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Identification of genetic variants associated
with alternative splicing using sQTLseekeR
Jean Monlong1,2, Miquel Calvo3, Pedro G. Ferreira1,4,5,6 & Roderic Guigó1,7

Identification of genetic variants affecting splicing in RNA sequencing population studies is

still in its infancy. Splicing phenotype is more complex than gene expression and ought to be

treated as a multivariate phenotype to be recapitulated completely. Here we represent the

splicing pattern of a gene as the distribution of the relative abundances of a gene’s alternative

transcript isoforms. We develop a statistical framework that uses a distance-based approach

to compute the variability of splicing ratios across observations, and a non-parametric

analogue to multivariate analysis of variance. We implement this approach in the R package

sQTLseekeR and use it to analyze RNA-Seq data from the Geuvadis project in 465 individuals.

We identify hundreds of single nucleotide polymorphisms (SNPs) as splicing QTLs (sQTLs),

including some falling in genome-wide association study SNPs. By developing the appropriate

metrics, we show that sQTLseekeR compares favorably with existing methods that rely on

univariate approaches, predicting variants that behave as expected from mutations affecting

splicing.
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R
NA-Seq has increased the resolution at which transcrip-
tomes can be monitored, providing quantification of the
abundances of individual splicing events (splice junctions,

exons, transcripts, and so on), in addition to global gene
expression levels. If transcriptomes are monitored in large
cohorts of genotyped individuals, methods can be employed to
identify genetic variants affecting the splicing pattern of genes.
Splicing alterations may have a phenotypic impact, even in the
absence of changes in overall gene expression. Indeed, splicing
defects caused by DNA mutations are at the root of many
Mendelian disorders1,2, such as cystic fibrosis3 or progeria4. Thus,
eQTL methods have been recently employed to identify single
nucleotide polymorphism (SNPs) that are associated to changes
in the inclusion levels of exons5,6. Exons, however, are not
independent transcriptional units, but they are linked into
transcripts. Dramatic changes may occur, therefore, in the
splicing pattern of a gene that are not reflected in changes in
the inclusion levels of individual exons (Fig. 1). To overcome this
limitation, eQTL methods have also been employed to test
association between SNPs and abundances of individual
transcript isoforms7–9. To control for the effect of overall gene
expression, the phenotype actually tested is the ratio of the
transcript isoform’s abundance over total gene expression.
Testing independently, each transcript isoform ignores,
however, the strongly correlated structure of the relative
abundances of splicing isoforms. This is likely to lead to loss of
power to detect QTLs related to splicing.The effect may be
particularly important in genes with a large number of splice
isoforms (most human genes) in which subtle splicing changes
are distributed among many of them.

Here, to fully capture splicing variation, we use the distribution
of the relative abundances of the gene’s splicing isoforms (to

which we refer here as ‘splicing ratios’, Fig. 1) as the splicing
phenotype. Most other quantitative splicing-related phenotypes
(exon inclusion, usage of alternative splice forms, abundances of
individual transcript isoforms, and so on) can be derived from it
(and from the overall expression of the gene). Then, we address
the problem of identifying splicing-related QTLs as the problem
of identifying genetic variants that are associated to changes in
the splicing ratios of genes (Fig. 1). We will refer to these variants,
as splicing QTLs (sQTLs). Because these ratios configure a
multivariate phenotype, classical eQTL methods cannot be
employed. We develop an alternative framework, which includes
two main components. First, we define the variability of splicing
ratios of a gene along a number of observations using a
distance-based approach originally introduced by Anderson10,11

to test for the differences in the relative abundance of organisms
across ecological samples (see also Gonzalez-Porta12). Second, to
test for the association between a SNP and a gene, we
compare the variability of the splicing ratios within genotypes
with the variability between genotype using a non-parametric
analogue to the analysis of the variance10. Based on this
theoretical framework, we implement sQTLseekeR, an
R package to identify sQTLs in transcriptome population
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Figure 1 | sQTLs and the sQTLseekeR approach. (a) Alternative transcript

versus alternative exon usage. A gene with four isoforms (A,B,C and D),

whose abundances is measured in two different individuals. In individual 1,

only isoforms A and D are found with abundance 100 (say copies per cell)

each. In individual 2, only isoforms B and C are found, also with abundance

100 each. The splicing pattern in the two individuals is completely

different. However, exons abundances (on top of the exon, in the figure) are

identical in the two individuals. (b) Testing the association between the

distribution of the relative abundances of a gene’s transcript isoforms and a

SNP. Left panel. The expression level of gene (y axis) measured on

individuals polymorphic at a given genomic site (SNP, x axis). There is a

clear association between genotype and expression. To test for association

between the SNP and gene expression, the variance of the expression

within the genotypes (solid arrows) and between the genotypes

(dashed arrow) can be compared. Right panel. The abundances of each

individual transcript isoform (blue, green and orange) for a gene measured

in individuals polymorphic at a genomic site (x axis). The relative

abundances of each transcript (splicing ratios) are computed relative to

the total abundance of the gene (y axis). There is a clear association

between genotypes and splicing ratios. The AA genotypes express

predominantly the orange isoform, while the GG genotypes express

predominantly the blue isoform. The heterozygous express the two

isoforms at similar levels, and similar to the levels of the green isoform—

whose relative abundance does not appear to be affected by the genotype.

In our approach, association between SNP and splicing ratios is also tested

by comparing within and between genotype variabilities of the splicing

ratios. See Methods. (c) The space of the splicing ratios of a gene with

three isoforms. Four samples/observations (blue points) are represented.

The point in red is the centroid of the samples and the green triangle

represents the 2-simplex space. The sum of squared distances (SS)

between the observations and the centroid is the basic measure of

variability used in our approach.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5698

2 NATURE COMMUNICATIONS | 5:4698 | DOI: 10.1038/ncomms5698 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


studies. It can be downloaded from http://big.crg.cat/
computational_biology_of_rna_processing/sqtlseeker. We use
this approach in a panel of 465 lymphoblastoid cell lines
samples from five populations of the 1,000 Genomes Project13,
whose transcriptome has been recently monitored by RNA-Seq in
the framework of the Geuvadis Project8. The results obtained
demonstrate the power of our approach. SNPs within a tested
gene are about 100-fold more likely to be sQTLs for that gene that
SNPs mapping to another gene consistent with the assumption
that SNPs affecting the splicing of a gene will most likely fall
within the gene’s primary transcript sequence. Moreover, the
sQTLs that we identify as significant are more exonic or closer to
exonic boundaries, alter splicing in the expected direction when
occurring within splice sites and are highly enriched for genome-
wide association study (GWAS) SNPs compared with non
(significant) sQTLs. Benchmarks using the Geuvadis data, as
well as simulations, show that sQTLseekeR outperforms other
existing methods based on an univariate approach.

Results
sQTLs and sQTLseekeR. Let’s assume a gene with n transcript
isoforms, and let xij the abundance of the transcript i (that is, the
number of copies) in a given individual (condition, sample,
observation...) j, the relative abundance of transcript i in indivi-
dual j is fij ¼ xij=

Pn
i¼1 xij. We will refer to the relative transcript

abundances f1j, � � � , fnj as the gene splicing ratios. Obviously,Pn
i¼1 fij ¼ 1 for any individual j.
We define here a splicing QTL (sQTL) as a SNP that

associates with changes in the splicing ratios of a target gene
(Fig. 1). As in many eQTL method, we assess SNP–gene pairs for
sQTLs by comparing the variance of the splicing ratios within
genotypes with the variance between genotypes. The problem is
that, in contrast to gene expression values, splicing ratios are not
scalar, but vectors. Thus, to compute the variability of splicing
ratios across observation, we follow here a distance-based
approach introduced by Anderson10, and that we have recently
adapted to investigate variability of splicing in human
populations12. Given the splicing ratios of a gene in a number
of individuals, we represent each individual as a point in a
multidimensional space, whose coordinates are the ratios of each
splicing isoform in the target gene. The variability in the splicing
ratios of the gene across the individuals is the mean of the
squared distances of the individual splicing ratios to the centroid
of all individuals (Fig. 1). As a dissimilarity measure, we use the
Hellinger distance, which defines the underlying metric of our
approach (see Methods).

To assess the association between the genotype at a given SNP,
and the splicing ratios of a given gene, we use the Anderson test
for location comparison10. The test is similar to a multivariate
analysis of variance (MANOVA) without assuming any
probabilistic distribution for the splicing ratios: a pseudo-F
ratio score measures the relative difference between the within-
group variability and the between-group variability. The between-
group variability corresponds to the mean of the squared
distances of the within-group centroids to the global centroid.
This factorial model with the genotypes as levels of the factor
appears more appropriate than a regression model with the
genotypes as independent variables because, in contrast to gene
expression values, splicing ratios do not strictly follow the
additive model. Given the nature of our data, multivariate vectors
of proportions, a non-parametric approach appears superior to a
classical MANOVA. Indeed, we compared the synthetic null
distributions of the classical MANOVA on the real splicing ratios
after shuffling the genotype groups, with simulated null

distributions using data generated under a Gaussian model, and
found the two distributions to be vastly divergent (Methods).

Since the Anderson location test is sensitive to heterogeneity in
the dispersion of the points, we use a test of homogeneity also
developed by Anderson14. Thus, we compute and adjust
independently the location and homogeneity tests. While the
significance of the pseudo-F score is typically assessed using a
permutation procedure, we have here implemented an asymptotic
approximation14 that speeds up the test computation 80-fold,
while producing nearly identical results (Methods).

Based on this theoretical framework, we have implemented
sQTLseekeR, an R package to identify sQTLs in transcriptome
population studies. For each gene–SNP pair, sQTLseekeR
computes the pseudo-F score described above and assesses its
significance. After all gene–SNP pairs considered are tested, the P
values for all genes and all SNPs are pooled together and
controlled for false discovery rate (FDR). Significant sQTLs are
reported (see Methods for details).

sQTLs by sQTLseekeR in the 1000 genomes project. We used
sQTLseekeR to analyze 465 lymphoblastoid cell lines samples that
originated from individuals from five populations of the 1000
Genomes Project13 (Table 1), whose transcriptome has been
recently monitored by RNA-Seq in the framework of the
Geuvadis Project8. We ran sQTLseekeR on the SNPs and
transcript quantifications produced by this project. Under the
assumption that SNPs that directly affect splicing are likely to be
carried out to the sequence of the primary transcript, we tested
only SNPs within the body of the gene (exons and introns) plus
5,000 bp upstream from the transcription start site (TSS) and
5,000 bp downstream from the transcription termination site.
Furthermore, we considered only genes with at least two
alternative splicing (AS) isoforms and exhibiting a minimum
splicing variability across individuals, as well as only bi-allelic
SNPs creating at least two genotypes, each of which present in at
least five individuals.

sQTLseekeR was run separately in each population. On average,
about 1.3 M SNPs, 10,012 genes and 140 SNPs per gene were tested
in each population (Table 1 and Supplementary Table 1). It took
on average 4 h to analyze each population, using 16 cores (2 Gb
2.70 GHz nodes). We found on average 2,900 and 1,950 significant
associations across populations at a FDR of 5 and 1%, respectively.
Some examples of sQTLs are displayed in Fig. 2. We found high
recurrence of sQTLs across the five investigated populations. Using
the p1 estimate15, we found averages of 92% sQTL sharing between
European populations and of 85% between Yoruban and European

Table 1 | sQTLs in Geuvadis populations.

CEU FIN GBR TSI YRI

Samples 91 95 94 93 89

Associations tested within the gene
Tested SNPs 1,258,255 1,293,086 1,266,258 1,252,401 1,895,204
Tested genes 9,997 10,029 10,006 10,043 9,983
Associated SNPs 3,339 3,871 2,654 2,640 1,925
Associated genes 155 184 175 185 168

Associations tested with a randomly selected gene
Tested SNPs 1,158,299 1,195,389 1,131,122 1,117,988 1,754,599
Tested genes 9,335 9,250 8,971 8,879 9,345
Associated SNPs 25 47 28 25 72
Associated genes 13 12 13 14 37

FDR, false discovery rate; SNP, single nucleotide polymorphism.
Number of tested and associated variants and genes at 5% FDR.
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populations (Fig. 3). We also observed more European-specific
than African-specific sQTLs. sQTLseekeR can detect SNPs
affecting the entire transcript structure, including alternative TSS
or transcription termination sites. We have used the AStalavista
software16, to characterize the types of alternative transcript events
detected by sQTLseekeR (Methods). We have found that about
66% of sQTLs involve only changes in alternative first or last exon
usage, or in untranslated regions (UTRs). Among the remaining
34% corresponding to splicing of internal exons, the majority
involve complex events but some simple events are also detected,
for example, 13% of sQTLs are associated to exon skipping (Fig. 4).
Note that sQTLs can be associated to more than one event within
the transcripts (Methods). For instance, a variant could affect the
splicing of an exon as well as the length of the 30 UTR. On average,
we found sQTLs to be associated to 1.7 events. As a control, we
randomly selected pairs of transcripts from the genes hosting
detected sQTLs, and compared them using the same approach. We
found that sQTLs involve more splicing-related events than
expected by chance (34% compared with 20%) and that they
tend to be associated to a larger number of events than expected by
chance (1.7 compared with 1.1). The proportion of sQTLs
associated to each type of event is shown in Fig. 4.
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Figure 2 | sQTL examples. In the left panels, we represent as box-plots the distribution of the splicing ratios of the candidate gene in a selected population.

The distributions are given separately for each genotype and the number of tested individuals in each genotype is given in parenthesis next to the genotype.

Each splicing isoform is represented by a different color. When there are more than six transcripts, the lowly expressed ones are merged into a single one

for clarity sake. The right panels show the exonic structure of the transcripts along with the location of the sQTL SNP (dotted line). (a) Association between

the SNP rs17318596, and the ATP5S-like gene. In the left panel we represent as box-plots the distribution of the splicing ratios of this gene in the GBR

population. The distributions are given separately for each genotype and the number of tested individuals in each genotype is given in parenthesis next to

the genotype. Each splicing isoform is represented by a different color. The SNP rs17318596 has been found associated with height37, but no association

with gene expression has been reported for it. We have detected, however, in the GBR and TSI populations, a strong effect of the SNP in relative abundance

of the transcripts in this gene. The isoform T1 (green) is the dominant one in the individuals with the AA genotype, it captures on average 62% of the total

expression of the gene while it captures only about 20% in the individuals with the GG genotype. Conversely, the isoform T2 (orange) captures more than

50% of the expression in the GG genotype but only about 5% in the AA genotype.The right panel shows the exonic structure of the transcripts along with

the location of the sQTL SNP (dotted line). The isoform T2 skips the third exon compared with the isoform T1. (b) The endoplasmic reticulum aminopeptidase

2 gene, already known to host sQTLs17. We detected the SNP rs2549794, known to be associated to Crohn disease37, as a sQTL in CEU, FIN, TSI and YRI

(displayed in the box-plot) populations.
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A number of metrics support the quality of the sQTLs
discovered by sQTLseekeR (Table 2). First and consistent with
the biological assumption that SNPs affecting splicing are likely
to be mostly in cis, we found on average 100-fold more sQTLs
when testing SNPs within the same gene, than when we tested
SNPs occurring in a different gene (Table 1). A functional
analysis of the genes hosting these apparently false positive ‘trans
sQTLs’ showed that around one fourth (25/107) are involved in
RNA transcription and processing (Supplementary Table 2),
suggesting that a fraction of these ‘trans’ mutations could indeed
affect the splicing of the tested gene. Second, we found sQTLs to
be significantly more exonic, closer to exonic boundaries and to
overlap splice sites more often that non sQTL SNPs (Table 2 and
Fig. 5). Third, we observed that the absolute change in the
strength of splice sites induced by SNPs was significantly higher
in sQTLs than in non-sQTLs, and more strikingly, that SNPs
increasing (decreasing) the strength of the splice site, also
increase (decrease) its relative usage, specifically when they are
sQTLs (Table 2). Fourth, we found 11% of all sQTLs within 1 Kb
of GWAS SNPs-a striking 24-fold enrichement of the proportion
found for non-sQTL SNPs. Finally, we compared our sQTLs with
the sQTLs found by Kwan et al17 in Hapmap samples, the
transcriptomes of which were monitored by exon arrays.
Thirteen13 SNPs from the validated set in this study were also
tested by us: nine of them (70%) reached nominal significance
(P valueo0.05). Considering that the monitoring technology
(expression and genotypes), methodology and samples are
different, the overlap is substantial. For comparison,
monitoring exactly the same phenotype, the same set of
samples and using the same statistical method, Pickrell et al.6

were able to replicate with RNA-Seq, 70% of eQTLs obtained
from microarrays.

Benchmarks of sQTLseekeR. There are no comparable methods
to detect genetic variants associated to changes in splicing
ratios. We have, however, compared the sQTLs found using
sQTLseekeR with the transcript ratio QTLs (trQTLs) obtained in
the Geuvadis project8. In Geuvadis, each transcript isoform is
tested independently in a univariate framework—an approach
that has also been recently employed in Battle et al9. While
this approach has led to the discovery of relevant association,
we found our sQTLs to exhibit somehow superior enrichment
for nearly all splicing-related features (Table 2 and Fig. 5).
To further compare the univariate approaches, as in the
in the Geuvadis project8 and Battle et al.9, with our
multivariate approach we have used simulations. We have
considered genes with different numbers of isoforms (3,4,7,10
and 15) and compared the capacity of the two approaches to
detect significant changes (associations) in the relative
frequencies of the isoforms when comparing two simulated
populations of 40 individuals each. The causistic is almost
unlimited but, we have simulated four main scenarios, which
we believe describe realistic patterns of changes in splicing
ratios, and explored them exhaustively by varying the magnitude
of the effect. In total, we have simulated 400 configurations,
each configuration simulated 500 times. See sec:methods for
details. The multivariate approach consistently detects more
significant associations in nearly all configurations than the
univariate approach. For some effect sizes, the univariate
approach misses almost half of the associations identified by
the multivariate approach (Fig. 6). At these effect sizes,
biologically relevant associations are likely to exist
(see Methods and Supplementary Fig. 1).

We have also compared our method with an exon-based
method, related to that employed in Pickrell et al6. We have
specifically implemented an approach recently described in Zhao
et al.5 and computed exon QTLs when measuring inclusion using
the percent spliced in measure (psiQTLs) on Geuvadis
populations. A direct comparison is more difficult here because
different sets of gene/SNPs are tested by each method (see
Methods and Table 3). Thus, the overlap between psiQTLs and
sQTLs is only moderate, which emphasizes the complementarity
of the two approaches. However, when considering only the SNPs
tested by the two methods (about 12% of all those tested by
sQTLseekeR), sQTLs exhibit also superior enrichment for nearly
all splicing-related features compared with psiQTLs (Table 4 and
Fig. 5). We finally investigated the effect of gene expression and
number of expressed isoforms. We found that sQTLseekeR can
detect sQTLs along the entire range of gene expression and
number of isoforms. In contrast, trQTLs and psiQTLs appear to
require higher levels of gene expression and larger numbers of
isoforms to be detected (Fig. 5).

By construction, psiQTLs correspond almost exclusively to
exon-skipping events. In contrast, trQTLs, can correspond in
principle, to any type of alternative splice event. We have
categorized trQTLs as described above. Compared with sQTLs by
sQTLseekeR, only 16% of trQTLs correspond to internal splicing
events (compared with 34% for sQTLs), and on average trQTLs
are associated to 1.1 alternative transcript even (compared with
1.7 for sQTLs, see Fig. 4). These results indicate that sQTLseekeR
is able to detect sQTLs associated with complex splicing events
that escape exon centric and/or univariate approaches.

Discussion
We have developed a statistical framework for identifying genetic
variants that are associated to changes in the relative abundances
of the AS isoforms (what we call sQTLs). We have shown that
this approach, which captures the intrinsic multivariate nature of
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the splicing phenotype, compares favorably with existing exon-
and transcript-based methods that employ an univariate
approach. Deriving abundances of transcript isoforms from
RNA-Seq is, however, a difficult problem18, and it is indeed
unclear how reliable available methods are19. Transcript
quantifications, are likely to be, in any case, less robust and

noisier than direct measurements of exon inclusion levels. This
could indeed result in decreased power to detect associations.
Therefore, we currently see sQTLseekeR as a complement to
other existing methods, and our results do show that it is able to
detect associations that are invisible to univariate exon centric
approaches. Using sQTLseekeR, we identified hundreds of sQTLs,

Table 2 | Enrichment in splicing-related features in sQTLs identified by sQTLseeker in Geuvadis, and Geuvadis trQTLs.

Feature sQTLs non-sQTL SNPs sQTLs/non-sQTLs

sQTLseekeR sQTLs
% within exons 24.77 6.30 3.9
% within splice sites 0.44 0.09 5.0
Variation in splice site strength 1.25 0.56 2.2
Consistent/inconsistent changes in splice site usage and strength 17.00 1.11 15.3
% within 1 kb of a GWAS 11.01 0.46 23.7

Geuvadis trQTLs
% within exons 11.19 5.84 1.9
% within splice sites 0.17 0.08 2.3
Variation in splice site strength 0.71 0.56 1.3
Consistent/inconsistent changes in splice site usage and strength 4.64 1.13 4.1
% within 1 kb of a GWAS 9.40 0.51 18.8

FDR, false discovery rate; GWAS, genome-wide association study; sQTL, splicing QTLs; trQTL, transcript ratio QTLs.
For the comparison we considered sQTLs/trQTLs at 5% FDR.
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Figure 5 | Location and expression profile of sQTLs. (a) Distance to exons of intronic sQTLs and trQTLs. Cumulative proportion of intronic sQTLs

and trQTLs at 5% FDR that are at a given distance of the closest exon. The control SNPs were non-QTL intronic SNPs with matched minor allele

frequencies. (b) Distance to exons of intronic sQTLs and psiQTLs. Cumulative proportion of intronic sQTLs and psiQTLs at 1% FDR that are at a given

distance of the closest exon. Only SNPs tested by both methods are compared (about 12% of the total SNPs tested by sQTLseekeR). (c) Distribution

of gene expression for genes hosting sQTLs, trQTLs and psiQTLs, compared with all genes. (d) Distribution of the number of expressed isoforms for

genes hosting sQTLs, trQTLs and psiQTLs, compared with all genes. Isoforms are considered expressed if their RPKM 40.01.
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some of which falling in GWAS SNPs that have not been
previously predicted to be eQTLs. This underlines that the
phenotypic impact of many biologically and even medically
relevant mutations is not necessarily mediated by alternations in
the overall gene expression, but by a shift in the balance of the
relative abundances of the gene’s alternative transcript isoforms.

While we believe that we approach for the first time the
particular case of multivariate molecular phenotypes as such, the
problem of detecting genetic association with multivariate
phenotypes has received previous attention. For instance, mixed
effect models20, generalized estimating equations21 or

combinations of univariate association tests22 have been used
when the multivariate trait of interest is a collection of single
numeric or/and qualitative measures. More recently,
multivariate methods have been developed within the eQTL
field. Thus Chun and Keles23 apply a multivariate method to
reduce the dimension of an eQTL problem by clustering genes
with similar expression patterns, and therefore reduce the
number of tests that need to be performed. Multivariate
methods have also been developed to address the multiple
tissue eQTL problem24–26. While, in principle, it is theoretically
possible to re-engineer some of these methods in a splicing QTL
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Figure 6 | Detected associations by simulated univariate (as in trQTLs) and multivariate (as in sQTLs) approaches. Gain in the proportion of detected

association (y axis) when using multivariate approach versus univariate approach. We simulated two populations for genes expressing 3, 4, 7 or 10

transcripts (columns) when the transcript ratios are shifted by a certain value (effect size, x axis) from one population to the other following four different

scenarios (rows): ‘all transcripts’: the splicing ratios of all transcripts change with the same intensity in the second population compared with the first. ‘first

and second major transcripts only’: only the splicing ratios of the first two major transcripts, are shifted in the second population. ‘second and third major

transcripts only’: only the splicing ratios of the second and third major isoforms are changed in the second population. ‘first transcript strong, others weak’:

the splicing ratios of all transcripts are shifted but the value of the change in the major isoform is distributed equally among the rest of the isoforms, that is,

the major transcript changes strongly while the other transcripts change slightly. For each configuration, 500 genes with different splicing ratios were

pooled with 4,500 non-associated genes. After multiple testing correction, we compute the true positive rate (that is, proportion of true association

detected) using a FDR threshold of 1%. The plot displays the difference between multivariate TPR and univariate TPR. (Positive values correspond to higher

TPR in the multivariate approach). The curves are obtained using a LOESS model.

Table 3 | psiQTLs in Geuvadis populations.

CEU FIN GBR TSI YRI

psiQTL analysis
Tested SNPs 152,702 168,229 171,127 168,507 257,182
Tested genes 4,227 4,476 4,594 4,549 4,482
Associated SNPs 2,738 3,705 4,636 4,299 2,976
Associated genes 282 382 475 425 381

Common in sQTL and psiQTL analysis
Tested SNPs 143,169 156,889 159,914 156,871 206,721
Tested genes 4,055 4,289 4,398 4,352 4,292
Associated SNPs 92 221 186 159 106
Associated genes 10 22 18 18 7

FDR, false discovery rate; psiQTL, percent spliced in measure; SNP, single nucleotide polymorphism; sQTL, splicing QTLs.
Number of tested and associated variants and genes at 1% FDR. Number of SNPs tested in common with sQTLseekeR.
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framework, a number of features in the sQTL problem make our
approach more appropriate. First, the splicing ratios are
correlated within every gene, while the ratios of different
genes may be correlated only in some cases. These different
levels of dependence make it difficult to define a general model
to analyze jointly all the genes. Second, the multivariate
dimension of the phenotypes (the number of alternative
transcript isoforms) is different from one gene to the other,
which makes difficult the fitting of a common model if the genes
are analyzed separately. Third, the splicing ratios are complex
variables unlikely to fit normality. In contrast, the Anderson’s
approach followed by the multiple testing adjustment provides
the desired homogeneous assessment of associations, while
retaining the conceptual simplicity of an ANOVA analysis.

We have explicitly opted for developing a splicing QTL tool,
which is independent from the underlying program used to
obtain transcript quantifications from RNA-Seq reads. There are
quantification programs, however, which incorporate specialized
methods to identify differentially expressed isoforms between
samples, such as MISO27 and CuffDiff28. They could, in
principle, be engineered in a sQTL framework. However, they
suffer from the limitation that they are limited to the comparison
of two groups and designed for small sample sizes (a few
replicates per group), while in QTL analysis most tests include
three genotype groups and large sample sizes. The Anderson test
that we use in our approach, in contrast, is able to handle much
more complex factorial designs, including comparisons between
multiple groups. It is also designed to integrate a large number of
samples. Being model free, it can be used with any transcript
quantification program, including MISO and Cufflinks. Actually,
we believe that the framework developed here is general enough
to be employed as an appropriate alternative to analyze in
general multivariate phenotypes when the components of the
trait are relative proportions. For instance, the expression of a
given gene in different tissues or across different time points
could be considered a multivariate phenotype and converted to
proportions when normalized to the sum of expressions. Our
approach could be directly employed for joint analysis of gene
expression across tissues, as an alternative to the methods by
Ackermann et al.24 and Sul et al.26 In a more complex scenario,
it could also be used to identify SNPs affecting expression
networks, where the multivariate phenotype is the relative
expression of gene compared with the total expression output of
the network. Within our framework, it should be possible to
robustly compare networks of different size and made of
different genes. sQTLseekeR could also be used to identify host

SNPs that affect the population structure of a metagenomic
community, which is usually described as the relative
abundances of microbial species. In metatranscriptome studies,
it could be used to assess association with the cumulative
expression of families of orthologous genes across the
community. Beyond molecular phenotypes, the method could
also be used to identify pleiotropic SNPs or SNPs influencing
‘allometric traits’. For instance, the primary skeletal components
of height in humans are the long bones of the leg, the vertebral
column and the skull. The length of each of these components, in
turn, results from the contribution of other most basic traits. The
relative contribution to each of these traits to total height
conforms a multivariate phenotype analogous to splicing ratios.
Genetic variants influencing the relative scaling between these
components29 could thus be identified using the method
delineated here. Anomalous scaling (for instance between
vertebral and invertebral disk height) could result in
pathological conditions30.

The initial implementation of sQTLseekeR can obviously be
further enhanced. Currently, the method does not take into
account the confidence of transcript quantifications—which often
depends on the sequence coverage. The Hellinger distance has ‘a
priori’ good properties in the case of the splicing ratios, but other
distances could be evaluated in the context of sQTL discovery.
We could also explore methods alternatives to Storey’s qvalue31

for FDR correction, such as Efron’s FDR. While we have used
here a one-way factorial model, in which each population is tested
separately, Anderson’s location test allows for higher order
factorial models. For instance, we could have implemented a two-
way model, with the population as a second factor. Testing the
pooled populations appears as a more natural approach to
identify population specific sQTLs, benefiting from a greater
samples size, and thus increased power.

As multivariate distributions of relative frequencies may be
particularly appropriate to describe phenotypic relationships at
many different levels, from molecular to organismic, many
avenues of research remain open to develop efficient methods to
identify the genetic variants governing them.

Methods
Representation, distance and dispersion of splicing ratios. We introduce a
method to identify genetic variants associated with AS (sQTLs) in RNA sequencing
population studies. In our approach, we define the splicing phenotype of a gene,
as the distribution of the relative abundances of the gene’s alternative transcript
isoforms. We use a distance-based approach to compute the variability of this
multivariate phenotype across observations and a non-parametric analogue to

Table 4 | Enrichment in splicing-related features in sQTLs compared with psiQTLs in Geuvadis.

Feature sQTLs non-sQTL SNPs sQTLs/non-sQTLs

sQTLseekeR sQTLs
% within exons 37.83 11.97 3.2
% within splice sites 1.20 0.24 5.0
Variation in splice site strength 0.84 0.62 1.4
Consistent/inconsistent changes in splice site usage and strength 10.50 1.54 6.8
% within 1 kb of a GWAS 16.43 0.56 29.4

psiQTLs
% within exons 23.34 11.77 2.0
% within splice sites 1.00 0.21 4.8
Variation in splice site strength 1.58 0.55 2.9
Consistent/inconsistent changes in splice site usage and strength 5.94 1.36 4.4
% within 1 kb of a GWAS 1.50 0.68 2.2

GWAS, genome-wide association study; psiQTL, percent spliced in measure; SNP, single nucleotide polymorphism; sQTL, splicing QTLs.
Only SNPs tested in both methods were considered.
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MANOVA to compare this variability within and between genotypes. In what
follows, we describe our approach in detail.

The distribution of the abundances of individual transcript isoforms is the more
general characterization of the splicing pattern of a gene since any other
characteristic feature—exon or splice junction abundances or inclusions—can be
derived from this distribution (Fig. 1). To control for the effect of overall gene
expression, we compute the relative abundance of the splicing isoforms to the total
gene expression. For a specific gene, the relative abundance of the transcript i in
observation j is fij ¼ xij=

Pn
i¼1 xij , where xij is the expression of isoform i in

observation j and n is the number of isoforms of the gene. We will refer here to the
relative transcript abundances f1j, � � � , fnj for a gene, as the gene splicing ratios.
Obviously,

Pn
i¼1 fij ¼ 1 for any observation j. Geometrically, a gene with n

transcript isoforms can be represented in a n-dimensional space, [0, 1]n, where the
coordinates are the splicing ratios. Each point in this space defines a particular set
of splicing ratios, different points corresponding to different observations. Because
for any observation the sum of the splicing ratios is equal to one, the points are
actually all located in the (n� 1) standard simplex subspace. The simplex
generalizes the notion of the triangle in Rn for instance, a 2-simplex is a triangle, a
3-simplex is a tetrahedron. An example for a gene with three isoforms is shown in
Fig. 1. Observations lying proximal in this space have similar splicing ratios.
Different measures can be used in this space to define the distance between two
observations. Here we have adopted the Hellinger distance that we proposed in
Gonzalez-Porta12, which defines also the underlying metric of our approach. If fij

is the splicing ratio for isoform i of observation j, the Hellinger distance between j
and k is:

dHðj; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ð
ffiffiffiffi
fij

q
�

ffiffiffiffiffi
fik

p
Þ2

s
ð1Þ

where n is the total number of isoforms in the investigated gene.
The Hellinger distance is commonly used to measure the similarity of two

probability distributions. For instance, the probabilities defining a multinomial
distribution can also be represented by points in the simplex space and compared
using this distance. The Hellinger distance has an interesting property for splicing
ratios: compared with the Euclidean distance, it tends to exacerbate the differences
between points near the edges of the simplex. In our case, those points at the
boundaries of the space will have one major isoform expressed, with a high splicing
ratio. As it has been previously reported32, we have also observed that for a
substantial proportion of studied genes, a major isoform tend to capture most of
the transcriptional output of the gene.

The variability (or dispersion) within a set of N observations can be defined
with the aid of the concept of centroid. For the Euclidean distance, the centroid is
the average of all the points (observations). For non-euclidean distances
(such as Hellinger distance) the centroid c is defined as the point that minimizes
the sum of squared distances between itself and each point in the set of sampled
points.

As it will be detailed in the next section, the sum of squared distances (SS)
between the N observations and the centroid is the basic measure of variability used
in our approach:

SS ¼
XN

j¼1

d2
Hðj; cÞ ð2Þ

where d2
H j; cð Þ is the squared Hellinger distance between the centroid c and

observation j.
In genes with similar splicing ratios across the individuals in the population, the

dispersion of the points around the centroid is minimal and SS tends to 0. As the
differences in AS ratios between individuals increase, SS increases, but is bounded
by N� 1 because the square of the Hellinger distance between two points in the
(n� 1)-standard simplex is itself bounded by 2.

Multivariate comparison of splicing ratios. The Hellinger distance in the
simplex allows to estimate and compare the variability of splicing ratios of a gene
between and within groups of observations (genotypes in our case) using the test
for location comparison introduced by Anderson10,11. This test is similar to a
MANOVA without assuming any probabilistic distribution for the splicing ratios.
It follows an analogous decomposition of the classic ANOVA, where the total
variability SST is partitioned in two complementary components, the within-group
variability SSW and the between-group variability SSB:

SST ¼ SSW þ SSB ð3Þ
The Anderson test computes a pseudo-F ratio score that measures the relative

difference between SSW and SSB. In the Anderson approach, the within (or
residual) variability SSW is defined by the sum of the squared distances from
individual observations to their group centroid (Supplementary Fig. 2). The
between-group sum of squares SSB is the sum of squared distances from the
different group centroids to the overall centroid and the total variability SST is
defined by the sum of the squared distances from individual observations to the
overall centroid.

Anderson shows that the sum of squared distance between the samples to the
centroid can be computed easily, without computing explicitly the centroid.

Indeed, the sum of squared distances between points and their centroid is equal to
the sum of squared interpoint distances divided by the number of points. Following
Anderson notation, if N is the total number of observations:

SST ¼
1
N

XN � 1

j¼1

XN

k¼jþ 1

d2
Hðj; kÞ ð4Þ

where d2
H j; kð Þ is the Hellinger distance between the individuals j and k. The

within-group variability is

SSW ¼
Xp

g¼1

1
ng

XN þ 1

j¼1

XN

k¼jþ 1

d2
Hðj; kÞEg;j;k ð5Þ

where p is the number of groups, ng the sample size of group g and Eg,j,k¼ 1 if
individuals j and k are sampled from group g, otherwise Eg,j,k¼ 0. SSW is the
weighted mean of the sum of squared interdistances within each group. Finally,

SSB ¼ SST � SSW ð6Þ
The main advantage of this method is that it allows the usage of non-euclidean

distances.
Typically, permutations are performed to assess the significance of the F-scores.

Because of their important computational cost, particularly in large data sets, we
implemented an alternative approach using an approximation for the null
distribution of the F-score. Following Anderson14, the null distribution is simulated
through a ratio of two linear combinations of independent w2 variables with
different degrees of freedom in the numerator and denominator. The coefficients of
the linear combinations, both in the denominator and the numerator, are the
eigenvalues of a matrix related to the interdistances’ matrix (see Anderson14 for
further details). Thanks to this approximation, the computation time of the
multivariate test is not linearly dependent on the number of permutations anymore
(Supplementary Fig. 3a). While the use of the approximation instead of
permutations sped up the total sQTL analysis by a factor 3, the gain on the actual
multivariate test is about 80-fold. We found that the results using this
approximation were nearly identical to those obtained directly with permutations
(Supplementary Fig. 3b).

An important consideration concerns the homogeneity of the compared
variabilities. As Anderson noticed, the location test is sensitive to group
heterogeneity in the dispersion of points. Large heterogeneities may lead to
significant differences for similar locations, that is, in the presence of different
group dispersions, the location test may easily report a false significance. To test for
the homogeneity of dispersions between two or more groups, we use a test also
derived by Anderson11 that adopts the same multivariate geometrical framework as
the location test. The P values are obtained here with a permutation test. They
allow us to identify and flag the cases where the dispersion of the compared groups
is too large. Consequently, these flagged cases are not present in the results shown
here. We used the betadisper method included in the vegan R package33 to
compute this score and the associated permutations.

Parametric versus non-parametric approach. Because of the nature of the data
splicing ratios that configure multivariate simplex vectors, a non-parametric
approach seems clearly preferable over a parametric one. Nonetheless, we have
explored the possibility of using a MANOVA that requires multivariate normality
of the data. To investigate whether MANOVA would be a good fit to our data, we
have studied the distribution of two statistics commonly used in MANOVA ana-
lysis: Wilks’ lambda (LWilks) and Pillai’s trace (LPillai). To compute the theoretical
null distributions, we generated multivariate normal distributed values using the
mean splicing ratios and their covariance matrix estimated from real data (CEU
population in Geuvadis project). We simulated 90 samples (3 groups of 30 sam-
ples) and genes expressing 3, 4 and 7 isoforms. For each number of isoforms, we
simulated 10,000 genes, computing and storing the LWilks and LPillai. On the other
hand, for each gene expressing 3, 4 or 7 isoforms and SNP tested in the CEU
population, we computed LWilks and LPillai on the real splicing ratios after shuffling
the genotype groups to remove any true association. In that way, we derived good
approximations of the real null distribution of both statistics, which can be com-
pared with their null distributions under the multivariate normality assumption. As
it is possible to see in Supplementary Fig. 4, the distributions of both LWilks and
LPillai simulated according to a multivariate normal distribution that depart sub-
stantially from the distributions obtained from the real data. This strongly suggests
that the parametric approach is not an appropriate option to deal with our splicing
ratios. We have already showed that we can use a very good asymptotic approx-
imation to the null distribution (Supplementary Fig. 3b).

Implementation of the sQTL discovery process. We incorporated this method
and representation into a QTL pipeline, and implemented the sQTLseekeR pack-
age. The pipeline takes as input a gene and transcript annotation on a given
genome, and a collection of samples on which both, a set of SNPs and the
expression levels of individual transcripts, have been determined.

The pipeline identifies, first, the set of genes, samples and SNPs that are suitable
for sQTLs analysis. Thus, we consider only genes with at least two splicing isoforms
and genes exhibiting some minimal splicing variability across samples (specifically,
for each gene we compute the mean distance to the centroid X of the splicing ratios,
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Fig. 1) and, by default, consider only genes with �d 40.01. For each gene in this set,
we consider only samples in which gene expression is over a given threshold (by
default, Z0.01RPKM). Similarly, for each gene, we consider only SNPs falling
within the gene plus 5 kb upstream and downstream from the gene. The
assumption here is that SNPs directly affecting the splicing pattern of a gene are
likely to be carried out to the sequence of the primary transcript. From these SNPs,
only bi-allelic SNPs creating at least two genotypic groups, each genotype present
in at least five samples, are further considered.

Then, for each gene–SNP pair, we group the samples according to their
genotype and compute the F-score for the association between splicing ratios and
genotype. As the Anderson’s approach allows direct additive partitioning of
variability for complex models, we used here a one-way factorial model with the
genotype codes as levels of the factor. We prefer the factorial model to a regression
model with the number of mutations as independent variable, because the factorial
model is potentially able to detect more types of differences: additive, dominant,
recessive or even undefined model changes. This is an advantage over the
regression model because ratios could not follow strictly the additive model, as it is
commonly accepted for changes in expression.

Because the F-scores are sensitive to the heterogeneity of the variabilities
between the genotype groups, we also perform a test of homogeneity of variabilities
for each gene–SNP pair. Genes failing this test are flagged. Their significance is still
assessed and they are taken into account to adjust the P values (see below), but they
are not reported as significant sQTLs.

To assess the significance of the F-score, we compute the null distribution at the
gene level; that is, the same set of permuted/simulated values is used to assess the
significance of all the SNPs tested for a gene.

After all gene–SNP pairs are tested, the P values for all genes and all SNPs are
pooled together and controlled for FDR using qvalue31 R package with its default
parameters.

Details on the P value estimation. We detail here some additional imple-
mentation details that improve the procedure to estimate P values.

First SNPs creating only two genotypes have to be treated differently from those
creating the three genotypes (reference/reference, reference/mutated, mutated/
mutated) because the distribution of F-scores is sensitive to the number of groups
compared. Thus, in practice, for each gene, we compute a different set of simulated/
permuted scores for the SNPs creating two and three genotypes.

Second, in Geuvadis computations, we are testing around 1.2� 106 SNP–gene
pairs per population (Table 1). The FDR correction impels a priori to reach a
higher number of different simulations/permutations per test. Fortunately, this
large number is only needed for the highest scores, where maximum accuracy is
critical. Thus, we attempt to use a number of computations tailored to each gene,
avoiding useless computations. Intuitively, for high P values, just a few thousand
values in the null distribution are sufficient to get usable accuracy for the
downstream multiple-test correction. In practice, new simulated/permuted scores
are computed until a minimum number (1,000 in Geuvadis analysis) of scores are
found more extreme than the true score in the constructed null distribution, or the
maximum number of simulations/permutations is reached. For Geuvadis analysis,
we set this number to 3� 106.

Finally, to ensure a robust F-score and an appropriate, that is, F-like, null
distribution, an additional test verifies for each gene that at least 25 different
splicing patterns are present in the total population and at least 5 different splicing
patterns within every tested genotype group. Here a splicing pattern is the
distribution of the splicing ratios for a gene. Indeed, if many samples have the exact
same splicing ratios and, hence, fall in the exact same location, the F-score and its
simulated (or even more its permuted) distribution might behave unreliably. This
minimum number of truly different scores in the sample is not easy to establish
because it is sensitive to the relative sizes of the genotype groups. We simulated a
number of scenarios (where some individuals have different splicing configuration
but the rest identical ones) where permutations are obtained taking the samples
with replacement and performing a total of 2� 106 tests. These simulations show a
minimum required number of 25 different splicing patterns to obtain enough
different configurations. Genes not satisfying these criteria are not tested.

Workflow of Geuvadis sQTL discovery process. Here we provide a detailed
workflow of the sQTL discovery process that we have applied to the analysis of
Geuvadis data set.

First we identify genes suitable for the analysis, that is, genes with at least
two alternative transcript isoforms and with splicing variability �d40.01. Out of the
20,110 protein coding genes annotated in Gencode v12 (ref. 34), 16,581 have at
least two annotated isoforms. Overall, 11,079 of these genes, on average per
population, satisfied the minimum splicing variability criterion.

Then for each suitable gene, we identify suitable samples and SNPs. Samples in
which the expression of the gene is Z0.01RPKM are kept. Genes with less than 25
different splicing patterns in the population of surviving samples are further
discarded. After this filter, 10,012 genes remained on average per population. Given
a gene, SNPs where kept for subsequent analysis if located within a gene (or within
5 Kb upstream or downstream from the gene) and the two different alleles are
present in the population. From the 10,785,347 SNPs originally in Geuvadis, on
average 2,274,124 remained per population, after these two filters. These SNPs

partition the population in two or three genotype groups. Furthermore, SNPs with
less than five different splicing patterns in any of the genotype groups are further
discarded. On average, 1,393,042 SNPs remained per population after this filter.
For each suitable SNPs, we compute the F-score and save it in a list, separately for
SNPs with two or three genotypes. Then for each list, the highest F-score is used
to estimate the number of simulations/permutations needed to generate the null
distribution. Finally, the simulated/permuted distribution is used to compute
P values for the SNPs.

After all genes have been tested, the P values are pooled and corrected using the
qvalue R package for FDR control. For each suitable gene, we repeat the analysis
described in the previous paragraph but now testing for homogeneity of
variabilities across genotypes. After all genes have been tested again, the resulting
P values are pooled and corrected. Significant sQTLs, surviving the homogeneity
of variabilities test, are reported.

Data and filters. The Geuvadis project8 produced RNA-Seq experiments for
465 samples from lymphoblastoid cell lines. A majority of these samples (422)
were sequenced in the 1000 Genome Project Phase 1. The genetic variation from
the other samples was imputed. RNA-Seq data were subjected to rigorous
quality controls35. We used the transcript quantifications produced by Geuvadis
in Gencode v12 (ref. 34). This data can be visualized or downloaded at
www.ebi.ac.uk/Tools/geuvadis-das.

Sharing of sQTLs across populations. We compared the significance of the
sQTLs across populations. Following the idea from Nica et al.15, we estimated the
proportion of true association p1 among the sQTLs from a first population in a
second population. We also used qvalue R package to estimate p1 as 1� p0.

Estimation of the major AS event. To characterize what type of AS events are
preferentially affected by sQTLs, we employed the following strategy: given a sQTL,
we identify the two transcript isoforms in the target gene that change the most
between genotypes and exhibit symmetric behavior (example Fig. 2, transcripts T1
and T2). Then, we compare the exonic structure of the two transcripts using the
AStalavista16 software. AStalavista provides an exhaustive characterization of all AS
events when comparing the structure of all transcripts from a given locus. The
comparison of two transcripts can sometimes be characterized by several distinct
events affecting distinct regions of the transcript. Hence each sQTL can be
associated to several events. Eventually, we can classify sQTL as affecting splicing of
internal exons if at least one of the associated events involve internal exons. Here
we have considered exon skipping, alternative 30 and 50 splice sites, intron
retention, mutually exclusive exons, alternative 30 and 50 UTR, alternative first and
last exon and tandem 30 and 50 UTR. These events are illustrated in Supplementary
Fig. 5. We grouped all other events in complex events categories: complex 30/50

event if changes only affected 50/30 termini without explicit splicing; complex
splicing event when the splicing event could not be characterized by our
nomenclature. As a control to assess enrichment of particular AS events, we
randomly selected two transcripts from the genes associated to sQTLs and
compared them using the same approach.

Test on random gene–SNP pairing. SNPs in a particular gene were tested for
association with the splicing ratios of a different gene, selected randomly among
the set of genes originally tested. In practice, the gene labels on the splicing ratios
were simply shuffled. This test preserves the SNP correlation structure as all SNPs
within a same gene will be tested against the splicing ratios of the same randomly
selected gene. Functional analysis was then performed on the gene hosting the
significant SNPs using DAVID36.

Enrichment of sQTLs for biologically relevant features. To assess the relevance
of sQTLs, we tested the enrichment of a number of features, which are relevant
from the biological standpoint. We tested for enrichment pooling sQTLs found in
the five populations and compared the set of sQTLs (at FDRr5%) against a set of
non-sQTL SNPs (FDR45%) with matched minor allele frequency. We assessed
the significance of the enrichment using a Fisher test. We specifically tested for
sQTLs falling more than expected in exons, splice sites, GWAS hits37 or their
vicinity (within 1 kb). We also compared the distance with the closest exon for
intronic sQTLs and a set of intronic non-sQTLs with matched minor allele
frequency. We used the Mann–Whitney test with the alternative hypothesis being
intronic sQTLs are closer to exons than intronic non-sQTLs.

Disruption of splice sites. We investigated the extent of the splice site strength
disruption by sQTLs compared with non-sQTLs. We used the absolute difference
in the strength of the splice site between the reference allele sequence and the
alternative allele sequence, Dscores. To compute the strength of donor and acceptor
splice sites, we used standard position weight matrices38. To assess the significance
of the difference between sQTLs and non-sQTLs, we the used Mann–Whitney test
with the alternative hypothesis Dscores is higher for sQTLs than non-sQTLs.

We expect that SNPs in splice sites increasing (decreasing) the splice site
strength also increase (decrease) the usage of the splice site (as measured by RNA-
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Seq). We also expect this effect to be much stronger for SNPs that are sQTLs than
for non-sQTL SNPs. We have therefore computed the enrichment of consistent
changes (strength and usage of the splice site are positively correlated) over
inconsistent changes (strength and usage of splice sites are negatively correlated)
for both sQTL and non-sQTL SNPs occurring in splice sites. To compute the
usage of a given splice site, we summed the relative abundance of the transcripts
using the site. We then counted how many times an increase (or decrease) in the
site strength coincides with an increase (or decrease) of its usage. We regressed the
transcript relative abundance across the three genotype groups and required a
minimum regression slope (minimum 5% change in the site usage from one
genotype group to another) along with a minimum strength score change (0.1) in
the relevant direction to declare the changes consistent. Splice sites used by all or
none of the expressed transcripts were not included here because they could not
show any usage variation. We then computed the ratio of consistent over
inconsistent changes for both sQTL and non-sQTL SNPs occurring in splice sites.
We expect almost no enrichment for non-sQTLs and a larger enrichment for
sQTLs.

Overlap with previous studies. Kwan et al.17 used exon array to detected sQTLs
in Hapmap samples. Twenty-five sQTLs were experimentally validated. Although
on the same population (CEU), the samples used in Geuvadis were not exactly the
same. The technology is also different for both expression and genotypes
information: RNA-Seq versus exon array and sequencing versus SNP-array,
respectively.

Simulation of the univariate and multivariate approaches. We have used
simulations to further compare the univariate and multivariate approaches. We
have considered genes with 3, 4, 7, 10 and 15 isoforms—numbers that capture the
wide spectrum of splicing complexity of human genes (Supplementary Figure 5).
We estimated the mean splicing ratios and the covariance matrix from real data
(CEU population in Geuvadis project). Genes were compared in two simulated
populations of 40 individuals each. To create differences in the splicing ratios, the
mean values of the transcript isoforms with relative abundance were shifted in one
population with respect to the other. This shift captures the effect size of the
differences in splicing ratios between the two populations: a stronger shift (effect)
will create clearer differences, hence easier to detect (see below). Moreover, the shift
in average splicing ratios in the second population can be distributed differently
across the transcript isoforms. While each gene is likely to have its characteristic
splicing pattern, we have chosen to simulate four basic scenarios, which we believe
capture a broad spectrum of biological cases. In the first scenario, labeled ‘first and
second major transcripts only’, only the splicing ratios of the first two major
transcripts, that is, most expressed, are shifted in the second population. In the
second scenario, ‘second and third major transcripts only’, only the splicing ratios
of the second and third major isoforms are changed in the second population. In
the third scenario, ‘all transcripts’, the splicing ratios of all transcript are shifted
with the same intensity in the second population. Finally, the splicing ratios of all
transcripts are shifted but the value of the change in the major isoform is dis-
tributed equally among the rest of the isoforms, that is, the major transcript
changes strongly while the other transcripts change slightly (‘first transcript strong,
others weak’). For each scenario, we simulated 20 effect sizes of varying magnitude.
In total, therefore, we simulated 400 different configurations. For each configura-
tion, 5,000 genes were simulated: 500 with shifted average splicing ratios as
explained before and 4,500 with similar distribution in both groups. This design
was chosen to mimic a genome-wide analysis. Then the P values from univariate
and multivariate approaches were corrected for multiple testing using the
Benjamini–Hochberg algorithm and the true positive rate at FDR 1% is reported.
Results are shown in Fig. 6. The multivariate approach consistently detects more
significant associations in almost all configurations, than the univariate approach.
For some effect sizes, the univariate approach misses almost half of the associations
identified by the multivariate approach.

To explore how realistic are the effect sizes in which the multivariate approach
outperforms the univariate approach, we estimated effect sizes on Geuvadis data
using real and simulated SNPs. That is, we computed the distribution of effect sizes
in partitions of the CEU population induced by real SNPs, and generated
randomly. We expect some of the partitions induced by real SNPs to be associated
with changes in the splicing ratios, but not the random partitions. To measure the
effect size consistently with the simulations (the distributed shift on the average
splicing ratios), we sum the absolute differences in average splicing ratios between
the two groups divided by two. The distributions of effect sizes are plotted in
Supplementary Fig. 1. There is a shift towards higher effect sizes in real compared
with random partitions. It is at this larger effect sizes (from 0.1 to 0.25, see Fig. 6)
that the multivariate approach outperforms the univariate approach, suggesting
that the former is able to detect biologically relevant associations that escape the
univariate approach.

Transcript QTLs. Transcript QTLs (trQTLs) were identified using Geuvadis eQTL
pipeline8 on transcript ratios. SNPs located closer than 1 Mbp to the gene TSS were
tested for association with each transcript independently. The four European
populations were pooled together to increase the discovery power. The results can

be downloaded from http://www.ebi.ac.uk/Tools/geuvadis-das/.
Summary table and methodological details can be found in Geuvadis article8.
Enrichment and splice site disruption analysis were performed similarly than for
sQTLseekeR sQTLs.

Exon centric sQTLs. Exon inclusion levels were estimated from the RNA-Seq
reads produced by the Geuvadis consortium. For each internal exon (with at least
an upstream and downstream exon) from genes with three or more exons, we
computed the so-called percentage splice index (PSI). We computed this index as
previously proposed39,40. The index is computed from three values: (A) the number
of reads that map in the exon body, (B) the number of split reads mapping to splice
junctions between the considered exon and both adjacent exons and (C) the
number of split reads mapping to the splice junction from the adjacent exon
upstream to the adjacent exon downstream. A and B represent reads that support
exon inclusion and C reads that support exon exclusion. Then, PSI is computed as
PSI¼AþB/(AþBþC). PSI¼ 0 means that the tested exon is not included,
whereas PSI¼ 1 indicates that the exon is constitutively spliced in. Since the
majority of the exons have low variability, we selected only those exons with a PSI
coefficient of variation 40.05 per population and with missing values in less than
10% of the population samples. Missing PSI values were imputed using the median
PSI value for the exon across the population. We used Spearman rank correlation
to test for association between PSI levels and genotype. We limited the variants
tested to those present in a 5 KB window surrounding the middle of the exon. We
assess significance by computing the FDR using the qvalue package31. We reported
significant associations (psiQTLs) at 1% FDR.

Because this approach dealt with a different splicing metric, filtering steps lead
to different set of gene–SNP being tested (Table 3). Focusing on the gene–SNP
tested in both approaches enrichment and splice site disruption analysis were
performed as described previously (Section enrichment of sQTLs for biologically
relevant features, Table 4, Fig. 5).
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