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abstract

PURPOSE Predicting cancer dependencies from molecular data can help stratify patients and identify novel
therapeutic targets. Recently available data on large-scale cancer cell line dependency allow a systematic
assessment of the predictive power of diverse molecular features; however, the protein expression data have not
been rigorously evaluated. By using the protein expression data generated by reverse-phase protein arrays, we
aimed to assess their predictive power in identifying cancer dependencies and to develop a related analytic tool
for community use.

MATERIALS AND METHODS By using a machine learning schema, we conducted an analysis of feature im-
portance based on cancer dependency and multiomic data from the DepMap and Cancer Cell Line Ency-
clopedia projects. We assessed the consistency of cancer dependency data between CRISPR/Cas9 and short
hairpin RNA–mediated perturbation platforms. For a fair comparison, we focused on a set of genes with robust
dependency data and four available expression-related features (copy number alteration, DNA methylation,
messenger RNA expression, and protein expression) and performed the same-gene predictions of the cancer
dependency using different molecular features.

RESULTS For the genes surveyed, we observed that the protein expression data contained substantial predictive
power for cancer dependencies, and they were the best predictive feature for the CRISPR/Cas9-based de-
pendency data. We also developed a user-friendly protein-dependency analytic module and integrated it with
The Cancer Proteome Atlas; this module allows researchers to explore and analyze our results intuitively.

CONCLUSION This study provides a systematic assessment for predicting cancer dependencies of cell lines from
different expression-related features of a gene. Our results suggest that protein expression data are a highly
valuable information resource for understanding tumor vulnerabilities and identifying therapeutic opportunities.
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INTRODUCTION

Understanding the genotype-phenotype relationships of
cancer cells is a central task for precision cancer med-
icine because it will help classify patients into different
treatment groups and identify novel therapeutic targets.
The recent genome-wide short hairpin RNA (shRNA) or
CRISPR/Cas9-mediated cell viability screens provide
a unique opportunity to systematically characterize
cancer dependencies in human cancer cell lines.1-3 For
example, the DepMap portal has curated the de-
pendency profiles of approximately 18,000 genes across
more than 500 human cell lines. Several studies have
assessed the possibility of predicting cancer dependency
from genomic or transcriptomic features.3,4 Although
proteins are basic functional units in most biologic pro-
cesses and represent the vast majority of therapeutic
targets, proteomic features have not been evaluated along
with those DNA- or RNA-level features in such studies.

RPPAs are a powerful approach to generate functional
proteomics data. This quantitative antibody-based
assay can assess a large number of protein markers
in many samples in a cost-effective, sensitive, and
high-throughput manner.5-7 By using RPPAs, we have
characterized a large number of patient and cell line
samples through The Cancer Genome Atlas,8,9 Cancer
Cell Line Encyclopedia (CCLE),10-13 and MD Anderson
Cell Line projects.14 Furthermore, we have built an
open-access, dedicated bioinformatics resource, The
Cancer Proteome Atlas (TCPA), for the cancer re-
search community to study these large-scale func-
tional proteomic data in a rich context.14-17 Here, we
used a rigorous machine learning (ML) schema to
evaluate the cancer-dependency predictive power of
the RPPA-based protein expression along with other
expression-related molecular features (ie, copy num-
ber alteration [CNA], DNA methylation, and mRNA
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expression). We also implemented a new protein-
dependency analytic module in TCPA, thereby allowing
users to explore, analyze, and visualize the relationships
between protein expression and cancer dependency.

MATERIALS AND METHODS

Collection of RPPA, Cancer Dependency, and Other

Molecular Profiling Data

We downloaded the RPPA data from the CCLE,10-13 which
assayed 214 protein markers across 899 cell lines (https://

portals.broadinstitute.org/ccle). We obtained cancer de-
pendency data, including CRISPR/Cas9 (DepMap19Q1)2,18

and shRNA (DEMETER2)1 data sets, from the DepMap portal
(https://depmap.org/portal). We also collected CNA, DNA
methylation, and mRNA expression data from CCLE (https://
portals.broadinstitute.org/ccle).

Model Outcome and Feature Engineering

We considered a regression task in dependency scores
(cell growth change) that experienced gene knockdown

CONTEXT

Key Objective
This study aimed to systematically assess the predictive power of different expression-related features of a gene for its cancer

dependency through a rigorous machine learning (ML)–based feature importance analysis and develop the related
bioinformatics module for community use.

Knowledge Generated
Reverse-phase protein array (RPPA)-based protein expression data contain substantial predictive power as messenger RNA

(mRNA) expression for cancer dependencies. Through our newly developed analytic module, researchers can discover
novel genotype-phenotype patterns, generate testable hypotheses, and interpret biologic findings in a tumor context–
dependent manner.

Relevance
This is a systematic analysis that assesses the predictive power of protein expression in inferring gene dependencies across

a large number of cell lines. The developed analytic module is a valuable informatics tool for understanding tumor
vulnerabilities and identifying therapeutic opportunities.
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FIG 1. Data processing and the definition of the machine learning problem. (A) The procedure to obtain the final set that contains the data of the model
outcome and all available features. (B) A cartoon representation of the cis-prediction (same gene) of cancer dependency from the four expression-related
features, including protein (orange), messenger RNA (mRNA; blue), copy number alteration (CNA; yellow), and DNA methylation (green).
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(shRNA) or knockout (CRISPR/Cas9). Specifically, the
response variable (model outcome) is a vector of de-
pendency scores for each gene across cell lines. A score of
0 indicates that a gene is not essential, whereas a score of

–1 corresponds to the median value of all common es-
sential genes. The explanatory variables (predictors) were
the self-features that were related to gene expression. To
ensure the quality of the model outcome, we first
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FIG 2. Overview of machine learning schema.
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constructed a robust cancer dependency set by collecting
genes and cell lines that showed high consistency between
shRNA (DEMETER2) and CRISPR/Cas9 (DepMap19Q1)
experiments. Next, this robust dependency set was over-
lapped with the cell lines and genes from CCLE to extract
available data for model training (Fig 1A). To conduct a fair
comparison, we considered only three expression-related
DNA or RNA features (CNA, DNA methylation, and mRNA
expression) with the RPPA-based protein expression data
(total protein levels) from the same set of cell lines and
performed cis-prediction (for the same gene) between the
cancer dependency (response variable) and molecular
features (explanatory variables) (Fig 1B).

ML Schema

As shown in Figure 2, the samples (cancer cell lines) were
randomly split into a training set (70%) and a held-out
testing set (30%). To test which ML algorithm performed
best, we adopted three common classifiers: linear re-
gression, random forest, and conditional random forest. We
also conducted a baseline model to exclude failed pre-
dictions by using the averaged dependency score as the
predicted values. For model training, we performed 10-fold
cross validation using the training set and repeated the
procedure 10 times to avoid model overfitting. Then, we
applied the trained models on the held-out testing set. The
prediction performance was measured and compared
using the root-mean-square error (RMSE) and R2. We

trained models for each gene dependency. A dependency
was flagged as predictable if it had at least one classifier
that outperformed (had lower RMSE than) the baseline
model in both the training and testing predictions. For the
genes with predictable dependencies, we selected the best
classifier (with the highest R2) based on the testing results
and used the selected classifier to retrain the model using
all samples. Finally, to evaluate the individual contribution
of each feature, we performed a feature importance
analysis to identify the best predictor for each dependency.
We implemented this ML schema in R v3.5.0 using the
caret package19 with the ML methods of lm, rf, and cforest.
In addition, we used the varImp function to estimate the
feature importance.

Development of the Protein-Dependency Analytic Module

We used R and Python libraries to process and analyze the
data. All the precomputed analytic results were converted
into the JSON format and loaded into the CouchDB da-
tabase for users to query and analyze. We used JavaScript
D3 and the Angular library to construct the Web user in-
terface of the protein-dependency analytic module. The
module displays the table results by DataTables and the
nested plots by HighCharts.

Data Sharing Statement

The data and results are available at the TCPA website
(http://tcpaportal.org/mclp).
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FIG 4. Frequencies of the best models observed in all the tested gene dependencies. For the dependency of a gene, the root-mean-square error (RMSE) orR2

scores were computed for every model in either the training or the testing set. For each measurement type, the scores from the four models were compared,
and a model was selected as the best if it exhibited the best performance (the smallest RMSE or the largestR2). The bar plots show the counts of the observed
best models among all 58 tested dependencies. A dependency was flagged as a failed prediction if the baseline model was selected as the best according to
the RMSE score. (A) Bar plots based on the CRISPR/Cas9 platform (34.5%of the dependencies failed). (B) Bar plots based on the short hairpin RNA (shRNA)
platform (36.2% of the dependencies failed).

Chen et al

360 © 2020 by American Society of Clinical Oncology

http://tcpaportal.org/mclp


RESULTS

Construction of a Robust Cancer Dependency Data Set

To ensure the data quality of the cancer dependency
scores, we constructed a robust cancer dependency set.
The shRNA (DEMETER2) and CRISPR/Cas9 (Dep-
Map19Q1) platforms shared 403 cancer cell lines and
14,913 genes (Fig 3A-B). We first evaluated the consis-
tency between the two platforms by computing Pearson’s
correlations across genes for each cell line (Fig 3C) and the
correlations across cell lines for each gene (Fig 3D). The
results showed that almost all the cell lines (99.8%, except
for one) showed significant positive correlations of cross-
platform cancer dependencies (P , .01; false discovery
rate [FDR] , 0.1; R ≥ 0.3). In contrast, only 862 genes
(5.8%) showed significant positive correlations across cell
lines (P, .01; FDR, 0.1;R≥ 0.3). This pattern suggested
that many of the dependencies resulted from random

effects and thus could not be preserved across the plat-
forms. In subsequent analyses, we retained only 402 cell
lines and 862 genes that showed significant consistency
between the shRNA and CRISPR/Cas9 platforms to reduce
potential random noise.

Predictive Power of Protein Expression in

Cancer Dependency

On the basis of the designed ML schema (Fig 2), we
assessed the predictive power for 58 genes in 312 cell lines
for which all four expression-related features (CNA, DNA
methylation, mRNA, and protein expression) were avail-
able. First, we excluded the unreliable predictions from the
assessment. By comparing with the baseline models, we
found that more than 60% of gene dependencies could be
successfully predicted from self-expression–related fea-
tures irrespective of the platform (CRISPR/Cas9, 65.52%,
Fig 4A; shRNA, 63.79%, Fig 4B). The ML models learned
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FIG 5. Feature importance analysis among the predictable gene dependencies. We evaluated the feature im-
portance for approximately 40 predictable dependencies using the varImp function in the R package caret. Ap-
pendix Figure A1 shows the performance of the selected models used for this importance analysis. The importance
scores were normalized to the range of 0% to 100%. For each dependency, we compared the importance scores of
the four features and selected the one with the highest score as the best predictor. (A) A pie chart showing the
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based on the CRISPR/Cas9 platform. (B) A pie chart showing the frequency of the observed best predictor and a box
plot showing the important score distribution of each feature based on the short hairpin RNA (shRNA) platform.
CNA, copy number alteration; mRNA, messenger RNA.
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better from the CRISPR/Cas9 platform than from the
shRNA platform. Next, among the genes with predictable
dependencies, we investigated which feature was the most
important in inferring cancer dependencies. As shown in
Fig 5A, 38.5% of the dependencies could be best inferred
by protein expression when using the CRISPR/Cas9 plat-
form data, followed by CNA (28.2%), mRNA expression
(20.5%), and DNA methylation (12.8%). But the pattern
changed when using the shRNA-defined dependencies
(Fig 5B); the best predictor wasmRNA expression (40.5%),
followed by protein expression (32.4%), CNA (18.9%), and
finally DNA methylation (8.1%). We then investigated the
importance score distributions of the four features (Fig 5;
Appendix Tables A1 and A2) and found that, in both
platforms, the importance of the protein expression feature
could not be distinguished from that of the mRNA feature.
Nor could the importance of the CNA feature be distin-
guished from that of the protein and mRNA features in the
CRISPR/Cas9-defined dependencies, even though the
CRISPR/Cas9 dependencies had been corrected for copy-
number effect. The different patterns observed for the
shRNA and CRISPR/Cas9-defined dependencies may be

a result of certain fundamental technical issues. For ex-
ample, the superior performance of the mRNA feature in
shRNA-defined dependencies is likely caused by the
knockdown effects targeting mRNAs. Despite the relatively
small number of genes and proteins surveyed, our results
suggest that RPPA-based protein expression data contain
substantial predictive power for cancer dependencies, at
least equivalent to RNA sequencing–based mRNA ex-
pression, and they perform best when using CRISPR/Cas9
dependencies.

Newly Developed Protein-Dependency Analytic Module

in TCPA

The above results highlight the utility of RPPA-based
proteomic data in understanding cancer phenotypes and
identifying novel therapeutic targets. Therefore, we de-
veloped a protein-dependency analytic module and in-
tegrated it into the cell-line Web platform of TCPA. This
user-friendly, interactive module allows researchers to
explore, visualize, and analyze the relationships between
the RPPA and cancer dependency data. We included two
independent RPPA data sets10,14 for users to examine the
protein-dependency relationships of interest with ease. The
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module provides a straightforward, intuitive table view so
that users can investigate whether the expression level of
a protein is a good predictor for the corresponding cancer
dependency across cancer cell lines (tested by Pearson’s
correlation; visualized by scatter plots; Fig 6). The first
column contains the protein markers, followed by the
knockdown or knockout genes and their assessment
platform (shRNA or CRISPR/Cas9) and then the corre-
sponding statistic and P value.

DISCUSSION

In this study, we assessed the potential of RPPA-based
protein expression to infer cancer dependencies through
a rigorous ML-based feature importance analysis. To the
best of our knowledge, this is the first systematic analysis to
elucidate the predictive power of protein expression in
inferring gene dependencies across a large number of cell
lines. Our findings provide a strong rationale for in-
corporating protein expression data into the prediction
tasks of cancer dependencies. One limitation of this study is

the relatively small number of genes and proteins assessed,
which limits the statistical power compared with other
expression-related features. Our RPPA platform covers only
approximately 200 protein markers, and we are in the
process of expanding the protein list to approximately 500
proteins. We will revisit this topic when a larger RPPA data
set becomes available. In addition to the dependency of its
gene, the protein level likely helps predict the effects of
other genes, and for such an analysis, a similar ML strategy
equipped with advanced feature selection techniques is
warranted. We also implemented a new analytic module in
TCPA that can be used to directly analyze and visualize the
relationships between protein expression and cancer de-
pendencies across cancer cell lines. This module will help
researchers discover novel genotype-phenotype patterns,
generate testable hypotheses, and interpret biologic find-
ings in a tumor context–dependent manner. We expect it to
be a valuable bioinformatics tool for the cancer research
community.
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APPENDIX
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FIG A1. Performance of the selectedmodels in Figure 5. (A) Box plots ofR (Pearson’s correlations) stratified by model
types. (B) Box plots of RMSE stratified by model types. RMSE, root-mean-square error; shRNA, short hairpin RNA.
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TABLE A1. Top 10 Predictions for CRISPR/Cas9-Based Dependencies Ranked by R2

Gene R 2

CNA Methylation mRNA Protein

Importance
Score (%) r

Importance
Score (%) r

Importance
Score (%) r

Importance
Score (%) r

GATA3 0.43 0 0.00 2.68 0.36 100 –0.64 54.46 –0.60

BCL2 0.43 0 –0.05 0.4 0.17 64.89 –0.54 100 –0.59

CDKN1A 0.34 0 0.03 1.34 –0.05 100 0.53 52.88 0.37

TP53 0.27 21.23 0.04 0 –0.03 15.37 –0.08 100 –0.29

CCND1 0.26 11.49 –0.14 13.45 0.23 100 –0.36 0 –0.07

CCNE1 0.26 4.56 –0.23 0 0.04 69.16 –0.33 100 –0.44

ERBB2 0.26 100 –0.38 0 0.15 97.34 –0.34 68.82 –0.40

MYC 0.23 13.58 –0.04 0 –0.08 100 –0.22 0.29 –0.12

WWTR1 0.21 0 –0.13 53.62 0.36 36.78 –0.27 100 –0.36

BCL2L1 0.20 0.92 –0.12 44.46 0.34 100 –0.42 0 –0.19

NOTE. The importance scores and Pearson’s correlation coefficients (r) were computed between cancer dependency and every feature.
Abbreviations: CNA, copy number alteration; mRNA, messenger RNA.

TABLE A2. Top 10 Predictions for shRNA-Based Dependencies Ranked by R2

Gene R 2

CNA DNA Methylation mRNA Protein

Importance Score (%) r Importance Score (%) r Importance Score (%) r Importance Score (%) r

GATA3 0.43 0 –0.13 0.62 0.33 100 –0.69 44.31 –0.63

TP53 0.35 12.48 0.08 0 0.04 49.24 0.01 100 –0.31

ERBB2 0.32 19.61 –0.47 0 0.03 100 –0.58 6.71 –0.43

CDKN1A 0.30 4.35 0.06 0 –0.04 100 0.5 14.59 0.27

CCND1 0.24 0 –0.19 6.02 0.19 100 –0.41 12.31 –0.16

BCL2 0.24 0 –0.18 5.32 0.2 97.28 –0.35 100 –0.44

MDM4 0.24 10.69 –0.18 0 0.12 2.78 –0.21 100 –0.42

CCNE1 0.23 42.18 –0.34 0 0.04 91.3 –0.45 100 –0.44

BCL2L1 0.23 6.1 –0.2 28.94 0.34 100 –0.44 0 –0.21

BRAF 0.22 100 –0.32 0 –0.03 3.76 –0.02 0.71 –0.11

NOTE. The importance scores and Pearson’s correlation coefficients were computed between cancer dependency and every feature.
Abbreviations: CNA, copy number alteration; mRNA, messenger RNA; shRNA, short hairpin RNA.

Chen et al

366 © 2020 by American Society of Clinical Oncology


	Predicting Cancer Cell Line Dependencies From the Protein Expression Data of Reverse
	INTRODUCTION
	MATERIALS AND METHODS
	Collection of RPPA, Cancer Dependency, and Other Molecular Profiling Data
	Model Outcome and Feature Engineering
	ML Schema
	Development of the Protein
	Data Sharing Statement

	RESULTS
	Construction of a Robust Cancer Dependency Data Set
	Predictive Power of Protein Expression in Cancer Dependency
	Newly Developed Protein

	DISCUSSION
	REFERENCES
	APPENDIX


