
pharmaceuticals

Review

Micro- and Nano-Based Transdermal Delivery Systems of
Photosensitizing Drugs for the Treatment of
Cutaneous Malignancies

Isabella Portugal 1, Sona Jain 1 , Patrícia Severino 1 and Ronny Priefer 2,*

����������
�������

Citation: Portugal, I.; Jain, S.;

Severino, P.; Priefer, R. Micro- and

Nano-Based Transdermal Delivery

Systems of Photosensitizing Drugs

for the Treatment of Cutaneous

Malignancies. Pharmaceuticals 2021,

14, 772. https://doi.org/10.3390/

ph14080772

Academic Editor: Maria

Stefania Sinicropi

Received: 16 July 2021

Accepted: 3 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes,
Aracaju 49032-490, Brazil; isabella.martins@souunit.com.br (I.P.); sona.arun@souunit.com.br (S.J.);
patricia.severino@souunit.com.br (P.S.)

2 Massachusetts College of Pharmacy and Health Sciences, University, Boston, MA 02115, USA
* Correspondence: ronny.priefer@mcphs.edu

Abstract: Photodynamic therapy is one of the more unique cancer treatment options available in
today’s arsenal against this devastating disease. It has historically been explored in cutaneous lesions
due to the possibility of focal/specific effects and minimization of adverse events. Advances in drug
delivery have mostly been based on biomaterials, such as liposomal and hybrid lipoidal vesicles,
nanoemulsions, microneedling, and laser-assisted photosensitizer delivery systems. This review
summarizes the most promising approaches to enhancing the photosensitizers’ transdermal delivery
efficacy for the photodynamic treatment for cutaneous pre-cancerous lesions and skin cancers.
Additionally, discussions on strategies and advantages in these approaches, as well as summarized
challenges, perspectives, and translational potential for future applications, will be discussed.
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1. Introduction

In past decades, clinical demands for the utilization of photosensitizers (PSs) have
increased with the advent of photodynamic therapy (PDT). PDT is an alternative therapy
whereby an initial activation of a PS at a specific wavelength (visible light or near-infrared
(NIR) leads to the formation of reactive oxygen species (ROS), which in turn induces
cell death. Notably, PDT has been primarily applied in cancer therapy. The advantages
of low light irradiation therapies have made it possible to widen the range of target
diseases [1]. For example, the antimicrobial properties of PDT (aPDT) have been applied
for the treatment of bacterial, fungal, parasitic, and viral infections [2]. PDT has also been
explored for wound healing [3,4], immune-mediated cutaneous diseases [5], anesthetic
purposes [6], and aesthetic applications [7].

Historically, phototherapy can trace its roots to Ancient Egyptian, Chinese, and Indian
civilizations. Light combined with photosensitizing natural formulations were used to
treat illnesses such as vitiligo, psoriasis, and skin cancer. In 1900, Raab and von Tappeiner
described the phenomena of cell death induced by a combination of chemicals (acridine dye)
and light on the protozoa paramecia (Figure 1) [8]. Further investigations gave birth to the
revolutionary Photodynamic Action. The first biomedical use of this innovation was reported
by Friedrich Meyer-Betz, in 1912, who self-injected hematoporphyrin, resulting in pain
and swelling on light-exposed areas [9]. Subsequently, in 1961, Lipson et al. demonstrated
that hematoporphyrin derivatives (HpD) accumulated in tumors and emitted fluorescence
could be applied as a diagnostic tool [10].

Further, Dougherty et al. introduced PDT in the 1970s by observing complete mam-
mary tumor remission in vivo using HpD combined with the red light [11]. A subsequent
clinical study using 25 patients showed complete response in 98 out of 113 skin tumors,
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partial response in 13, and only two resistant tumors [12]. These findings led to the first
approval of the PDT drug, Photofrin®, to treat bladder cancer in Canada in 1993 [13]. In
2001, Foscan® became the first second-generation PS agent commercially available for PDT,
especially in head-and-neck squamous cell carcinoma (HNSCC) treatment. Ultimately,
in 2012, silicon phthalocyanine (Pc) 4 entered a phase I clinical trial as the first topical
PDT agent (Figure 1) [14]. Currently, PDT is employed to treat a wide range of diseases,
such as leishmaniasis, psoriasis, neovascular macular degeneration, cardiology, urology,
immunology, ophthalmology, dentistry, and dermatology [15].
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The distinctiveness of PDT relies on its highly selective mechanism of action. Utilizing
two independently nontoxic components (i.e., a PS and light) to produce cytotoxicity
within a tumor. There is a high level of tumor selectivity to PS due to increased tumor
vasculature surface area, higher membrane permeability of cancer cells, and decreased
lymphatic drainage [16]. An ideal PS remains inert until a light source is focused onto
the intended area to “activate” the PS, boosting its selectivity over surrounding healthy
tissues. Ultimately, a third intrinsic component for PDT, molecular oxygen, present in
tissue’s extracellular and intracellular spaces, serves as the substrate for ROS formation.
The generation of singlet oxygen and superoxide anions results in tumor cytotoxicity as
both can directly react with and damage biomolecules such as lipids, proteins, and nucleic
acids [17].

Several studies have demonstrated PDT as a viable treatment option against early-
stage esophageal dysplasia, lung, HNSC, anal, bladder, peritoneal ovarian, and non-
melanoma skin cancers (NMSC) [18]. Despite the encouraging clinical results of PDT,
some PSs themselves have been reported to have prolonged skin phototoxicity, low lesion
selectivity, hydrophobic nature, aggregation proneness, poor bioavailability, high-dose re-
quirements, adverse side effects, off-targeting, and development of drug resistance [19–21].
The use of drug delivery systems (DDS) to overcome these shortcomings has been exam-
ined. In this context, PSs can be ideally delivered to therapeutic action sites while reducing
adverse side effects [21]. Among DDS, the transdermal route stands out for dermatological
applications. However, the inherent protective epidermic layer, the high molecular weight
of some PSs (>500 Daltons), and extremes of polarity remain a challenge for crossing the
skin barrier [22].

Several innovative transdermal delivery systems (tDDS) have recently become avail-
able to study photobiology, improve drug penetration, enhance site-specific delivery, and
increase therapeutic efficiency. This review aims to summarize current approaches focused
on boosting the transdermal delivery efficacy of PSs for treating cutaneous conditions.



Pharmaceuticals 2021, 14, 772 3 of 19

2. Transdermal Drug Delivery of PDT Agents

The skin barrier is a lipid layer along which individual molecules can migrate through
diffusion. Although skin has a large surface area, transdermal drug delivery is challeng-
ing since it acts as a formidable barrier. Molecules can enter through keratinocytes (the
transcellular pathway), the lipid matrix occupying the intercellular spaces (the intercel-
lular pathway), hair follicles, sebaceous glands, or sweat glands (the transappendageal
pathway) [23]. The process is controlled mainly by the molecule’s permeant hydrophilicity,
size, and hydrogen-bonding ability [24]. Consequently, substances with molecular weight
lower than 600 Da, water/octanol partition coefficient (logP values) in the range of 1–3,
and those with a low melting point can be more easily absorbed into the skin. In contrast,
larger molecules and highly polar compounds cannot pass the cutaneous barrier [25].

From the penetrant perspective, the skin behaves like a mechanical nanoporous barrier
perforated by many gap-like or quasi-semicircular pathways. Previous studies estimate
an average passage-width range of 0.4 to 36 nm. Arguably, pore-size distribution is non-
symmetrical, with a peak around 20 nm and a steeper decline on the transbarrier pathways’
low-sized side. Moreover, existing data demonstrate that the critical factor for hydrophilic
entity motion through the skin is primarily molecular size and not molecular weight [26].
Thus, several parallel physiological paths between two cells increase the skin porosity,
which is crucial for topical drug delivery.

One extensively investigated strategy to enhance drug delivery through the skin is by
adding chemical enhancers such as fatty acids, surfactants, esters, alcohols, pyrrolidones,
amines, amides, sulphoxides, terpenes, alkanes, and phospholipids. Conversely, mechani-
cal, physical, and active transport techniques, such as microneedles (MNs), jet injectors, ion-
tophoresis, ultrasound, electroporation, photomechanical waves, magnetophoresis, laser
radiation, and skin abrasions, are also available to enhance skin penetration [25]. The use of
chemical enhancers is restricted due to the limited permeability of macromolecules, while
physical approaches are invasive and can damage the skin barrier properties (Figure 2). To
overcome some limitations of chemical and physical enhancers, nanoparticles are being
developed to improve the absorption and transdermal drug release in a controlled manner
for a prolonged period.
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Figure 2. Current chemical and physical strategies to enhance transdermal drug delivery of photodynamic therapy.

The application of nanotechnology for conventional PSs has helped to overcome many
shortcomings, particularly related to the hydrophobic nature of these compounds, which
limits the penetration through the skin and cell membranes [20,27]. While hydrophobic
PSs, such as phthalocyanines (Pcs) and chlorins, form aggregates in physiological solu-
tions [28], hydrophilic PSs raise interaction problems with biological tissues. In this context,
liposomes have been reported as suitable delivery systems for carrying both hydrophilic
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and hydrophobic PSs and leading to improved clinical applications [29]. For instance, the
extensively studied PS, 5-aminolevulinic acid (ALA), is not internalized well by cells and
has no specificity for diseased tissues [27]. Therefore, PSs associated with nanoparticles
have evolved to avoid self-aggregation and improve delivery to the target site.

3. Chemical Approaches for Transdermal Delivery
3.1. Nanoemulsion (NE)

The term emulsion denotes a suspension of globules of a liquid in another liquid,
stabilized by small molecules with polar and nonpolar ends that can intercalate into bilayers
nominated amphipaths. On opened skin, emulsions typically break into separate oil and
water phases, containing amphipaths at their respective saturating concentrations. This
principle is useful for in situ generation of a saturated drug solution in oil or water under
the constraint of the accompanying skin occlusion by the resulting fatty layer at the skin
surface [26].

The addition of a unipolar fluid component (an oil or oleaginous ingredient) to a
water–amphipath mixture can generate a NE. Nanosized oil droplets emerge from emul-
sions after a mechanical disruption or, in rare cases, thermal agitation of the system. The
average droplet size of NEs has been broadly defined from 50 to 500 nm, but is typically
200 to 300 nm [30]. Fluctuations in all described phases increase the bordering lipid layer
flexibility, promoting aggregate dissolution by a molecular- or surface-mobility-dependent
mechanism. In this scenario, although aggregate particles that require appreciable energy
to form are thermodynamically unstable, inter-particle repulsion may extend the life ex-
pectancy of such colloids to allow practical usage [26]. The nanosize and polydispersity
affect NEs stability, rheology, appearance, color, texture, and shelf life, along with display-
ing improved pharmacological effects of the drugs [31]. Thus, NEs are promising drug
delivery systems for pharmaceutical, cosmetic, and chemical industry applications.

3.1.1. ALA-Nanoemulsion (BF-200 ALA)

ALA is a non-essential amino acid that occurs naturally in the human body, is involved
in heme biosynthesis, and can be converted to protoporphyrin IX (PpIX) if delivered
exogenously. PpIX induces phototoxicity and tissue destruction upon absorption of light of
an appropriate wavelength and dose (40–200 J cm−2 at a wavelength of 610–635 nm) [32,33].
The properties of ALA-PpIX have been utilized in photodynamic diagnostics and PDT of
cancer. This molecule is usually administered topically as a 20% cream on the skin and
mucous membranes, but it has limited penetration due to its high hydrophilicity. Hence,
ALA-induced PpIX formation is often restricted to superficial layers [34].

Maisch et al. evaluated a combination of nanoscale-lipid vesicle and gel formulations
of the prodrug ALA (BF-200 ALA). The study utilized a porcine skin model to analyze
the penetration of the BF-200 ALA (10% 5-ALA hydrochloride) versus a 16% MAL hy-
drochloride cream. At 8 and 12 h, the fluorescence signals of the metabolite PpIX were
4.8- and 5.0-fold higher, respectively, and almost two times greater depth compared to the
MAL cream application [35]. The NE formulation stabilized the prodrug and enhanced its
penetration through the stratum corneum (SC). However, MAL has shown to be less painful
than BF-200-ALA, resulting in significantly lower treatment interruptions [36]. Besides, a
systematic meta-analysis indicated that among BF-200 ALA, ALA-patch, methyl aminole-
vulinate (MAL), three modalities of imiquimod (3.75–5.0%), cryotherapy, 3% diclofenac in
2.5% hyaluronic acid, 0.5% 5-fluorouracil, and ingenol mebutate, the BF-200 ALA PDT was
the most efficient treatment [37].

In 2010, Szeimies et al. treated 122 patients with actinic keratosis (AK) lesions with
BF-200 ALA vs. placebo. After PDT with BF-200 ALA, the patient and lesion complete
clearance rates reached 64% and 81%, respectively, achieving superior efficacy than placebo
(11% and 22%, respectively) [30,38]. Subsequently, in 2012, Dirschka et al. evaluated
248 patients treated with BF-200 ALA PDT. The results revealed a higher patient complete
clearance rate (78.2%) and an AK lesion complete clearance rate (90.4%) than placebo
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groups (17.1% and 37.1%). Additionally, BF-200 ALA displayed sustainable efficacy after a
1-year follow-up [39].

Another report by Dirschka et al. evaluated the efficacy of BF-200 ALA (7.8% ALA
NE gel) vs. MAL (16% MAL cream) in the treatment of 52 patients in seven centers in
Germany and Spain with mild-to-moderate AK utilizing daylight PDT (dPDT). The use of
dPDT was intended to overcome a major PDT obstacle, especially the need for a specific
illumination with a device that would assist in avoiding post-procedure pain. Impressively,
12 weeks after a single dPDT treatment, 79.8% of the AK lesions treated with BF-200 ALA
gel and 76.5% of the lesions treated with MAL cream were completely cleared. Recurrence
rates one year after treatment were 19.9% for lesions treated with BF-200 ALA and 31.6%
with MAL. Moreover, AK’s dPDT with BF-200 ALA was well tolerated and non-inferior
to MAL/dPDT regarding the efficacy and related pain, showing a trend towards higher
efficacies after three months and significantly lower recurrence rates after 1-year follow-up.
Therefore, dPDT reduced pain and simplified the procedure while maintaining high BF-200
ALA efficacy, showing to be a promising treatment for AK lesions [40].

Moreover, in a treatment study with basal cell carcinoma (BCC), 138 patients were
treated with BF-200 ALA or MAL cream. The complete patient clearance rate for BF-200
ALA was 93.4%, compared to 91.8% for the MAL cream. For nodular BCC, 89.3% of
the lesions were cleared with BF-200 ALA vs. 78.6% with MAL cream. Notably, lesion
recurrence rates after 6 and 12 months were lower with BF-200 ALA (2.9% and 6.7%)
in comparison with MAL cream (4.3% and 8.2%) [41]. Thus, NE ala formulations also
demonstrated therapeutic superiority for BCC.

3.1.2. Temoporfin (mTHPC)

Second-generation topical PSs used in PDT such as temoporfin (mTHPC) and zinc
phthalocyanine (ZnPc) have also been incorporated into NE. Commercially known as
Foscan®, mTHPC is widely used in systemic PDT for cancer therapy as a topical agent. In
2008, Primo et al. evaluated the photophysical and in vitro properties of biodegradable NE
with mTHPC. The mTHPC diffusion flux was increased when this PS was incorporated into
the NE [42]. In vitro assays showed an adequate profile for this system’s interaction in the
different skin layers with an ideal time lag of 6 h. These parameters demonstrated that the
NE could be potentially applied as a DDS for mTHPC in future PDT clinical applications
involving topical skin cancer [30].

Furthermore, Primo et al. reported the synthesis and in vitro characterization of mag-
netic NE with mTHPC. Their results suggested that magnetic NE improves the penetration
of mTHPC in skin layers leading to an adequate accumulation in vivo. The retention stud-
ies showed that the PS concentration in deep tissue layers was significantly higher in the
presence of magnetic nanoparticles, making possible its topical application in skin cancer
PDT protocols and hyperthermia activation in synergic procedures [43].

3.1.3. Pc and Derivatives

The second-generation PS, ZnPc, was evaluated as a topical PDT agent to treat skin
cancers. In 2008, Primo et al. developed a magnetic NE based on biodegradable surfactants.
Preliminary in vitro assays indicated an excellent potential for synergic application in
the topical release of ZnPc and excellent target tissue properties in PDT combined with
hyperthermia activation [44]. ZnPc magnetic NE significantly increased the drug release
in deeper porcine skin layers than the classical formulation in the absence of magnetic
particles. This was suggested to be due to an increase in the DDS biocompatibility and
affinity in the polar extracellular matrix of the skin. An increase in the drug partition inside
the corneocytes could also be responsible for this action.

3.2. Lipid-Based Vesicular Systems

Phospholipid bilayers in a liquid crystalline state are desired for tDDS based on two
broad liposomal formulations categories: conventional liposomes and novel liposomes such
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as the deformable/flexible/elastic lipid-based vesicles (Table 1). Conventional liposomes
are artificial vesicles generally ranging in size from 20 to 1000 nm, composed mainly of an
amphipathic phospholipid bilayer that may or may not contain cholesterol, surrounding
an aqueous core [20]. They are considered biocompatible and safe for transdermal drug
delivery of PSs (Figure 3A).
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their composition, which confer deformability, allowing for deeper drug release in the skin. (C) Ethosomes have a higher
concentration of ethanol in their composition, increasing their flexibility and allowing for deeper drug release in the skin.

Hybrid lipoidal vesicular systems represent various liposomal systems that, apart
from phospholipids, contain other additives yielding deformability or elasticity to the
bilayers. Such deformable/flexible/elastic liposomal formulations have increased drug
permeability through the skin [45]. Taken together, lipid-based vesicular systems have the
potential to improve the topical delivery of PSs by simply incorporating new components
into the liposomal formulation.

Tertiary and quaternary mixtures of oil, water, and surfactants, the latter of which
can be supplemented with a phospholipid, have a long history of applications on the skin.
Such combinations form vesicular or sponge phases and often microemulsions. However,
microemulsions are far less form-adaptable than hybrid lipoidal vesicles, as the latter not
only has a flexible membrane but also can adjust their inner volume easily to vesicle shape
changes [26].

3.2.1. ALA and Derivatives

As previously indicated, ALA has problems of instability and low skin penetration.
Different strategies to enhance ALA penetration for improved PDT results have been
investigated. Liposomal delivery and synthesis of ALA esters are some of the most
extensively studied systems [46]. Liposomes provide an enhanced ALA passage through
the SC, resulting in more precise drug targeting into diseased cells. Liposome-encapsulated
ALA transformation into PpIX is also higher in AK and BBCs than in normal adjacent
skin [47].
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Table 1. Current lipid-based nano- and micro-vesicular systems in use for topical and transdermal drug delivery in photodynamic therapy. Abbr.: 5-aminolevulinic acid (ALA), meso-tetra
(hydroxyphenyl)-chlorin (mTHPC), benzoporphyrin derivative monoacid ring A (BPD-MA), zinc phthalocyanine (ZnPc).

Types Nano-/Micro-Emulsions Conventional
Liposomes Niosomes Transfersomes Ethosomes Invasomes

Structure
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Although the superiority of liposomal PSs was not initially demonstrated [48], in 2001,
Pierre et al. proposed modified liposomes having lipid composition similar to the mam-
malian SC to optimize ALA transdermal delivery in skin cancers [49,50]. The liposomal
vesicles containing 5.7% ALA showed higher skin retention (p < 0.05) on the epidermis
with a decrease of skin permeation compared to an aqueous solution [50]. Likewise, ALA
liposomal formulations resulted in prolonged ALA-induced PpIX accumulation, as well as
better epidermal targeting [51]. Additionally, enhanced ALA penetration with hydropho-
bic derivatives of ALA (ALA-esters, ALA-amino acid derivatives, and ALA dendrimers)
showed promising results in vitro [52]. However, although some ALA-esters yielded strong
in vivo results, only the MAL formulation is currently used in cutaneous malignancies [34].

Approximately a decade later, Dyaderm® (a non-invasive fluorescence imaging system)
combined with ALA encapsulated liposomes were used to detect early NMSCs on the face,
neck, chest, back, and hands of patients treated with UV light or heavy outdoor workers [53].
The diagnostic skin fluorescence system using liposomal encapsulated ALA offered the possi-
bility for early detection of NMSC and was helpful at pre-clinical stages. After the commercial
development of the liposomal ALA and its methyl ester (Metvix®) for PDT, it was found that
liposome-entrapped precursors induced the expression of the proteolytic enzymes metallo-
proteinases (MMPs) in BCC [54]. The MMP-3 expression was blocked after using an MMP-3
inhibitor, suggesting a route to improve topical PDT effectiveness.

In parallel to the advance of conventional liposomal systems, research and develop-
ment of deformable/flexible/elastic lipid vesicles as tDDS were considered for ALA-PDT
towards skin cancer. Critical studies in applying ethosomes as ALA tDDS have also been
developed [55,56]. As a lipid vehicle, ethosomes contain higher concentrations of ethanol
and lipids. The presence of ethanol in the formulation allows drug solubilization (Table 1).
It creates deformable lipid structures that can more easily promote a more profound skin
permeation of both hydrophilic and lipophilic drugs (Figure 3C). Thus, they have superior
drug skin retention and permeation enhancement as well as improved pharmaceutical
properties, including stability at room temperature, high entrapment efficiency, and greater
compatibility with the SC [57]. In vivo experiments by Fang et al. indicated that the pene-
tration ability of ethosomes was superior to that of liposomes [58]. The enhancements of
all the formulations ranged from 11- to 15-fold compared to that of the control (ALA in an
aqueous solution) in PpIX intensity. Colorimetry detected no erythema in the irradiated
skin, favoring ALA-ethosomes for clinical use as a tDDS in anticancer PDT [58]. Addition-
ally, the ALA ethosomal formulation showed a 3.64-fold higher PpIX detection in mouse
skin than the aqueous formulation [59].

More recently, cationic ALA-loaded ultra-deformable liposomes, also known as trans-
fersomes (Figure 3B), showed higher stability and permeability than other tested liposomal
formulations, enabling ALA delivery to deeper skin layers [49] (Table 1). Moreover, cationic
transfersomes allowed higher retention of ALA in cells and improved the induction of PpIX,
indicating better photosensitizing properties compared to other hybrid lipoidal vesicles.

In 2015, Bragagni et al. developed ALA-loaded niosomes, which are amphiphilic
vesicles formed by synthetic non-ionic surfactants (Table 1). These lipid-based vesicles
offer a series of potential advantages over liposomes, including more significant physical
and chemical stability, longer shelf life, greater ease of production and storage, lower
cost, and broader formulation versatility. Ex vivo permeation and penetration studies on
excised human skin revealed that niosomal formulations were significantly more effective
in improving ALA tDDS than aqueous drug solutions, leading to an 80% increase of drug
permeation with 100% of the drug retained in the skin [60].

3.2.2. Temoporfin (mTHPC)

Liposomal formulations have included a broad spectrum of second-generation PSs.
Bendsoe et al. reported the human use of liposomal mTHPC in a topical gel formulation
for PDT to treat NMSC [61]. Subsequently, Johansson et al. reported a novel, selective,
and in-depth distribution of a liposomal mTHPC formulation applied for 4 and 6 h in
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a murine skin tumor model [62]. The results suggested that this PS formulation could
be interesting for topical administration of mTHPC, decreasing the effects of extended
skin photosensitivity associated with systemic mTHPC administration. Possible toxicities
using a liposomal mTHPC were investigated, revealing no general adverse effects with
cats after treatment [63]. However, a low degree of toxicity was demonstrated in 15% of
the test subjects.

Although liposomal mTHPC has shown limited clinical value, this potent second-
generation synthetic PS with hybrid lipoidal vesicles displayed outstanding performance
as tDDS in anticancer PDT. To illustrate this, Dragicevic-Curic et al. repeated the topical
application of mTHPC-loaded invasomes-vesicles, containing a mixture of terpenes or a
single terpene with ethanol in addition to phospholipids (Table 1), onto the skin of mice
bearing subcutaneously implanted human colorectal tumor HT29 followed by photoirradi-
ation. The groups of mice treated with mTHPC-invasomes containing 1% of the terpene
mixture before photoirradiation showed a significantly smaller (p < 0.05) tumor size in-
crease compared to the control groups [64]. In vitro studies of mTHPC-invasomes and
mTHPC-ethanolic solutions in two cancerous cell lines (HT29 and the epidermoid tumor
cell line A431) were able to reduce the survival of these cell lines. Survival of only 16% of
the A431 cells treated with mTHPC-invasomes revealed a promising tool for delivering
mTHPC-PDT to cutaneous malignancies [65].

The same group showed that mTHPC-loaded ethosomes formulated with ethanol
(3.3–20%, w/v) had higher in vitro percutaneous skin penetration than conventional lipo-
somes using human abdominal skin mounted in Franz cells. The mTHPC-liposomes were
of small particle size, small polydispersity index, negative surface charge, unilamellar
or oligolamellar, and a spherical or oval shape. Remarkably, liposomes without ethanol
delivered the lowest amount of mTHPC into the skin, while liposomes containing 20%
ethanol showed the highest penetration. Thus, mTHPC-liposomes containing 20% ethanol
could be a promising tool for delivering mTHPC to the skin, which could benefit the PDT
of cutaneous malignant or non-malignant diseases [66].

Dragicevic-Curic et al. also evaluated the in vitro skin penetration of mTHPC-loaded
neutral, anionic, and cationic transfersomes using human abdominal skin mounted in
Franz diffusion cells (Figure 3B). Besides the effect of surface charge of transfersomes on
skin penetration of mTHPC, its impact on physical properties (particle size, polydispersity
index, lamellarity) and the physicochemical stability of vesicles were investigated (Table 1).
From these mostly unilamellar and spherical vesicles, cationic transfersomes possessed
the highest penetration enhancing ability (mTHPC -amount delivery to SC and deeper
skin layers) than conventional liposomes, neutral, and anionic transfersomes. Regarding
stability, contrasting to anionic transfersomes, neutral and cationic transfersomes were
stable for 9 months at 4 ◦C. Thus, mTHPC-loaded cationic transfersomes showed the
highest potential to be used in anticancer PDT [66].

3.2.3. Pc and Derivatives

Pcs are among the more promising PS due to their intense absorbance in clinically effec-
tive red spectral regions (650–680 nm) and high singlet oxygen quantum yield. Aluminum
(III) phthalocyanine tetrasulfonate (AlPcS4) has been heavily evaluated as a potential PS
due to its ability to generate singlet oxygen. However, its hydrophilic and anionic nature
hampers its transdermal delivery. Kassab et al. showed the efficacy of the hydrophilic
tetra-anionic AlPcS4-loaded transfersomes (Trans-AlPcS4) as a novel technique for topical
delivery in vitro (mammalian fibroblasts) and ex vivo (BALB/c mice dorsal skin). In vitro
studies revealed a two-fold enhancement of the photocytotoxicity of Trans-AlPcS4 com-
pared to free AlPcS4 dissolved in the culture medium. Ex vivo topical application on the
dorsal skin of BALB/c mice revealed that both free AlPcS4 and Trans-AlPcS4 exhibited
photosensitization towards mice skin [67].

As an essential second-generation PS, ZnPc has been evaluated in tDDSs to treat skin
cancers with PDT. Bolfarini et al. prepared a magneto-liposome loaded with cucurbit [7]
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uril (CB [7]):ZnPc complex to improve the water solubility, dissolution, and bioavailability
of this hydrophobic PS [68]. In vitro phototoxicity of both free and liposomal formulations
was carried out on B16-F10 melanoma cells. The liposomal CB [7]:ZnPc showed excellent
phototoxic effects for PDT applications. The cell survival ranged from 78.3% (±1.26) to
30.9% (±0.06) at the lowest and highest light dose, respectively [68].

Transfersomes have also been explored as topical DDS for ZnPc and the nitrosyl ruthe-
nium complex [Ru (NH.NHq)(tpy)NO]3+ (RuNO) as a PS for co-generation of superoxide
and nitric oxide as reactive species [69]. The transfersomes incorporating ZnPc and RuNO
were phototoxic towards B16-F10 melanoma cells while having no dark toxicity. It was
proposed that the novel topical transfersomes could be developed as a suitable tDDS for
PDT [69].

Another important Pc, chloroaluminum phthalocyanine (ClAlPc), has been extensively
explored in PDT against many cancer cell lines. However, ClAlPc is also known to be highly
hydrophobic, requiring a tDDS association for clinical use [70]. Vilsinski et al. showed that
ClAlPc diblock copolymer nanostructures presented highly efficient micellar morphology.
In vitro tests using the Caco-2 human colon carcinoma cell line incubated with ClAlPc
diblock nanomicelles at different Pc concentrations showed cellular damage after 30 min of
LED radiation (663 nm, fluence of 1.62 µJ cm-2), but no cytotoxicity in the dark assays. Thus,
the ClAlPc diblock copolymer produced promising nanomicelles suitable for incorporating
the hydrophobic ClAlPc photosensitizer and subsequent use in the PDT [71]. Even more
exciting, Almeida et al. developed a ClAlPc-loaded Nanostructured Lipid Carrier (NLC), a
mixture of solid and liquid lipids dispersed in an aqueous surfactant solution, composed of
40% of oleic acid that resulted in approximately 99% reduction in BF16-F10 melanoma cell
viability after light radiation. Usually, NLCs have great storage stability and high loading
capacity [72]. Therefore, lipid-based nanocarriers can be valuable carrier systems for the Pc
placement and the application of PDT in skin cancer treatment.

3.2.4. Chlorophyll (CHL) and Derivatives

Some CHL derivatives and dyes belong to the second generation of PSs. They can
absorb light at longer wavelengths and significantly reduce side effects of skin photosensi-
tization due to rapid clearance compared to porphyrin-based PSs. The metallic chlorophyll
derivatives have high absorption spectra at 400–430 nm and 650–670 nm regions and
produce a high yield of superoxide [73]. The ROS production of these metal derivatives
is ordered as such: Ferrous chlorophyllin (Fe-CHL) > Mg-CHL > Cu-CHL, resulting in
Fe-CHL having the most robust photodynamic activity [74].

Noteworthy, although melanotic melanoma is a resistant tumor to various treatment
strategies, including PDT due to melanin optical interference, depigmented melanomas
were successfully treated with Fe-CHL liposomal formulations. Following depigmentation
with phenylthiourea, Gomaa et al. observed a powerful combination of apoptosis and necro-
sis in melanoma cells treated with liposomal-Fe-CHL PDT [74] (Figure 4). Similarly, Rady
et al. reported successful results of depigmented PDT-resistant melanoma treated with
Fe-CHL trans-ethosomes, the combination of transfersome and ethosomes [70]. In vivo
experiments achieved complete regression of small tumors after a single PDT session and
regression of large tumors after two, with eight-month relapse free-survival [70].

To treat squamous cell carcinoma (SCC), Nasr et al. used Fe-CHL-loaded ethosomes
and lipid-coated chitosan (PC/CHI) nanocarriers to enhance tDDS in PDT. Mouse skin ex
vivo assays showed deeper penetration of ethosomes down to the dermis than PC/CHI
nanocarriers, which were confined to the epidermis. However, they showed no significant
difference in skin retention. Conversely, PC/CHI nanocarriers showed higher cytotoxicity
in vitro against human SCC monolayers with no cytotoxic effects before laser exposure.
Thus, both types of nanocarriers can be used for their potential treatment of SCC in PDT
depending on the tumor depth and location in the skin [75].
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drug delivery to treat resistant melanotic melanoma.

4. Physical Approaches for Transdermal Delivery
4.1. Ablative Fractional Technology

The controlled disruption and ablation of the SC, the predominant barrier for top-
ical drug delivery, can be achieved via microneedling, radiofrequency (RF), and lasers.
Recently, the concept of using a laser to treat the skin has attracted increasing attention.
Laser-assisted drug delivery (LADD) involves controlled, selective destruction of the epi-
dermis and dermis to allow for penetration and absorption of topical medications and
large drug molecules. Challenges in predicting LADD’s efficacy and safety include: the
unpredictability of drug dosing and possible systemic toxicity, variability in absorption,
induction of localized and systemic hypersensitivity, and inconsistencies in treatment
protocol [76] (Figure 5).
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Lasers of different wavelengths and types have been employed to increase drug per-
meation. These include the ruby, erbium:yttrium-aluminum-garnet (Er:YAG), neodymium-
doped yttrium-aluminum-garnet, and CO2 lasers [77]. Fractional modality is a novel
concept for promoting topical/transdermal drug delivery [78]. The laser helps enhance
the permeation because of its capacity to produce microscopic ablated vertical channels.
However, LADD parameters need to be adjusted to the patient, skin condition, location,
and drug employed. LADD has been used with various topical products, including PS
ALA for AKs and NMSCs. Generally, LADD is a promising technique that enhances topical
molecules’ absorption while adding to the laser’s synergic effect [77].

ALA and Its Derivatives

Shen et al. were among the first groups to study the in vivo kinetics of PpIX generation
after topical ALA application enhanced by an Er:YAG laser. The enhancement ratios of
PpIX with laser-treated murine skin ranged from 1.7 to 4.9-times compared to the control
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group. The PpIX was more concentrated in superficial epidermal layers with the control
group than that of the laser-treated group. Furthermore, the barrier properties of the
laser-treated skin rapidly recovered within three days. Thus, pretreatment of the skin using
an Er:YAG laser showed to be useful in increasing the amount of PpIX within skin tumor
cells [79].

Additionally, Haedersdal et al. evaluated PS drug delivery of ALA and MAL by a
CO2 ablative fractional laser (AFXL). They established that AFXL increased topical uptake
of these PSs using stacked single 91.6 mJ pulses of 3 milliseconds, followed by topical
MAL application for 3 h (Metvix®). This condition generated approximately 3 mm apart
laser microchannels in the skin and consequently a more homogeneous distribution of
the photobleached porphyrins’ fraction throughout the skin [80,81]. In a comparative
study of the kinetics and biodistribution of ALA- and MAL-induced porphyrins on intact
versus AFXL-exposed swine skin, the latter showed a considerably enhanced signal of
the porphyrin fluorescence of both PSs (p < 0.05). On AFXL-treated skin, MAL briefly
generated a higher fraction of photobleached than ALA. However, ALA induced a higher
photobleached fraction than MAL over time. Additionally, a higher fraction of photo-
bleached porphyrins were observed in hair follicle epithelium for ALA compared to MAL,
implying that AFXL-ALA favors targeting deeper structures [82].

More recently, Paasch et al. evaluated CO2 AFXL-LADD combined with indoor
daylight (IDL) ALA-PDT for effectiveness and safety to treat skin field cancerization
associated with AK. Impressively, all 46 patients showed remission (complete: 71.7%,
partial: 28.3%), suggesting that AFXL-LADD combined with IDL-PDT is an exceptionally
effective treatment. Nevertheless, the high pain scores associated with this combined
approach may prove to be a limiting factor [83].

Other modalities of AFXL to improve tDDS, such as fractional RF and thermomechan-
ical fractional injury (TMFI), have been evaluated. Park et al. demonstrated that fractional
RF with sonophoresis effectively enhanced ALA penetration in swine skin. Pre-fractional
RF followed by post-treatment with sonophoresis was considered a promising therapeutic
combination for ALA-PDT to enhance ALA uptake [84]. Additionally, Shavit et al. evalu-
ated the efficacy of pretreatment by TMFI (Tixel®, Novoxel®, Israel) at low-energy settings
to increase the permeability of the skin to four topical PS preparations, especially: 20%
ALA gel prepared in a good manufacturing practice-certified pharmacy (Super-Pharm
Professional, Israel), 10% ALA microemulsion gel (Ameluz®, Biofrontera Bioscience GmbH,
Leverkusen, Germany), 16.8% MAL cream (Metvix®, Galderma, Lausanne, Switzerland),
and 20% ALA hydroalcoholic solution (Levulan Kerastick®, DUSA Pharmaceuticals, Inc.,
Wilmington, MA, USA). Pretreatment with low-energy TMFI at a pulse duration of 6 mil-
liseconds increased the percutaneous permeation of ALA when the 20% gel was used.
Incredibly, after 2 and 3 h, the TMFI-treated sites exhibited an increased hourly rate of
PpIX fluorescence intensity, which was 156–176% higher than the control (p ≤ 0.004). Thus,
TMFI seems to be a powerful method to enhance the transdermal drug delivery of ALA
and its derivatives. Additionally, the formulation’s characteristics significantly influence
TMFI pretreatment adjutancy [85].

However, although the positive results of LADD-ALA-PDT were observed, a com-
parative study by Chen et al. to evaluate ALA-PDT revealed that plum-blossom needling
(a method of shallow insertion of multiple needles into the skin) had more broad diffu-
sion of ALA than the CO2 AFXL while having a similar clinical effect at a much lower
cost. A clinical trial also revealed that the surface fluorescence intensity was stronger in
needle-pretreated-lesion than in laser-pretreated-lesion. It appears that plum-blossom
needling treatment may be clinically superior for enhancing ALA-tDDS and other topical
skin medications [86].

4.2. Microneedling

The parenteral administration of near-IR preformed PSs suffers from low selectivity
and may result in prolonged skin photosensitivity. MNs can provide localized drug
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delivery to skin lesions and overcome the limitations of delivering into the dermal layer.
In superficial cancer treatments, topical drug administration faces severely low transfer
efficiency (Figure 6). MN-based systems have achieved excellent administration capabilities
and have been tested for pre-clinical PDT [87].
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Donnelly et al. recently reported on the uses of MNs with ALA-tDDS [88–94]. They
employed silicon MNs to overcome the limitation of the low tissue penetration of ALA.
Both in vitro and in vivo results revealed that the MNs increased the skin penetration of
the PS and also enhanced the PpIX production [88]. Additionally, Zhao et al. used sodium
hyaluronate to create fast-dissolving MNs patches [95]. Even though the injection dose
was relatively low, the transdermal pathway achieved a much better tumor inhibition
rate (66–97%) than direct injection. Conversely, Jain et al. coated ALA on solid MNs
and evaluated them in a porcine skin model. In comparison with conventional cream
formulation, the delivery efficacy of these MNs was 3.2-fold higher, with PpIX being
generated at least three times greater amounts (~480 µm), and with better anti-tumor
effects [96].

Donnelly et al. also compared the delivery performance of dissolving- versus hydrogel-
forming MNs loaded with ALA and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosy-
late (TMP). Microneedling significantly enhanced transdermal delivery of both ALA and
TMP in vitro. The MN hydrogel-forming system was comparable with the MN dissolving
system for ALA delivery (~3000 nmol/cm2 over 6h), however superior for delivery of the
much larger TMP molecule (~14 nmol/cm2 over 24h, compared to 0.15 nmol/cm2) [91].
Thus, these results have opened the potential for investigating microneedling with many
other PSs.

4.2.1. Bacteriochlorin

Intradermal delivery of the preformed near-IR PS: 5,10,15,20-tetrakis (2,6-difluoro-
3-N-methyl-sulfamoylphenyl bacteriochlorin (RedaporfinTM) using dissolving MNs was
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successful in vitro and in vivo to treat nodular BCC. MNs demonstrated complete dis-
solution 30 min after topical application and revealed sufficient mechanical strength to
penetrate 450 µm depth of the skin. In vitro studies illustrated that the drug delivery and
detection was 5 mm in-depth of the skin. In vivo biodistribution studies in athymic nude
mice showed both fast initial release with localized drug delivery. The MN-treated mice
showed a progressive decrease in the PS at the application site over 7 days. However, most
of the skin surface showed fluorescence levels comparable to those seen in the negative con-
trol group. These results suggested beneficial effects for polymeric MN arrays in minimally
invasive intradermal delivery to enhance PDT in deep skin lesions [97].

4.2.2. Pc and Derivatives

MN applications with Pcs have also shown encouraging results. Tham et al. developed
a mesoporous nanovehicle with dual loading of PSs and clinically relevant drugs for
combination therapy while utilizing MN technology to facilitate their penetration into the
deep skin tissue [98]. Impressively, the organo-silica matrix dramatically increased the
quantum yield and photostability of Pcs. In ex vivo studies, porcine skin fluorescence
imaging demonstrated that MNs could facilitate the penetration of the nano-vehicles
across the epidermis layer of skin to reach deep-seated melanoma sites. After one hour
of the topical delivery of Pc-nanoparticles or free Pc, the signal on MN-treated samples
increased significantly. The amount of Pc that permeated the skin was 27.2% and 63.1%
without and with the MN, respectively. Remarkably, there was minimal skin penetration
of free Pc, regardless of the MN treatment. Besides, the nanoparticles’ mesopores were
further loaded with small-molecule inhibitors, such as dabrafenib and trametinib, which
target the hyperactive mitogen-activated protein kinase (MAPK) pathway for melanoma
treatment. NIR-irradiated drug-loaded nanovehicle revealed a synergistic killing effect on
melanoma cells through ROS and caspase-activated apoptosis. Tumor regression studies
on a xenografted melanoma mouse model highlighted superior therapeutic efficacy of the
nanovehicle through combinational PDT and targeted therapy as a promising therapeutic
option for malignant melanoma [99].

More recently, Shi et al. developed an innovative MN-dissolving platform for com-
bining PDT and immunotherapy via controlled co-delivery of a ZnPc and checkpoint
inhibitor anti-CTLA4 antibodies. This combination generated synergistic reinforcement
outcomes while reducing side effects. This co-loading carrier is effectively aggregated
around superficial tumors by MN-tDDS. In vivo studies using a mouse 4T1 breast cancer
model with PDT initially exerted tumor cytotoxicity and triggered the immune responses,
synergistically aiding immunotherapy. The possible mechanism and systemic effects of the
combined therapy demonstrated that this co-administration platform could be a promising
tool for focal cancer treatment [100].

5. Conclusions

PDT for cutaneous malignancies has seen a multitude of technological advancements,
which allows for an increase in efficacy and expansion in applications. Impressive clinical
outcomes of this treatment method on more aggressive skin cancers, such as malignant
melanoma, have recently been reported. Beyond ALA and its derivatives, the use of
second-generation PSs, such as mTHPC and Pcs, as well as third-generation have seen
an explosion in applications. Novel transdermal delivery systems have been shown to
mitigate local pain and inflammation as well as lead to increased practicality through the
use of daylight irradiation, increasing treatment adherence.

The use of physical enhancers has shown promise to incorporate heightened formula-
tions such as liposomes, hybrid lipoidal vesicles, and NEs. Additionally, combinations with
other advanced therapeutic agents such as chemotherapeutics, immunomodulators, and
targeted therapy have demonstrated success. These advances allow future perspectives
in specific molecular targeting and immunomodulation of the tumor microenvironment,
which opens the possibility for the development of a transdermal anticancer vaccine with a
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dual role of (1) destroying cancer cells upon photoactivation exposing tumoral antigens,
and consequently (2) promoting a durable anticancer immune response, not only locally,
but also in distant metastasis.
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chloroaluminum phthalocyanine ClAlPc
chlorophyll CHL
drug delivery systems DDS
daylight PDT dPDT
ferrous chlorophyllin Fe-CHL
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near-infrared NIR
nitrosyl ruthenium complex [Ru (NH.NHq)(tpy)NO]3+ RuNO
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