 mM of hexavalent chromium
in 5 sets of three conical flasks (250 ml) while remaining 5 sets of flasks were taken as
control (without chromium). These flasks (10 sets) were incubated in incubator at 35 °C
for a period of 2, 4, 8, 16 and 24 h on orbital shaker (at 150 rpm) and harvesting was done
accordingly. Breifly, bacterial cells were harvested through centrifugation at 8,000 rpm for
10 min and supernatant (100 ul) was added in 10 ml of distilled water in a test tube, followed
by addition of 1 ml of diphenylcarbazide solution (that was prepared by dissolving 0.25 g
diphenylcarbazide in 100 ml acetone) and one drop of H3PO4. The mixture was kept at
room temperature for 10 min for color development. Reduction of chromium was measured
at different time intervals by measuring optical density (540 nm) of extracted solution using
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spectrophotometer (Hach, USA) with 1, 5-diphenylcarbazide assay (Fulladosa et al., 2006;
Thacker et al., 2006). For the estimation of chromium concentrations in extracted solution,
standard curve was plotted using values of optical density obtained for Tryptic Soy Broth
(100 ml) with different chromium concentrations (i.e., 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0
mM) without bacterial cells.

Fourier-transform infrared spectroscopy (FTIR) analysis

For FTIR analysis, bacterial samples were prepared according to Deokar et al. (2013).
Staphylococcus aureus K1 was cultured on TSB with 1 mM or without chromium (control)
and incubated for 24 h at 35 °C. After incubation period, both cultures were independently
centrifuged at 8,000 rpm for 10 min. The obtained pallet was washed twice with 1% (W/V)
saline solution having pH 6.5 and was further freeze-dried. Fourier transform infrared
studies (FTIR) were monitored using FTIR spectrometer (Bruker, alpha) between wave

number ranging from 4,000-500 cm ™.

RESULTS

Biochemical, physiological and molecular identification of isolate K1
The isolate appeared to be coccus shaped (*21 um), gram-positive, catalase positive, oxidase
and coagulase negative (Table 1). To further clarify the relationship between isolate K1 and
S. aureus, BioMériux VITEK®)?2 system (GP card) was used for identification of isolate K1.
Data obtained suggested that isolate K1 shared 37 out of 43 carbon sources with that of
type strain Staphylococcus aureus ATCC 6538 whereas it differs in 6 carbon sources. Among
them, bacterial isolate K1 used beta-galactosidase and lactose during growth, which were
not used by Staphylococcus aureus ATCC 6538. On the other hand, Staphylococcus aureus
ATCC 6538 assimilated a-glucosidase, D-maltose, and methyl-f3-D-glucopyranoside as
carbon sources for its growth that were not used by isolate K1. These results emphasized
that bacterium K1, even after exhibiting significant differences from known strains, was
closely related to Staphylococcus aureus and thus identified as Staphylococcus aureus strain
K1. The BLASTn analysis applied to 16S rDNA gene sequence of Staphylococcus aureus K1
revealed that it was closely related (99% similarity) to Staphylococcus aureus strain NBRC
100910 and Staphylococcus aureus strain ATCC 12600. Phylogenetic analysis of 16S rDNA
sequences that were retrieved from GenBank confirmed that isolate Staphylococcus aureus
K1 appeared to be closely related to Staphylococcus aureus (Fig. 2).

Determination of minimum inhibitory concentration for hexavalent
chromium

Although the growth of bacterium K1 seemed to be uninhibited by presence of chromium,
but it exhibited much slower growth rate in the presence of metal (Cr®") as reported
in Fig. 3. Additionally, in the absence of metal (Cr®"), exponential growth of bacterium
lasted for about 8 h whereas no such growth was observed when chromium was present in
culture medium (Fig. 3). Furthermore, Staphylococcus aureus K1 showed visible growth in
Tryptic Soy Broth (TSB) medium containing chromium (hexavalent) with no significant
inhibition (although growth rate was reduced) in bacterial growth up to maximum 22 mM
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Table 1 Comparative morphological and biochemical characteristics of Staphylococcus aureus strain K1 and Staphylococcus aureus ATCC
strain 6538 using VITEK-2 Systems.

Characters Mnemonic Staphylococcus Staphylococcus
aureus K1 aureus ATCC 6538
Morphological characteristics

Morphology Round, Convex Round, Convex
Color Golden yellow Golden yellow
Gram-reaction Positive Positive

Catalase Positive Positive

Coagulase plasma reaction Negative Positive

Biochemical characteristics

D-Amygdalin AMY - -
Phosphatidylinositol phospholipase C PIPLC - -
D-xylose dXYL - -
Arginine dihydrolase I ADH 1 + +
Beta-Galactosidase BGAL + —
Alpha-Glucosidase AGLU - +
Ala-Phe-Pro Arylamidase APPA — —
Cyclodextrin CDEX - -
L-Aspartate Arylamidase AspA — —
Beta-Galactopyranosidase BGAR - -
Alpha-Mannosidase AMAN — -
Phosphatase PHOS + +
Leucine ARYLAMIDASE LeuA + +
L-Proline ARYLAMIDASE ProA - -
BETA GLUCURONIDASE BGURr - -
ALPHA-GALACTOSIDASE AGAL - -
L-Pyrrolidonyl-ARYLAMIDASE PyrA + +
BETA-GLUCURONIDASE BGUR - -
Alanine ARYLAMIDASE AlaA - -
Tyrosine ARYLAMIDASE TyrA - -
D-SORBITOL dSOR - -
UREASE URE — —
POLYMIXIN B RESISTANCE POLYB + +
D-GALACTOSE dGAL + +
D-RIBOSE dRIB — —
L-LACTATE alkalinization ILATk + +
LACTOSE LAC + -
N-ACETYL-D-GLUCOSAMINE NAG + +
D-MALTOSE dMAL - +
BACITRACIN RESISTANCE BACI + +
NOVOBIOCIN RESISTANCE NOVO - +
GROWTH IN 6.5% Nacl NCé6.5 + +
D-MANNITOL dMAN + +

(continued on next page)
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Table 1 (continued)

Characters Mnemonic Staphylococcus Staphylococcus
aureus K1 aureus ATCC 6538
D-MANNOSE dMNE + +
METHYL-B-D-GLUCOPYRANOSIDE MBdG - +
PULLULAN PUL — —
D-RAFFINOSE dRAF — —
0O/129 RESISTANCE (comp.vibrio) O129R + +
SALICIN SAL - -
SACCHAROSE/SUCROSE SAC + +
D-TREHALOSE dTRE + +
ARGININE DIHYDrolase 2 ADH2s + +
OPTOCHIN RESISTANCE OPTO + +
0 Staphylococcus aureus strain RCB143 (927337617)
Staphylococcus sp. BAB-3242 (571341332)
0 Staphylococcus aureus strain 898 (BR66)(538283840)
Staphylococcus aureus K1
Staphylococcus aureus strain RCB1010 (927338484)
0 0 Staphylococcus aureus strain 102 (BR65Fs(A)) (538283822)

Staphylococcus aureus strain NF4 (746818832)
Staphylococcus aureus strain 89A (BREE) (538283839)
Staphylococcus aureus strain HN-5 (849027262)
Staphylococcus aureus strain 129A (BC40Fs)(538283824)

Staphylococcus sp. HN-37 (849027332)
Staphylococcus aureus strain A1 {923142438)
3|— Staphylococcus aureus strain 179 (BC31(B)) (538283797)

T

L Staphylococcus aureus strain 1158 (BR67Fs) (538283810}
3|7 Staphylococcus argenteus strain CS2 (982220425)

I Staphylococcus aureus strain: WO53 (972306229)
4 Staphylococcus aureus strain A12 (961683481)

W

3'— Staphylococcus aureus strain 140A (bc2) (536283827)
— Staphylococcus aureus strain 118A (BR69Ms) (538283823)

%

3'— Staphylococcus aureus strain 15 (BC19)(538283830)
Staphylococcus aureus strain 94A (br8) (538283841)
Staphylococcus aureus isolate M0901 (955664566)
Staphylococcus aureus strain 1478 (BR64Fs)(538283828)
Staphylococcus aureus strain: BL37 (972306325)

Staphylococcus aureus strain 74 (br12) (538283838)
Staphylococcus aureus strain Ad (923142441)
Staphylococcus aureus strain 1588 (BR61Fs)(538283831)
Staphylococcus aureus strain 130A (BR68) (538283825)

HIsisty

Staphylococcus aureus strain 166A (BR60Fs)(538283832)
Staphylococcus aureus strain 257 (P34Ms(C)(538283833)

Figure 2 Phylogenetic tree of Staphylococcus aureus strain K1 isolated from industrial effluents based

on their 16S rRNA gene sequences. The evolutionary trends of strain K1 are represented by Neighbor-

Joining method (Saitou ¢ Nei, 1987) are conducted with MEGA7 (Kumar, Stecher & Tamura, 2016). The
evolutionary distance is estimated with the Tamura 3-parameter method (Tamura, 1992).
Full-size Gal DOI: 10.7717/peerj.7726/fig-2
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Cr®" as depicted in Fig. 4. Moreover, minimum inhibitory concentration of other metals

such as lead, copper, zinc, manganese, cobalt, mercury and silver against S. aureus K1 was
in following order i.e., Co**: 18 mM; Zn?*: 15 mM; Pb?>*: 10 mM; Mn?*: 8 mM; Ag>*:

5 mM; Cu?*: 3 mM; Hg?™: 1 mM.

Bacterial antibiotic resistance

The bacterium Staphylococcus aureus K1 was tested against eighteen antibiotics. It was

observed that the isolate K1 was sensitive to ceftriaxone, ampicillin, amoxicillin, imipenem,
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Table2 Antibiotic sensitivity pattern of chromium tolerant Staphylococcus aureus strain K1. Each data point indicates the average performance

of 3 runs.
Sr. # Antibiotic Code Concentration Sensitive/ Diameter Standards of diameter of
(ng/disc) Resistant of zone of zone (mm) of inhibition (CLSI)
inhibition (mm) Resistant Intermediate Sensitive

1 Ceftriaxone CRO 30 Sensitive 22.00 <13 14-20 >21

2 Ampicillin AMP 10 Sensitive 32.60 <28 - >29

3 Amoxycillin AMC 30 Sensitive 21.50 <19 - >20

4 Meropenem MEM 10 Sensitive 17.25 <15 16-18 >19

5 Imipenem IPM 10 Sensitive 18.74 <13 14-15 >16

6 Sulphamethoxazole/  SXT 25 Sensitive 12.14 <10 11-15 >16
Trimethoprim

7 Nalidixic acid NA 30 Resistant - <13 14-18 >19
Cefoxitin FOX 30 Sensitive 18.10 <14 15-16 >18
Ciprofloxacin CIP 5 Sensitive 21.30 <15 16-20 >21

10 Ofloxacin OFX Sensitive 15.80 <12 13-15 >16

11 Ceftazidime CAZ 30 Resistant - <14 15-17 >18

12 Aztreonam ATM 30 Resistant - <15 16-21 >22

13 Gentamycin CN 10 Sensitive 16.13 <12 13-14 >15

14 Vancomycin VA 30 Sensitive 18.35 - -

15 Ertrapenem ETP 10 Sensitive 20.17 - - -

16 Amikacin AK 30 Sensitive 19.80 <14 15-16 >17

17 Piperacillin/ TZP 110 Sensitive 21.00 <19 - >20
Tazobactam

18 Cefepime FEP 30 Sensitive 20.50 <14 15-17 >18

cefoxitin, ciprofloxacin, gentamycin, vancomycin, ertrapenem, amikacin, piperacillin/ta-
zobactam, cefepime and intermediate sensitive to sulphamethoxazole/trimethoprim,
meropenem and ofloxacin as mentioned in CLSI standards and was resistant to ceftazidime,
aztreonam and nalidixic acid (Table 2).

Effect of contact time (hours) on reduction of chromium (Cré+) by
Staphylococcus aureus strain K1

The most important factors that can affect the various physiological processes of growing
bacterium include temperature, pH, and salt concentration (0.5% NaCl). Optimum
values for these factors were also evaluated for S. aureus strain K1. It was observed that S.
aureus strain K1 exhibited maximum growth at 35 °C and pH 8. Under optimum growth
conditions, biosorption (metal removal) capacity of strain K1 in the presence of chromium
(hexavalent) increased with increasing the contact period (Fig. 5). It was observed that
Staphylococcus aureus K1 removed about 26%, 45%, 71%, 80% and 99% Cr®* (1 mM)
from the medium after 2, 4, 8, 16 and 24 h, respectively (Fig. 5).

FTIR analysis of bacterium S. aureus strain K1
Significant differences were observed in the overall infrared spectrum of cells with and
without chromium treatment. IR spectrum of S. aureus K1 cells with chromium (1 mM)
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and without chromium were studied in the range of 500-4,000 cm™! that reflected

the different absorption and stretching peaks validating the complex interactive nature of

cellular surface (Fig. 6). In addition, the functional groups, involved in chromium sorption,

were ionizable including carboxyl, hydroxyl groups and amino groups (Fig. 6).
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DISCUSSION

From the results, it was evident that metal tolerant bacteria can be isolated from metal
polluted sites. As in this study, we have isolated and characterized an indigenous
Staphylococcus aureus strain K1 from metal polluted environment that can tolerate up

to 22 mM of Cr®". Several studies had reported the similar results in which metal tolerant
bacteria were isolated from metal contaminated habitats (Shakoori, Makhdoom ¢ Hag,
2000; Camargo et al., 2003; Viti, Pace ¢ Giovannetti, 2003; Thacker et al., 2006; Wang et al.,
2010; Alam & Ahmad, 2011; Zhang et al., 2013; Khan et al., 2015; Oaikhena et al., 2016).
Our results also corroborated the findings of Mustapha ¢ Halimoon (2015) who isolated
21 bacteria from electroplating industry and reported only five of them to be chromium
tolerant (up to 50 mg/L). However the growth rate of bacterial isolates in the presence
of toxic metal was slow as already reported in various studies around the globe (Basu,
Bhattacharya ¢ Paul, 1997; Shakoori, Makhdoom ¢ Hagq, 2000; Zhang et al., 2013; Ahemad,
2014). The reason for much slower growth rate in our case could be attributed to elevated
chromium concentrations (22 mM) whereas other researcher had used lower levels (2 mM)
of Cr®* (Zhang et al., 2013). Similarly, use of nutrient rich medium for bacterial growth
could also undermine the toxic effects of metal(s) on bacterial growth. For example,
Thacker ¢~ Madamwar (2005) evaluated the effect of various concentrations of metal on
bacterial growth using nutrient rich culture media having tryptone and yeast extract. Under
such conditions, chromium (Cr®") could form complex with organic compounds (present
in nutrient medium), which in result could undermine the toxic effects of chromium,
becoming less effective against microbial metabolism (Caravelli, Giannuzzi & Zaritzky,
2008).

Although, degree of tolerance to different metals (Cr, Co, Zn, Pb, Mn, Ag, Cu, Hg) might
vary according to bacterial genotype, type of metal; nature of metal and pH of culture media
(Zhang et al., 2013). Such resistance to toxic metals might be attributed to other possible
mechanisms such as ion exclusion, bioaccumulation of metal by microbes and production
of low molecular weight binding proteins (Nies, 1999; Das, Dash ¢» Chakraborty, 2016).

As far as resistance to antibiotics was concerned, it was found that the isolate K1
was sensitive to majority of antibiotics tested. These findings corroborated the results
of other researchers who reported that non-pathogenic but metal tolerant bacterial
isolates belonging to Serratia species were more susceptible to antibiotics (Ajithkumar,
20035 Jafarzade et al., 2012). Similarly, Shakoori et al. (2010) stated that arsenic-resistant
Bacillus anthracis and Citrobacter freundii were found sensitive to tetracycline, kanamycin,
erythromycin and nalidixic acid while Klebsiella oxytoca was found resistant to all of these
antibiotics. Others observed that Bacillus species exhibited sensitivity to streptomycin,
tetracycline, chloramphenicol, norfloxacin, neomycin, rifampicin, nalidixic acid and
cotrimoxazole, while being resistant to kanamycin, ampicillin and methicillin (Samanta et
al., 2017). These results were also in line with reports from Abakiliki (Tkeagwu, Amadi
& Iroha, 2008) suggesting that Staphylococcus aureus was sensitive to ofloxacin and
gentamicin. Although Staphylococcus aureus K1 was resistant to ceftazidime, aztreonam
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and nalidixic acid that could be related to occurrence of genes responsible for heavy metal
and antibiotic resistance together (Silver, 1988).

Staphylococcus aureus strain K1 was an efficient reducer of hexavalent chromium as
depicted in Fig. 5. The removal percentage of chromium (Cr®*) was much more higher than
previously reported values for Cr®* removal by other Staphylococcus species (Shakoori et
al., 2010; Zhang et al., 2013) and other bacteria (Li ¢ Krumholz, 2009). Microbial reduction
of chromium ion can be either extracellular or intracellular (Campos, Martinez-Pacheco
& Cervantes, 1995; Ackerley et al., 2004; Li & Krumholz, 2009) that could undergo through
biotransformation (in which Cr®" is reduced to Cr** through microbial enzymatic
processes) and/or by biosorption (metallic ions get adsorbed on cellular surfaces) (Cheung
& Gu, 2003; Desjardin et al., 2003). These processes can be employed not only for the
physical removal of metal (chromium) as precipitate (Cr(OH)3) but also can be helpful for
decreasing the toxic effects of such metallic ions (Cheung & Gu, 2003). Hence Staphylococcus
aureus K1 was an excellent reducer of chromium ion, it could be a potential candidate for
bioremediation of chromium in that area as it could reduce nearly all of chromium present
in medium after 24 h.

This rapid reduction of hexavalent chromium could be ascribed to surface binding
due to the presence of different functional groups on cell wall and interior penetration
(bioaccumulation) as reported previously (Rehman, Shakoori ¢ Shakoori, 20065 Khan
et al., 2015; Bingél, Ozmal & Akin, 2017; Long et al., 2017; Zhenggang et al., 2018). It was
observed that the peaks attributed for amide linkages appearing at 1,620 and 1,526
cm~ 'were shifted respectively to 1,625 and 1,521 cm™! on adsorption of chromium
(Mungasavalli, Viraraghavan & Jin, 2007; Park, Yun ¢ Park, 2005). The suppression and
shift in peak intensity ranging 1,000-1,320 cm™!, denoting the presence of phosphorous
and carbon containing oxygen atoms, indicated their interaction with Cr*® (Das ¢ Guha,
2007). It seems that the bacterial cells have undergone the oxidation during biosorption
of chromium that has resulted into changes in overall IR spectrum (Park, Yun & Park,
2005; Long et al., 2017). These functional groups have previously been reported to interact
with metal ions (cations) (Bueno et al., 2008). In fact, metal ion could form coordination
bonding with peptide bond with either of amino or carboxyl groups, or nitrogen and/
or oxygen (Pandi, Shashirekha ¢» Swamy, 2009). In current study, shift in wavenumber
from 3,271 to 3,267 cm™! of secondary amide was because of stretching of N-H group
in the secondary-amide proteins representing the participation of membrane proteins in
chromium binding (Abhay, Rawat & Singh, 2016). Our results reaffirmed the findings of
(Mungasavalli, Viraraghavan & Jin, 2007), who assumed that amino groups could have
leading role in chromium binding with cell membrane, as they were main constituents of
protein, carbohydrates and hexosamines present in cell membrane. Furthermore, similar
altered FTIR spectra was also observed for chromium-treated cyanobacteria, suggesting
that formation of chromium complex with membrane protein (Pandi, Shashirekha ¢
Swamy, 2009). These changes in FTIR spectrum of S. aureus strain K1 were indicative
of the metal bonding processes that had taken place on bacterial surface with different
functional groups (Bueno et al., 2008).
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CONCLUSIONS

According to biochemical and molecular characterization, this bacterium belongs to genus
Staphylococcus and sub-species aureus strain K1. It was able to grow in metal concentration
up to 22 mM of Cr®* and could remove 99% chromium (1 mM Cr®*) after 24 h under
optimum growth conditions. On the basis of FTIR spectra, it can be deduced that carboxyl,
amino and phosphate groups were involved in complexation with chromium. In addition,
Staphylococcus aureus K1 was sensitive to different antibiotics and therefore can be used
for bioremediation of contaminated wastewater and soils. Furthermore, this bacterium
K1 could likely have competitive advantage over autochthonous or exogenous strains if
utilized for bioremediation and could play a significant part in the bioremediation of
chromium-contaminated environments.
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