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Understanding the mechanisms behind lignin formation is an important research area with significant
implications for the bioenergy and biomaterial industries. Computational models are indispensable tools
for understanding this complex process. Models of the monolignol pathway in Populus trichocarpa and
other plants have been developed to explore how transgenic modifications affect important bioenergy
traits. Many of these models, however, only capture one level of biological organization and are unable
to capture regulation across multiple biological scales. This limits their ability to predict how gene mod-
ification strategies will impact lignin and other wood properties. While the first multiscale model of lig-
nin biosynthesis in P. trichocarpa spanned the transcript, protein, metabolic, and phenotypic layers, it did
not account for cross-regulatory influences that could impact abundances of untargeted monolignol tran-
scripts and proteins. Here, we present a multiscale model incorporating these cross-regulatory influences
for predicting lignin and wood traits from transgenic knockdowns of the monolignol genes. The three
main components of this multiscale model are (1) a transcript-protein model capturing cross-
regulatory influences, (2) a kinetic-based metabolic model, and (3) random forest models relating the
steady state metabolic fluxes to 25 physical traits. We demonstrate that including the cross-regulatory
behavior results in smaller predictive error for 23 of the 25 traits. We use this multiscale model to explore
the predicted impact of novel combinatorial knockdowns on key bioenergy traits, and identify the pertur-
bation of PtrC3H3 and PtrCAld5H1&2 monolignol genes as a candidate strategy for increasing saccharifi-
cation efficiencies while reducing negative impacts on wood density and height.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to its recalcitrant chemical and physical nature, lignin is a
key barrier to sustainable biofuel and biomaterial production [1–
4]. A phenylpropanoid polymer found in secondary plant cell walls,
lignin is entangled with cellulosic biomass making their conversion
to biofuel difficult and expensive [2,5,6]. Lignin is composed of
three main subunits, the H, G, and S monolignols that are synthe-
sized through a series of enzymatic reactions and polymerized
with phenolic aldehydes, phenolic alcohols, and unusual metabo-
lites, which are integrated using traditional and nontraditional
linkages through radical coupling reactions [7,8]. The amount
and ratio of these monolignols and other components define the
content, composition, and structure of lignin [5–8]. Modifying the
expression of the monolignol specific genes associated with the
enzymes in the biosynthetic pathway has been shown to alter lig-
nin content and composition as well as associated wood properties,
enabling opportunities for increased efficiency of biofuel produc-
tion [9,10]. However, lignin plays an important role in plant
growth and adaptation [6,11], and many attempts to alter the
structure and composition of lignin have resulted in plants with
other unfavorable phenotypes such as dwarfism [10,12–17].
Researchers have turned to computational models to explore
modifications to the lignin pathway, which will result in favorable
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lignin and bioenergy traits while avoiding unfavorable phenotypic
properties.

Computational models of the monolignol biosynthesis pathway
(Fig. 1) have been developed for several bioenergy crops and trees
to explore how gene modifications can alter lignin content and
composition [18–24]. While these models have provided insight
into previous unexplained behavior of the metabolic pathway, they
lack the ability to fully predict how transgenic modifications
impact lignin biosynthesis. These models do not account for the
emergent properties that occur across biological levels of organiza-
tion (e.g., transcriptional, post-transcriptional, and post-
translational regulations). The vertical integration of these levels
through multiscale modeling approaches is needed to explore
what single or combinatorial gene modifications can lead to desir-
able lignin and wood traits while reducing unfavorable phenotypic
properties [9]. The first multiscale model of lignin biosynthesis was
developed for Populus trichocarpa to explore how modifying tran-
script abundance through gene modification strategies impacted
25 lignin and wood traits [9]. This model made the simplifying
assumption that the enzyme abundances were dependent only
on their associated transcript abundance, ignoring any epistatic
cross-regulatory influences. Subsequent work developed a
transcript-protein model to capture the effects of these cross-
regulatory influences on the monolignol transcript and protein
abundances under transgenic knockdowns in P. trichocarpa [25].
The incorporation of such a transcript-protein model that captures
the cross-influences observed in the transgenic data into a multi-
scale model of lignin biosynthesis is expected to improve our abil-
ity to predict how different gene modification strategies impact
lignin properties and wood traits.

In this paper we present a multiscale model of lignin biosynthe-
sis in P. trichocarpa that connects (1) the transcript-protein model
capturing cross-regulatory influences [25]; (2) the kinetic monolig-
nol biosynthesis model [9,19]; and (3) 25 new random forest
Fig. 1. Monolignol biosynthetic pathway in P. trichocarpa. The PtrCSE1&2, PtrAPX1, and P
discovered after the onset of the study or had not been confirmed in poplar species.
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models that relate the steady state flux outputs from the kinetic
model to 25 lignin and wood traits (Fig. 2)) to predict how these
lignin and wood traits are altered by single and combinatorial
knockdowns of the monolignol specific genes. We used random
forest models to capture the relationships between the steady state
fluxes and wood traits due to their ability to capture complex rela-
tionships [26]. We used the Minimally Biased Variable Selection in
R (MUVR) algorithm [27] to train the 25 random forest models on
the steady state fluxes that resulted from the kinetic model when it
was simulated using the experimental protein abundances [9]. The
MUVR algorithm simultaneously performs variable selection and
validation by implementing recursive variable elimination within
a repeated double cross-validation (rdCV) procedure. Incorporating
the cross-influences at the transcript and protein level improved
our ability to predict 23 of the 25 lignin and wood traits, and
showed specific improvements of the predictions in the
PtrCAld5H1&2, Ptr4CL3&5, PtrHCT1&6, and PtrC3H3 simulated sin-
gle and family knockdowns. The improved overall prediction of
the phenotypes due to the systemic integration of the models
across different biological scales is a demonstration of (1) the func-
tionality of the individual models and (2) our ability to integrate
these models into a functioning multiscale system.

We used the multiscale model to explore the predicted impact
of five novel combinatorial knockdowns on six key lignin and wood
bioenergy traits: lignin content, plant height, relative wood den-
sity, total sugar content, and the wood saccharification efficiencies
for glucose and xylose productions from unpretreated samples. The
multiscale model under these novel combinatorial knockdowns
predicted favorable changes to the wood bioenergy and plant
growth traits not observed in the single gene and gene family
knockdowns. Further, we identified the PtrC3H3 and PtrCAld5H1&2
combinatorial knockdown as a candidate for increasing total sugar
content and the saccharification efficiencies of glucose and xylose,
while mitigating negative impacts of relative wood density and
trALDH reactions (dashed lines) are not included in the model as the reactions were



Fig. 2. Multiscale model of lignin biosynthesis in Populus trichocarpa.
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height. The multiscale model presented in this work is a useful tool
for exploring the space of combinatorial gene perturbation strate-
gies that achieve increased saccharificaition efficiencies while mit-
igating negative impacts on plant growth and adaptation.
Table 1
The 25 experimentally measured lignin and wood traits.

Lignin and wood traits

Lignin content
Glucose content
Xylose content
Total sugar content
C:L ratio
S-subunit abundance
2. Material and methods

2.1. Experimental data

Wang et al. performed a series of systematic experimental
transgenic knockdowns of 21 of the 25 monolignol genes and gene
families in P. trichocarpa [9]. PtrCSE1&2, PtrAPX1, and PtrALDH
(Fig. 1, dashed lines) were not included in these experiments or
the subsequent models [9,19,25] that compose the multiscale
model presented here, as the reactions were discovered after the
onset of their study or had not been confirmed in poplar species.
The experiments were divided into six batches and phenomic
and proteomic measurements were taken after 6 months of growth
in a greenhouse. Multiple independent lines were grown for each
transgenic, and up to three of those lines were chosen to represent
a range of the expression of the knocked out genes.
G-subunit abundance
H-subunit abundance
S/G ratio
b-O-4 linkages
b-1 linkages
b-5 linkages
b-b linkages
End-group linkages
p-hydroxybenzoate
hydroxycinnamaldehydes
Tree height
Tree diameter
Stem volume
Modulus of elasticity (MOE)
Relative wood density
Saccharification efficiency of glucose from unpretreated samples
Saccharification efficiency of xylose from unpretreated samples
Saccharification efficiency of glucose from pretreated samples
Saccharification efficiency of xylose from pretreated samples
2.1.1. Transcriptomics and proteomics data
The absolute abundances for the 21 monolignol transcripts and

proteins were measured using RNAseq and protein cleavage-
isotope dilution mass spectrometry (PC-IDMS) respectively
[9,28]. To account for batch effects, the transcript and protein
abundances were normalized to the to the wildtype of each batch
[9], and missing protein abundance values were imputed as
described in [25]. The RNAseq libraries are available under GEO
accession number GSE78953 (https://www.ncbi.nlm.nih.-
gov/geo/query/acc.cgi?acc=GSE78953), and the proteomics data
set is available on CyVerse(https://datacommons.cyverse.org/bro
wse/iplant/home/shared/LigninSystemsDB). Plots comparing the
transcript and protein abundances and their log fold-changes can
be found in [9,25].
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2.1.2. Phenomic data
Twenty-five phenomic characteristics describing lignin and

other wood chemical properties, wood physical properties, and
saccharification (extraction of sugar) efficiencies were obtained
from subsets of these transgenic lines (Table 1).

The wood chemical properties obtained include lignin content,
glucose content, xylose content, total sugar content, and total sugar
to lignin (C:L) ratio, which were measured from 181 of the trans-
genics and 18 of the wildtypes. The abundances of lignin subunit
composition (S-subunits, G-subunits, H-subunits, and S/G ratio),
interunit linkages (b-O-4, b-1, b-5, b-b, and end-groups), and two
non-monolignol phenolics (p-hydroxybenzoate and hydroxycin-
namaldehydes) were further analyzed in 56 transgenics and 8
wildtypes using semi-quantitative two-dimensional nuclear mag-
netic resonance (2D NMR). NMR data was not measured for any
of the Ptr4CL and PtrAldOMT2 knockdowns.

The wood physical properties that were obtained relate to plant
growth, wood mechanical strength, and wood density. Tree height,
diameter, and stem volume were measured in 171 of the transgen-
ics and 15 wildtypes. The modulus of elasticity (MOE) is a quanti-
tative indication of wood mechanical strength, where a larger MOE
indicates a stiffer wood that is less likely to become deformed. The
MOE was measured in 108 of the transgenics and 12 of the wild-
type trees. Relative wood density was measured in 67 of the trans-
genics and 9 of the wildtypes.

The last four phenotypic properties that were measured relate
to how well enzymes are able to break down the cellulose to glu-
cose, which we refer to as the saccharifciation efficiency. Wood is a
promising resource for sustainable biofuel and biomaterial produc-
tion. However, lignin, which is embedded with the celluloses and
hemicelluloses, impedes enzyme saccharification. Acid pre-
treatments are often used to facilitate this process, but they are
costly and produce enzyme inhibitors [1]. Lowering lignin content
has been shown to reduce the need for chemical pre-treatments
[29]. The saccharification efficiency was calculated from the
amounts of glucose and xylose that were released from pretreated
and unpretreated wood samples from 180 of the transgenics and
17 of the wildtypes.



Table 2
Parameters used to call the MUVR algorithm.

MUVR
Parameter

Value Description

nrep 50 Number of MUVR repetitions
nOuter 8 Number of outer cross-validation segments
varRatio 0.9 Proportion of variables kept per iteration
method 0RF0 Model type: Random forests
fitness 0RMSEP0 Fitness metric: root mean square error of

predicted test data
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Following the same procedure as the transcripts and protein
measurements [9,25], the measurements from each trait were nor-
malized to the mean wildtype in each of the six batches to remove
batch effects. Distributions of the phenomic data are shown in
Fig. S1. The phenomic data sets are available on CyVerse (https://
datacommons.cyverse.org/browse/iplant/home/shared/
LigninSystemsDB).

2.2. Multiscale lignin model

We constructed the multiscale lignin biosynthesis model
(Fig. 2) to predict how single and combinatorial transgenic mono-
lignol gene knockdowns impact lignin and other wood traits. The
first two components of this model, the transcript-protein model
[25] and the kinetic monolignol biosynthesis model [9,19], were
implemented as described in their respective publications. The
development of the third component, the random forest models,
is described in Section 2.2.1. To simulate transgenic knockdowns,
the abundances of the monolignol transcripts being targeted for
knockdown were used as inputs to the transcript-protein model.
The transcript-protein model predicted the abundance of the other
monolignol transcripts and proteins. Those protein abundances
were used as inputs to the kinetic metabolic model, which was
then run until each of the fluxes reached a steady state. The values
of the parameters and initial conditions for metabolite concentra-
tions used here are listed in [9]. The steady state fluxes were then
used as inputs to the random forest models, which predicted the
twenty-five lignin and wood traits.

2.2.1. Random forest models
Random forest models were created for each of the 25 lignin

and wood traits using the MUVR algorithm [27]. The MUVR algo-
rithm simultaneously performs variable selection and validation
by implementing recursive variable elimination within a repeated
double cross-validation (rdCV). The models were trained using
experimentally measured lignin and wood physical traits from a
series of systematic transgenic knockdown experiments [9] (see
Section 2.1.2) and the steady state fluxes obtained from the kinetic
monolignol pathway model when run with the experimental pro-
tein abundances from the same transgenic experiments (Fig. 3, see
Section 2.1.1). Table 2 contains the parameters used when calling
the MUVR algorithm.
3. Results and discussion

3.1. Random forest model training

We trained a random forest model for each of the 25 lignin and
wood traits using the MUVR algorithm [27] and the steady state
Fig. 3. Block diagram describing the training of the random forest models.
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fluxes output from the kinetic monolignol biosynthesis model
[9,19] simulated with the experimentally measured protein abun-
dances (Fig. 3, see Section 2.2.1). The trained random forest models
range from two to 24 steady state fluxes as predictor variables out
of a total 39 fluxes (Table S1). The random forest models captured
the variation in the physical traits with an R2 > 0:6 for 11 out of the
25 traits including lignin content, C:L ratio, S subunits, G subunits,
b� 5 linkages, end groups, modulus of elasticity (MOE), glucose
saccharification yield from unpretreated samples, xylose sacchari-
fication yield from unpretreated samples, glucose saccharification
yield from pretreated samples, and xylose saccharification yield
from pretreated samples (Fig. 4). The variances of 11 of the 25 pre-
dicted phenotypic traits were explained moderately well with R2

values between 0.35 and 0.6, including H subunits, b� O� 4 link-
ages, b� b linkages, b� 1 linkages, glucose, xylose, total sugar con-
tent, relative wood density, height, diameter, and volume. The
remaining 3 traits, S/G ratio, p-hydroxybenzoate, and aldehyde
content, had prediction R2 values less than 0.35. The low R2 value
for S/G ratio can be explained by the poor prediction of one data
point that was much higher than any other S/G values (Fig. S2).
Since we predict S/G ratio separate from the S and G monolignol
predictions, there can be cases where the predicted values are
inconsistent due to limited amounts of training data (e.g.,
Fig. S8). The low R2 values for p-hydroxybenzoate, and aldehyde
content could also be due to insufficient training data for these
traits, or that factors other than the steady state fluxes are needed
to predict these traits.
3.2. Impact of cross-influences between the lignin transcripts and
proteins on the predicted lignin and wood traits

To evaluate the impact of including the cross-influences
between monolignol transcripts and proteins, we simulated the
transgenic experiments using the multiscale model with the new
transcript-protein model, which captures these cross influences
[25], and the old transcript-protein model [9] that assumes each
monolignol protein abundance is dependent only on its associated
transcript abundance (Fig. 5). For 23 of the lignin and wood traits,
the predictions when using the new transcript-protein model had a
higher R2 (Fig. 6A) and a lower SSE (Fig. 6B) than predictions
obtained using the old transcript-protein model, when compared
to the experimentally measured lignin and wood trait values. The
exceptions included the H subunits and xylose where the old
transcript-protein model had better R2 and SSE metrics. Further,
H subunits and the saccharification efficiency of xylose from pre-
treated samples were the only traits to have an R2 > 0:4 when
using the old transcript-protein model, while the new transcript-
protein model had 12 traits with a predicted R2 > 0:4.

Additionally, we simulated knockdowns for each monolignol
gene and gene family from wildtype levels to a complete knockout
at 1% decrements using the new transcript-protein model and the
old transcript-protein model. The simulated knockdowns that
showed the most differences in the predicted phenotypes between
the two transcript-protein models are discussed below. The simu-



Fig. 4. Predicted R2 MUVR model metric for the 25 lignin and wood traits.

Fig. 5. Block diagram describing how the new transcript-protein model that
includes cross-regulatory influences [25] and the old transcript-protein model [9]
are connected to the other parts of the multiscale model to evaluate how
incorporating the cross-regulatory influences impact lignin and wood trait
prediction.
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lation results for all 25 traits for each individual and family knock-
down are located in the Supplemental Figures.

3.2.1. PtrCAld5H1&2 knockdown simulations
We observed the most differences between the predicted phe-

notypes when using the old transcript-protein model versus the
new transcript-protein model in the PtrCAld5H family knockdowns.
The predicted results for the two models started to diverge once
PtrCAld5H1&2 were knocked down below ~75% of their wildtype
levels for eight of the 25 traits: S/G ratio, S subunits, G subunits,
H subunits, b� 5 linkages, end-groups, and the saccharification
efficiencies of glucose and xylose from unpretreated samples
(Fig. 7). Below 75% of the PtrCAld5H1&2 wildtype levels, the new
transcript-protein model led to predictions that were closer to
172
the experimental measurements in seven of those eight traits
(Fig. 7A–G). H subunits were the only trait that was better pre-
dicted using the old transcript-protein model (Fig. 7H). Our ran-
dom forest model had the highest prediction SSE (Fig. 6B) for the
H subunits, suggesting that a different approach is needed to pre-
dict how the H subunits are altered. The predictions from both
models were similar to each other for the other 17 lignin and wood
traits.
3.2.2. Ptr4CL3&5, Ptr4CL3, and Ptr4CL5 knockdown simulations
Differences in predicted height, diameter, and volume were

observed between the new and old transcript-protein models
when knockdowns in Ptr4CL3&5, Ptr4CL3, and Ptr4CL5 were simu-
lated (Fig. 8). In all three knockdown scenarios the new
transcript-protein model predicted a larger decrease in each of
the three traits. We do not have experimental measurements for
these three traits when Ptr4CL3&5 were both knocked down
(Fig. 8A–C), however, the reduction in the experimentally mea-
sured height, diameter, and volume for the single knockdowns,
Ptr4CL3 (Fig. 8D–F) and Ptr4CL5 (Fig. 8G–I), support this larger
decrease. With an ~25% knockdown of Ptr4CL3, the average height,
diameter, and volume were measured to be ~50%, ~65%, and ~25%
of their wildtype levels respectively (Fig. 8D–F). At a simulated 25%
knockdown of both Ptr4CL3&5, the new transcript-protein model
predicted reductions in height, diameter, and volume to ~55%,
~80%, and ~40% of their respective wildtype levels, while the old
transcript-protein model only predicted reductions to ~80%,
~85%, and ~65% of their respective wildtype levels (Fig. 8A–C).

When Ptr4CL5 was knocked down, the predicted height, diame-
ter and volume resulting from the new transcript-protein model
were more consistent with the Ptr4CL5 experimental results than
the predicted results from the old transcript-protein model were
(Fig. 8G–I). The measured height, diameter, and volume from the
Ptr4CL3 knockdowns were more severe than the decreases pre-
dicted by either model, however, the new transcript-protein model
predictions were more similar (Fig. 8D–F).
3.2.3. PtrHCT1&6, PtrHCT1, and PtrHCT6 knockdown simulations
The predicted height and diameter traits differed between the

new and old transcript-protein models when PtrHCT1&6, PtrHCT1,
andPtrHCT6 were knocked down. When PtrHCT1&6 were knocked
down the new transcript-protein model predicted a larger decrease
in the height and diameter, more closely matching the experimen-
tal measurements (Fig. 9A, B). The predicted height and diameter,
however, did not reach the experimental levels until the PtrHCT
transcripts were knocked down to ~50% of their wildtype levels,
despite experimentally observing these values when the tran-
scripts were at ~75% of their wildtype levels. When PtrHCT1 was
knocked down (Fig. 9D, E), the predicted height and diameter using
the new transcript-protein model matched the decreases observed
in the experimental measurements, while no change from wild-
type was predicted when the old transcript-protein model was
used. The predicted height and diameters from both transcript-
protein models when PtrHCT6 was knocked were in line with the
experimentally measured heights and diameters (Fig. 9G, H).

In the PtrHCT1&6 and PtrHCT1 simulated knockdowns, p-
hydroxybenzoate was also different between the two transcript-
protein models. The new transcript-protein model predicted an
increase in p-hydroxybenzoate, matching the experimental mea-
surements, where the predictions from the old transcript-protein
model remained at wildtype levels (Fig. 9C, F). Neither model pre-
dicted an increase in p-hydroxybenzoate when PtrHCT6 was
knocked down (Fig. 9I), though experimentally an increase was
measured similar to PtrHCT1&6 and PtrHCT1 knockdowns.



Fig. 6. (A) R2 and (B) SSE of predicted lignin and wood traits using multiscale model with the new transcript-protein model (black) and the old transcript-protein model
(gray).

Fig. 7. Selected predicted traits from simulated knockdowns of PtrCAld5H1&2 using the multiscale model with the new transcript-protein model (black) and the old
transcript-protein model (gray); (A) SG ratio, (B) S subunits, (C) G subunits, (D) b-5 linkages, (E) End groups, (F) Saccharification efficiency of glucose from unpretreated
samples, (G) Saccharification efficiency of xylose from unpretreated samples, and (H) H subunits.
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Fig. 8. Predicted tree height, diameter, and stem volume from simulated knockdowns of (A–C) Ptr4CL3&5, (D–F) Ptr4CL3, and (G–I) Ptr4CL5 using the multiscale model with
the new transcript-protein model (black) and the old transcript-protein model (gray).
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3.2.4. PtrC3H3 knockdown simulations
The predictions for lignin content, MOE, and saccharification

efficiencies of glucose and xylose from unpretreated samples dif-
fered between the new and old transcript-protein models when
PtrC3H3 was knocked down (Fig. 10). The predictions from the
two models were largely consistent until the PtrC3H3 was knocked
down to ~25% of its wildtype abundance. At this point, the new
transcript-protein model predicted a larger decrease in lignin con-
tent (Fig. 10A) and MOE (Fig. 10B), and a larger increase in the sac-
charification efficiencies of glucose and xylose from unpretreated
samples (Fig. 10C, D). For all four of these traits, the new
transcript-protein model’s predictions were more consistent with
the experimental measurements.

3.2.5. Capturing the regulatory cross-influences among the lignin
specific transcripts and proteins improves lignin and wood trait
prediction

Overall, for many of the targeted knockdowns and lignin and
wood traits, both transcript-protein models resulted in similar pre-
174
dictions. However, the multiscale model using the new transcript-
protein model better estimated changes in S/G ratio, S subunits, G
subunits, b� 5 linkages, and end-groups in the PtrCAld5H1&2
knockdowns; height, volume and diameter in the Ptr4CL3&5,
Ptr4CL3, and Ptr4CL5 knockdowns; height, diameter, and p-
hydroxybenzoate in the PtrHCT1&6, PtrHCT1, and PtrHCT6 knock-
downs; and the saccharification efficiencies of glucose and xylose
from unpretreated samples in the PtrCAld5H1&2 and the PtrC3H3
knockdowns.

3.3. Exploring the impact of combinatorial knockdowns on key lignin
and wood bioenergy traits

An intended use of this multiscale model is to explore novel
combinatorial perturbations of the monolignol genes and gene
families to identify potential gene perturbation strategies that
yield improved lignin and wood traits. This involves balancing
the changes to different physical traits such as aiming to improve
saccharification efficiencies while maintaining growth traits like



Fig. 9. Predicted tree height, diameter, and p-hydroxybenzoate from simulated knockdowns of (A–C) PtrHCT1&6, (D–F) PtrHCT1, and (G–I) PtrHCT6 using the multiscale model
with the new transcript-protein model (black) and the old transcript-protein model (gray).
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height and relative wood density similar to wildtype. In the follow-
ing sections we explore how our multiscale model, using the new
transcript-protein model, predicted changes in lignin content,
height, relative wood density, total sugar content, and the saccha-
rification efficiencies of glucose and xylose from unpretreated sam-
ples under five different combinatorial gene perturbations. As the
multiscale model was developed with data from transgenic knock-
down experiments only, we limited our simulations to combinato-
rial knockdowns of the monolignol genes. These knockdown
combinations were heuristically chosen based on the predicted
results from the single and family knockdowns.

3.3.1. PtrHCT and PtrCCoAOMT combinatorial knockdowns
We simulated combinatorially knocking down the PtrHCT and

PtrCCoAOMT gene families from 100% to 5% of wildtype levels at
5% decrements, and highlighted three regions of interest in the
six lignin and wood traits (Fig. 11A–F). In all three regions, our
model predicted an increase in the saccharification efficiencies of
175
glucose and xylose from unpretreated samples ranging from
~144–187% increase for glucose and ~154–231% increase for xylose
(Fig. 11G). The largest increase in the saccharification efficiency of
xylose from unpretreated samples was found in Region 2 (purple
box, Fig. 11), where both gene families were knocked down to
low levels. However, this region also had the largest negative pre-
dicted impact to height and relative wood density (Fig. 11G). The
largest predicted increase in glucose saccharification efficiency
was in Region 3 (red box, Fig. 11), where the PtrCCoAOMTgenes
were knocked down to low levels, but the PtrHCT genes were only
knocked down between 75% and 100% of their wildtype levels. Of
the three highlighted areas, this region had the least predicted neg-
ative impact on height and the largest decrease in lignin content
(Fig. 11G). Region 1 (black box, Fig. 11), where both gene families
were knocked down to around half of their wildtype abundances
had the smallest increase in the saccharification efficiencies of
the three regions, but the predicted relative wood density was
the highest at ~93% of its wildtype levels (Fig. 11G).



Fig. 10. Selected predicted traits from simulated knockdowns of PtrC3H3 using the multiscale model with the new transcript-protein model (black) and the old transcript-
protein model (gray); (A) Lignin Content, (B) MOE, (C) Saccharification efficiency of glucose from unpretreated samples, and (D) Saccharification efficiency of xylose from
unpretreated samples.
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3.3.2. PtrPAL and PtrCCoAOMT combinatorial knockdowns
We simulated knocking down the PtrPAL and PtrCCoAOMT fam-

ilies from 100% to 5% of their wildtype levels, and highlighted three
regions of interest in the six lignin and wood traits (Fig. 12A–F). In
all three of these regions, the multiscale model predicted an
increase in the saccharification efficiencies of glucose and xylose
from unpretreated samples, ranging from ~150–300% and ~200–
500% of their wildtype levels respectively (Fig. 12G). Region 1
(black box, Fig. 12), where the PtrPAL genes were knocked down
below 25% of their wildtype levels and the PtrCCoAOMT genes were
knocked down to ~75% of their wildtype levels, had the largest
increase in the saccharification efficiencies. However, its predicted
relative wood density was also the most negatively impacted of the
three regions. Region 3 (red box, Fig. 12), where both the PtrPAL
and PtrCCoAOMT gene families were knocked down below 40%
and 35% of their wildtype levels respectively, had the second lar-
gest increase in the saccharification efficiencies, and the second
highest predicted relative wood density of the three regions.
Region 2 (purple box, Fig. 12), where the PtrCCoAOMT genes were
knocked down below 25% of their wildtype levels, and the PtrPAL
genes remained around their wildtype levels, showed the least
increase in the saccharificaiton efficiencies and the smallest pre-
dicted decrease in relative wood density of the three regions. How-
ever, Region 2 had the largest predicted decrease in height, while
Regions 1 and 3 had similar predicted decreases in tree height
(Fig. 12G).
3.3.3. PtrC3H3 and PtrCAld5H combinatorial knockdowns
We simulated knocking down PtrC3H3 and the PtrCAld5H family

from 100% to 5% of their wildtype levels, and highlighted two
regions of interest in the six lignin and wood traits (Fig. 13A–F).
In these combinatorial knockdowns, lignin content (Fig. 13A),
height (Fig. 13B), and the saccharification efficiencies (Fig. 13E, F)
follow the trends for single PtrC3H3 or PtrCAld5H family knock-
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downs. When PtrC3H3 was less than 25% of its wildtype levels, lig-
nin content and the saccharification efficiencies were predicted to
be similar values regardless of how much the PtrCAld5H genes
were knocked down (Fig. 13A, E, F). Similarly, height and the sac-
charification efficiencies were predicted to change similar to the
PtrCAld5H family knockdown for any knockdown level of PtrC3H3
(height) or when PtrC3H3 was greater than 25% of its wildtype
(saccharification efficiencies) (Fig. 13B, E, F). Relative wood density
(Fig. 13C) and total sugar content (Fig. 13D) were predicted to have
a combinatorial effect as PtrC3H3 and the PtrCAld5H genes were
knocked down.

The two highlighted regions had similar predicted changes in 5
of the 6 traits, with the exception of height, where Region 2 (red
box, Fig. 13) was predicted to have a more negative impact
(Fig. 13G). Region 2, however, achieved similar levels of improve-
ment over a larger range of knockdown of PtrC3H3 than Region 1
(black box, Fig. 13). In both regions, the saccharification efficiencies
of glucose and xylose from unpretreated samples were predicted to
range from ~150–250% and ~200–600% respectively (Fig. 13G).
3.3.4. PtrHCT and PtrCAD combinatorial knockdowns
We simulated knocking down the PtrHCT and PtrCAD families

from 100% to 5% of wildtype levels, and highlight three regions
in the six lignin and wood traits (Fig. 14A–F). These regions corre-
spond to knocking down the PtrCAD genes to below 25% their wild-
type levels while keeping the PtrHCT genes around their wildtype
levels (Region 1, black box, Fig. 14), knocking down both the PtrHCT
and PtrCAD genes below 25% their wildtype levels (Region 2, purple
box, Fig. 14), and knocking down the PtrHCT genes below 25% their
wildtype levels while keeping the PtrCAD genes around their wild-
type levels (Region 3, red box, Fig. 14). Our multiscale model pre-
dicted that the combinatorial effect of knocking down both gene
families will result in higher sacharification efficiencies for glucose
and xylose from unpretreated samples than knocking down only



Fig. 11. Lignin and wood trait predictions under combinatorial knockdowns of the PtrHCT and PtrCCoAOMT monolignol gene families; (A) Lignin Content, (B) Tree height, (C)
Relative wood density, (D) Total sugar content, (E) Saccharification efficiency of glucose from unpretreated samples, and (F) Saccharification efficiency of xylose from
unpretreated samples. (G) Boxplots of the predicted values of the six traits in Region 1 (black), Region 2 (purple), and Region 3 (red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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one of the gene families (Fig. 14G). Relative wood density was pre-
dicted to be lowest in this region, however, the predicted height in
this region is higher than the predicted height when only the
PtrHCT genes are knocked down (Fig. 14G).

3.3.5. PtrAldOMT2 and PtrHCT combinatorial knockdowns
We simulated knocking down PtrAldOMT2 and the PtrHCT fam-

ily from 100% to 5% of wildtype levels, and highlight two regions of
interest in the six lignin and wood traits (Fig. 15A–F). In both of
these regions, the multiscale model predicted a slight reduction
in lignin content to ~87% of its wildtype levels and increased pre-
dicted saccharification efficiency of glucose from unpretreated
samples to ~150% of its wildtype levels. Region 2 (red box,
177
Fig. 15), where the PtrHCT genes were knocked down to below
40% of their wildtype levels and PtrAldOMT2 was knocked down
below 40% of its wildtype levels, had a larger predicted increase
in the saccharification efficiency of xylose from unpretreated sam-
ples to ~215% of its wildtype levels. However this region also had a
lower predicted height and relative wood density, ~50% and ~88%
of their wildtype levels respectively (Fig. 15G). Region 1 (black
box, Fig. 15), where PtrAldOMT2 was knocked down below 50%
and the PtrHCT genes were knocked down to between 50–75% of
their wildtype levels, only saw a predicted increase in saccharifica-
tion efficiency of xylose from unpretreated samples to ~175% of its
wildtype levels. Height and density, however, were predicted to be
around 60% and 93% of their wildtype levels respectively (Fig. 15G).



Fig. 12. Lignin and wood trait predictions under combinatorial knockdowns of the PtrPAL and PtrCCoAOMT monolignol gene families. (A) Lignin Content, (B) Tree height, (C)
Relative wood density, (D) Total sugar content, (E) Saccharification efficiency of glucose from unpretreated samples, and (F) Saccharification efficiency of xylose from
unpretreated samples. (G) Boxplots of the predicted values of the six traits in Region 1 (black), Region 2 (purple), and Region 3 (red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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3.3.6. Combinatorial knockdowns of the lignin genes and gene families
could lead to improved bioenergy traits

These five examples demonstrate that combinatorial knock-
downs of the monolignol gene and gene families could lead to
improved lignin and wood traits beyond what has been observed
in the single gene or gene families knockdowns. Further, combina-
torial knockdowns could improve our ability to identify gene per-
turbation strategies that improve bioenergy traits while mitigating
negative impacts to plant growth and adaptation. Previously, Wang
et al., identified the combinatorial knockdown of the PtrPAL and
PtrCCoAOMT monolignol gene families as a possible combination
for maximizing wood density, saccharification efficiencies, and C:
L ratio [9]. This knockdown consists of 8 genes, PtrPAL1-5 and
PtrCCoAOMT1-3, which is an impractical number of genes to simul-
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taneously silence. Our model predicted similar or greater increases
in the saccharification efficiencies of glucose and xylose from
unpretreated samples when only PtrC3H3 and PtrCAld5H1&2 were
knocked down (Fig. 13E–G) versus predictions obtained when
PtrPAL1-5 and PtrCCoAOMT1-3 were knocked down (Fig. 12E–G).
Our model also predicted smaller negative impacts on relative
wood density and height, as well as a larger increase in total sugar
content when PtrC3H3 and PtrCAld5H1&2 were knocked down
(Figs. 12B–D, G and 13B–D, G). These results suggest that knocking
down 3 genes (PtrC3H3 and PtrCAld5H1&2) could achieve similar
traits as knocking down 8 genes, and is more experimentally feasi-
ble. Combinatorial knockdown simulations of our model have not
been validated as there are currently no published combinatorial
knockdown studies for P. trichocarpa. Comparisons to single and



Fig. 13. Lignin and wood trait predictions under combinatorial knockdowns of the PtrC3H3 and PtrCAld5H monolignol gene and gene family. (A) Lignin Content, (B) Tree
height, (C) Relative wood density, (D) Total sugar content, (E) Saccharification efficiency of glucose from unpretreated samples, and (F) Saccharification efficiency of xylose
from unpretreated samples. (G) Boxplots of the predicted values of the six traits in Region 1 (black) and Region 2 (red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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combinatorial knockdowns in hybrid poplar and tobacco were
assessed (Supplemental Text 1), and showed some consistency.
4. Conclusion

We developed a multiscale model capturing transcript, protein,
metabolic, and phenotypic layers of lignin biosynthesis in P. tri-
chocarpa. This multiscale model is composed of three components
(1) a transcript-protein model that includes cross-regulatory influ-
ences [25], (2) a kinetic monolignol biosynthesis model [9,19] that
uses the predicted protein abundances to predict the steady state
fluxes in the monolignol biosynthesis pathway, and (3) 25 random
forest models that relate the steady state monolignol fluxes to lig-
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nin and other wood traits of interest to the bioenergy and bioma-
terials industries. Incorporating the regulatory cross-influences
between the monolignol transcripts and proteins improved predic-
tion of 23 of the 25 lignin and wood traits. Further, when including
the regulatory cross-influences, our multiscale model better esti-
mated the changes in S/G ratio, S subunits, G subunits, b� 5 link-
ages, and end-groups in simulated knockdowns of the
PtrCAld5H1&2; height, volume and diameter in simulated single
and family knockdowns of Ptr4CL3, Ptr4CL5, PtrHCT1, PtrHCT6,
and PtrHCT1&6; p-hydroxybenzoate in the PtrHCT1 and PtrHCT1&6
simulated knockdowns; and the saccharification efficiencies of glu-
cose and xylose productions in the simulated single and family
knockdowns of PtrC3H3 and PtrCAld5H1&2. We used the multiscale



Fig. 14. Lignin and wood trait predictions under combinatorial knockdowns of the PtrHCT and PtrCAD monolignol gene families. (A) Lignin Content, (B) Tree height, (C)
Relative wood density, (D) Total sugar content, (E) Saccharification efficiency of glucose from unpretreated samples, and (F) Saccharification efficiency of xylose from
unpretreated samples. (G) Boxplots of the predicted values of the six traits in Region 1 (black), Region 2 (purple), and Region 3 (red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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model to explore the predicted impact of five novel combinatorial
knockdowns, on six bioenergy and plant growth traits. Our model
predicted that through combinatorial knockdowns we can alter the
lignin and wood traits in ways not seen in the single gene or gene
family knockdowns, such as increasing saccharification efficiencies
in a combined knockdown of the PtrHCT and PtrCAD gene families.
We further identified the combinatorial knockdown of the PtrC3H3
and PtrCAld5H1&2 genes as a candidate for increasing the sacchar-
ification efficiencies of glucose and xylose, and total sugar content,
while mitigating negative impacts of relative wood density and
height.
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By exploring combinatorial knockdowns, gene perturbation
strategies can be identified that increase these saccharification effi-
ciencies, or other bioenergy traits, while reducing negative impacts
to plant growth and adaptation. Future work will involve experi-
mentally testing and validation of the combinatorial knockdown
multiscale model predictions, and developing a systematic multi-
objective optimization for exploring the space of these knock-
downs for user-defined objectives. Beyond optimizing for set traits,
these objectives could include constraints on the number of genes
that would have to be perturbed, or the size of the perturbation
range, to predict a desired set of traits.



Fig. 15. Lignin and wood trait predictions under combinatorial knockdowns of the PtrAldOMT2 and PtrHCT monolignol gene and gene family. (A) Lignin Content, (B) Tree
height, (C) Relative wood density, (D) Total sugar content, (E) Saccharification efficiency of glucose from unpretreated samples, and (F) Saccharification efficiency of xylose
from unpretreated samples. (G) Boxplots of the predicted values of the six traits in Region 1 (black) and Region 2 (red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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