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Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding
methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular
mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine
involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric
schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to
understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when
looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when
plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an
attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of
postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications,
which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and
delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from
the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light
of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of
neuronal phenotype.

1. Introduction

1.1. Molecular Mechanisms of Methamphetamine. Metham-
phetamine (METH) is a widely abused psychostimulant with
powerful addictive and neurotoxic properties. This com-
pound rapidly enters and persists within the central nervous
system (CNS) [1, 2]. In fact, METH has a long half-life, which
ranges from 10 to 12 hours [3]. METH kinetics within the
ventral striatum parallel the time course of being “high” felt
by METH users, who in fact, experience euphoria along
with motor stimulation, excitation, increased energy, active
waking state, sleeplessness, and alertness [4–6]. Such acute
behavioral effects are due to early neurochemical events
produced by METH, which consist in a rapid release of

monoamines, mainly dopamine (DA), from nerve termi-
nals. This occurs mostly within the striatum, where DA ter-
minals are mostly abundant, though specific limbic regions
and isocortical areas are involved as well [7–11]. The cellu-
lar effects induced by METH may be roughly summarized
by its interaction with three molecular targets: (1) the syn-
aptic vesicles and vesicular monoamine transporter type-2
(VMAT-2) (Figure 1). VMAT-2 belongs to the VMAT class
of vesicular membrane proteins, which exist in two distinct
forms, namely, VMAT1 and VMAT2. Both isoforms are
responsible for the selective recognition and transport of
cytosolic monoamines DA, norepinephrine (NE), and sero-
tonin (5-hydroxytryptamine (5-HT)) within synaptic vesi-
cles [12]. VMAT-2 and VMAT-1 are expressed in both
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neuronal and nonneuronal cells such as the chromaffin cells
of the adrenal medulla. However, VMAT-2 prevails in the
brain where it has a higher affinity for DA and NE com-
pared with VMAT-1 [12]. VMAT-2 plays a key role in
cytosolic DA homeostasis and release, since it guarantees
the vesicular packaging and storage of both newly synthe-
sized and synapse-recycled DA; (2) the plasma membrane
DA transporter (DAT) (Figure 2), which selectively takes
up extracellular DA within DA terminals; and (3) the
monoamine oxidase (MAO) enzyme (Figure 3), which is
the main intracellular enzyme responsible for the oxidative
deamination of DA, NE, and 5-HT. MAOs exist as two dif-
ferent isoforms, MAO-A and MAO-B, which are placed at
the level of the outer mitochondrial membrane of distinct
vcell populations in the CNS [13]. In fact, MAO-A are
present within catecholamine-containing neurons (DA, NE,
and Epinephrine neurons), whereas MAO-B occur mainly
in 5-HT cells and glia. Thus, the presence of MAO-A within
DA terminals is crucial for the oxidative metabolism of
intracellular DA, which together with VMAT-2 and DAT
mediating DA uptake within the nerve terminals and within
synaptic vesicles, respectively, represent the most powerful
system to surveil DA activity. The activities of all these pro-
teins are impaired by METH, once it enters the DA termi-
nals via either passive diffusion or DAT.

In detail, at the level of synaptic vesicles, METH produces
a variety of effects, which before affecting VMAT-2, are key
in releasing DA (Figure 1). These effects are summarized as
follows: (1) disruption of the proton gradient through the
DA-storing vesicles due to the high pKa (pKa= 10.1) of
METH, which rises the acidic compartment towards basic
values, thus making nonpolar DA freely diffusible out of
the vesicles [14–16]; (2) direct inhibition of VMAT-2
[17, 18], which prevents DA from reentering the vesicles;

and (3) redistribution of VMAT-2 molecular complex from
vesicle membranes to noncanonical membrane compart-
ments such as those of the trans-Golgi network [19, 20],
where DA may be inappropriately, though poorly, stored.
The loss of physiological DA storage generates massive DA
extravesicular levels within DA axons [21, 22] (Figure 1). It
is noteworthy that a combined effect of METH as a weak base
to tone down the pH gradient needs to be accompanied by a
selective effect on VMAT-2 since alkalinization per se may be
nonsufficient to fully produce the typical redistribution of
vesicular DA [16]. This is confirmed by administering
bafilomycin, which acts as a proton pump inhibitor only,
with no effects on VMAT-2. Despite decreasing the pH
ratio vesicle/cytoplasm 2-fold more than METH, bafilomy-
cin redistributes only half of METH-induced DA levels in
the extracellular compartment [23]. Once in the cytosol,
METH also acts at the level of mitochondria (Figure 3)
where two targets are affected: (4) METH inhibits complex
II at the mitochondrial respiratory chain [24] and (5) METH
inhibits MAO-A placed on the outer mitochondrial mem-
brane [13]. This latter effect occurs as a competitive inhibi-
tion of METH upon MAO-A with a 10-fold higher affinity
compared with MAO-B [13]. In both mice and humans,
MAO-A are quite selectively placed within DA terminals.
This is key since within DA terminals, MAO-A are coupled
with aldehyde dehydrogenase (AD), which converts the
highly reactive by-product of DA oxidation (3,4-dihydroxy-
phenylacetaldehyde (DOPALD)) into the quite inert 3,4-
dihydroxyphenylacetic acid (DOPAC). The impairment of
MAO-A may also include uncoupling between MAO-A
and AD [25] (Figure 4).

In the absence of such a compartmentalized physiological
oxidative deamination, DA autooxidation produces a high
amount of reactive aldehyde DOPALD, which owns a
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Figure 1: The effects of METH on DA-storing vesicles. METH enters into DA terminals either through the plasma membrane DAT or via
passive diffusion. Within the axoplasm, it targets DA-storing vesicles to (1) disrupt their proton gradient, (2) inhibit and revert VMAT-2, and
(3) displace VMAT-2 elsewhere (i.e., trans-Golgi network). These effects disrupt the physiological storage of DA, which diffuses from vesicles
to the axoplasm and from the axoplasm to the extracellular space.
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dramatic oxidative potential and quickly interacts with sur-
rounding proteins, by targeting oxidation-prone domains
[25, 26]. Autooxidative DA metabolism leads to the genera-
tion of toxic quinones and highly reactive chemical species
such as hydrogen peroxide (H2O2) and superoxide radicals,
which in turn react with sulfhydryl groups and promote
structural modifications of proteins, lipids, and nucleic acids
within the DA axon terminals and surrounding compart-
ments (Figure 5) [15, 27–39].

On the one hand, these effects drive a powerful oxidative
stress for presynaptic DA terminals, which is key in produc-
ing nigrostriatal toxicity [27–31, 34, 40–43]. On the other
hand, elevated cytosolic presynaptic DA diffuses in the extra-
cellular space either by passive diffusion or via the reverted
direction of DAT, another molecular effect which is pro-
moted by METH (Figures 1–5) [14, 16, 33, 44]. All these
effects also cause peaks of extracellular DA concentration,
which produce synaptic effects at short distance. At striatal
level, this paracrine environment encompasses medium-
sized spiny neurons (MSNs). Nonetheless, due to the propen-
sity of extracellular DA to diffuse at considerable distance
from the DA terminals according to a volume transmission
[45–47], other extrasynaptic sites may be affected as well.
Such a paracrine spreading of extracellular DA is magnified
during METH administration, since METH reverts DA
uptake [33], thus preventing the main mechanisms of DA
removal. This produces unusually high extracellular (and
mostly striatal) DA levels which reach out nonneuronal tar-
gets including the neurovascular unit, which is also affected
by METH administration [48, 49]. Intriguingly, the role of

MAO-B enzymes in extracellular DA metabolism remains
to be clearly established. In fact, although they occur outside
DA cells, mainly within glia (Figures 3–5), they do not influ-
ence much the amount of extracellular DA [25, 50–53]. It is
worth of noting that pulsatile METH intake/administration
produces considerable oscillations of extracellular DA, which
ranges from high peaks (exceeding 10-fold baseline levels) to
severe deficiency (no detectable extracellular levels in brain
dialysis techniques) within just a few hours [38, 54–56]. This
pulsatile pattern of extracellular DA concentrations mag-
nifies the slight variations produced by physiological release,
such that, METH produces an abnormal stimulation (all and
none) of postsynaptic neurons. For instance, pulsatile activa-
tion of postsynaptic DA receptors triggers noncanonical
transduction pathways, which, along with the diffusion of
abnormal reactive oxygen (ROS) and nitrogen (RNS) species,
alter the response of postsynaptic neurons as mainly studied
at the level of GABA MSNs [57–59] (Figure 6).

The impact of such a nonphysiological (in time, amount,
and place) DA release is largely to blame when considering
both the behavioral syndrome occurring immediately after
METH intake and long-term behavioral changes including
addiction, craving, relapse, and psychotic episodes, which
reflect mainly the persistent alterations in postsynaptic DA
brain regions following chronic METH exposure. As we shall
see, overstimulation of postsynaptic DA receptors alternating
with a lack of stimulation within an abnormal redox context
drives most epigenetic effects. After mentioning the presyn-
aptic effects of METH (to understand the role of redox spe-
cies in causing the loss of integrity of DA axon terminals),
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Figure 2: The effects of METH on DAT. METH impairs DAT activity either via direct inhibition or via reverting its direction. Such an effect
potentiates the accumulation of freely diffusible DA in the extracellular space and prevents the main mechanisms of DA removal (reuptake
within DA terminals).

3Oxidative Medicine and Cellular Longevity



the present review discusses the postsynaptic changes in rela-
tionship with epigenetics, DNA alterations, and persistent
phenotypic changes produced by METH.

2. Presynaptic Effects of METH

In the present section, we wish to mention that METH pro-
duces presynaptic toxicity within DA terminals. As thor-
oughly revised by Moratalla et al. [34], the neurotoxic
effects of high doses of METH, which occur both in a variety
of experimental models and human abusers, are due to an
excess of intracellular mostly DA-related, oxidative cascade
(Figure 5). At first, such a toxicity was considered to be rele-
vant only for DA axon terminals. Such neurotoxicity is doc-
umented by the following markers: (i) a steady decrease in
striatal DA levels and striatal DA uptake sites [54, 60–63],
(ii) loss of tyrosine hydroxylase (TH)-activity, TH immuno-
blotting and TH immunohistochemistry [64–71], and most
directly, (iii) the occurrence of silver-stained (Fink-Heimer
method) [61, 62] or amino-cupric silver-stained (de Olmos
procedure) degenerating nerve fibers within the striatum
[72]. Some studies also indicate the occurrence of METH-
induced toxicity at the level of neuronal cell bodies in the
substantia nigra pars compacta (SNpc). This was firstly
reported by Sonsalla et al. [63], although this study was based
on TH immunohistochemistry (which does not necessarily

reflect an actual cell loss) and Nissl staining (with neither ste-
reological counts nor positive evidence for a damage of the
cell body). Further studies confirmed a loss of mesencephalic
DA neurons even within the ventral tegmental area [67], but
again, no stereological count was carried out. Other studies
provided indirect evidence of cell death (TH immunohisto-
chemistry, TUNEL assay, Fluoro-Jade B, or Nissl staining)
[69–71, 73]. In a recent manuscript by Ares-Santos et al.
[72], neuronal cell death of TH-positive neurons was visual-
ized directly by using cupric silver staining (modified accord-
ing to Beltramino and de Olmos). To our experience, a
certain amount of cell loss is detectable only when very high
doses of METH are administered, which corresponds to a
loss of nigrostriatal DA terminals ranging over 80%, as dem-
onstrated in the original article by Ares-Santos et al. [72].
Altogether, these findings are consistent with an increased
risk to develop Parkinson’s disease (PD), which is now quite
well established in METH abusers [74–77]. Similarly to PD,
METH produces neuronal inclusions in DA-containing
PC12 cells and within SNpc neurons of mice [38, 78–84] as
well as in humans [85]. These inclusions start as multilamel-
lar whorls, which further develop as cytoplasmic inclusions
reminiscent of PD-like Lewy bodies. In fact, these inclusions
contain a high amount of ubiquitin and other proteins such
as alpha-synuclein (α-syn), parkin, UchL1, and HSP70,
which are typical markers of PD. Remarkably, most of these
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Figure 3: The effects of METH onmitochondria. METH impairs the activity of complex II of the mitochondrial respiratory chain and directly
inhibits MAO-A placed on the outer mitochondrial membrane within DA terminals. METH also inhibits MAO-B placed extracellularly at the
level of glia. However, the affinity of METH for MAO-B is tenfold less when compared with MAO-A. Thus, MAO-B inhibition does not
influence that much the amount of extracellular DA.
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proteins are substrates of ubiquitin proteasome- (UP-) and
autophagy- (ATG-) clearing systems, which are markedly
affected during METH toxicity (Figure 5) [38, 79–81, 83, 86].

3. Postsynaptic Effects of METH

METH effects on postsynaptic compartment are multiface-
ted. Even neurotoxicity may extend to postsynaptic neuronal
cell bodies throughout the striatum, hippocampus, and fron-
tal cortex [72, 73, 87–94]. A pioneer manuscript by Jakel and
Maragos [95] discussed very well how activation of DA
receptors on striatal neurons as well as DA-derived oxidative
species and oxyradicals might all converge to accelerate stria-
tal neuronal cell loss in a specific striatal neurodegenerative
disorder such as Huntington disease (HD). In fact, DA itself,
DA-derived free radicals, and glutamate- (GLUT-) induced
excitotoxicity may synergize to produce detrimental meta-
bolic and oxidative effects on postsynaptic non-DA neurons
(Figure 6). As we shall see, the interaction between DA and
GLUT, as well as the convergence of signaling cascades
placed downstream plasma membrane receptors, may be
enhanced under chronic METH intake. In fact, striatal
postsynaptic neurons increase their responsivity to both
DA and GLUT following specific patterns of chronic METH
administration. Along with diffusion of free radicals, which
fuel oxidative damage, the striatal compartment challenged
by METH is filled with DA acting on its receptors. It is well
known that overstimulation of D1-like DA receptors (mainly
D1 DA receptors (DRD1)) leads to a switch in the transduc-
tion pathway towards noncanonical signaling, which, in turn,

generates a number of adaptive biochemical events [96–101].
This is evident when considering that an altered DRD1
signaling produced by METH enhances corticostriatal
excitation by activating GLUT receptors and potentiating
GLUT release. In extreme conditions, this may produce
excitotoxicity within striatal GABA neurons [102–107]. In
fact, increased extracellular GLUT and activation of its N-
methyl-d-aspartate (NMDA) receptors promote calcium
(Ca2+) entry within neurons as well as activation of nitric
oxide synthase (NOS), which trigger an enzymatic cascade
further increasing reactive oxygen species (ROS) and nitro-
gen species (RNS) [108–111]. Thus, followingMETH admin-
istration, GLUT synergizes with DA to produce oxidative
stress, mitochondrial dysfunction, and inflammatory reac-
tions, which synergistically interact to promote neuronal
damage (Figure 6) [34, 42, 43, 109]. In line with this, cell
inclusions filled with oxidized substrates are also detectable
in the cytoplasm and within the nuclei of striatal GABAergic
MSNs due to an overstimulation of DRD1 under METH
administration [38]. This suggests that DA, acting on
DRD1 joined with DA-derived free radicals, altogether may
alter even nuclear signaling within GABA cells (Figure 6)
[99]. Such an effect is expected to significantly alter DNA sta-
bility [29, 110–116].

Even the occurrence of striatal cytoplasmic inclusions
within MSNs is likely to be due to combined mechanisms.
In fact, it is well known that oxidative stress alters cell
clearing systems, which is a seminal step in the generation
of inclusion bodies containing oxidized/aggregated proteins
[95, 117, 118]. At the same time, administration of DRD1
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agonists reproduces neuronal inclusions within MSNs [38],
which are prevented by DRD1 antagonists [38, 82]. None-
theless, both DRD1 antagonists/deletion of the DRD1 gene and
antioxidant compounds can protect fromMETH-induced oxi-
dative stress and cell injury and retard/counteract behavioral
sensitization in experimental models [34, 71, 96, 97, 119–
125]. In summary, the various effects of DRD1 receptor over-
stimulation and prooxidative processes produced by excessive
DA release are likely to assemble and cooperate to produce
long-lasting neurochemical changes following METH.

4. Transcriptional and Epigenetic
Effects of METH

A number of papers explored the mechanisms operating at
postsynaptic level to modify neuronal phenotype, in an effort
to unravel potential strategies to counteract addiction. To
such an aim, in the last decades, a number of studies focused
on specific transduction pathways and genes activated by
METH. Remarkably, studies of the last decade indicated a
key role for epigenetic mechanisms in modulating the tran-
scription of a number of genes, which underlie long-lasting

behavioral alterations and biochemical events induced by
METH abuse. A gap still exists concerning the signaling cas-
cades through which METH may induce epigenetic changes
via mechanisms going beyond a mere effect of DA-related
oxidative stress. In the present section, studies focused on
METH-induced epigenetic changes in both experimental
models and human abusers are discussed. In Sections 4.1
and 4.2, we focus on the effects of METH on the abnormal
DRD1-mediated biochemical cascade, subsequent recruit-
ment of specific second messengers and redox-sensitive
transcription factors (TFs), and altered expression of imme-
diate early genes (IEGs). At last, in Section 4.3, we touch
on the evidence about how epigenetic remodeling may alter
gene transcription thereby producing persistent behavioral
changes, which define METH addiction.

4.1. DA D1-Like Receptor-Mediated Biochemical Events
Induced by METH. DA canonical signaling in the brain is
mediated by five (DRD1–DRD5) G-protein-coupled recep-
tors, which are grouped into two classes depending on which
G-protein they are coupled to. D1-like receptors include
DRD1 and DRD5 and they stimulate Gs and Golf proteins,
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which activate adenylate cyclase (AC), thus elevating intra-
cellular levels of cyclic adenosine monophosphate (cAMP)
to increase protein kinase A (PKA) [126]. On the other hand,
D2-like receptors (DRD2, DRD3, and DRD4) stimulate Go/i
proteins [126] and they act by inhibiting AC [127]. Again,
these receptors target voltage-dependent ion channels
through a mechanism, which operates at the level of plasma
membrane and phospholipase C (PLC) [128]. All five DA
receptors are expressed in the striatum, but DRD1 and
DRD2 are the most abundant, with the former being placed
specifically within postsynaptic neurons and the latter being
placed both presynaptically and postsynaptically (Figure 7).

For such a reason, DRD1 and DRD2 represent a cue
investigation topic in the context of behavioral effects

underlying drug addiction. However, the disruption of
canonical DRD1 signaling is more important [57, 99, 129].
In fact, peaks and drops of DA stimulation generate the
switch from canonical to noncanonical DRD1 signaling. This
occurs during METH abuse in a way that is reminiscent of
DA replacement therapy in advanced PD [57, 99, 130–139].
This kind of perturbation of DRD1 is the authentic drive to
switch the DRD1 transduction pathway [59, 99, 131, 137].
Thus, in the presence of abnormal stimulation, DRD1 moves
towards noncanonical signaling which makes MSNs super-
sensitive to DA stimulation despite that the number of DA
receptors is not increased [99]. In fact, a chain of events fol-
lows DRD1 overstimulation, which involves metabolic trans-
duction and transcriptional pathways, eventually switching
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gene expression and neuronal phenotype underlying addic-
tive behavior in PD and METH [57, 59, 96–99, 119, 121,
132, 140–144]. Although precise signaling changes and sub-
strates underlying this shift remain to be fully elucidated, a
prominent role for AC [145] and PKA [146, 147] is well
established (Figure 8). In fact, in its canonical pattern, PKA
phosphorylates cellular targets, including voltage-dependent
ion channels, GLUT receptors, TFs, and epigenetic enzymes
involved in physiological synaptic plasticity and synaptic
strength as naturally occurring in a normal striatum. When
the noncanonical DRD1 transduction pathway is activated,
PKA recruits mitogen-activated protein kinases (MAPKs)
and extracellular signal-regulated kinases 1/2 (ERK1/2)
[132, 148–153]. ERK1/2 proteins may translocate into the
nucleus to phosphorylate and activate several TFs, such
as the cAMP response element-binding protein (CREB),
Elk-1, nuclear receptors, and H3 histones, which all regulate
gene expression [152, 154–156]. A key substrate of DRD1/
PKA signaling in the striatum is the DA- and cAMP-
regulated phosphoprotein (DARPP-32). Following persistent
METH-induced pulsatile DRD1 overstimulation, DARPP-32
is chronically enriched and abnormally phosphorylated in
MSNs, where it serves neuroplastic changes and behav-
ioral sensitization [155, 157–161]. In fact, DRD1-activated
PKA directly phosphorylates DARPP-32 at threonine 34
(Thr34), which accumulates in the nucleus, where it may
promote directly histone phosphorylation [162–164]. More-
over, phosphorylation at Thr34 induced by PKA converts
DARPP-32 into a powerful inhibitor of protein phosphatase1

(PP1) [163], leading to abnormal PKA-mediated phosphory-
lation [129]. This eventually alters the very same sub-
strates known to be affected by METH including (i) ion
and voltage-gated channels and pumps, such as Ca2+
channels, Na+ channels, Na+, and K+ ATPases [58, 59, 165];
(ii) GLUT receptors including α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) and NMDA and
their subunits GluR1 and NR1, respectively [166–173]; (iii)
GLUT transporters VGLUT-1 and EAAT3 [174, 175]; (iv)
GABA receptor subunits [176]; and (v) TFs, such as CREB
[168] (Figure 8).

TFs, in turn, may either induce or suppress a number of
downstream target genes. Noteworthy, noncanonical DRD1
stimulation initiates a vicious circle of reciprocal enhance-
ment between DRD1 and GLUT receptor activities, since
once activated, NMDA and AMPA receptors promote them-
selves a noncanonical phosphorylation of DARPP-32 and
CREB in the striatum [168, 177]. These findings are in line
with evidence showing that, following amphetamines,
NMDAr and DRD1 synergistically activate ERK signaling
within MSNs of the dorsal striatum and nucleus accumbens
(NAc) [155]. Remarkably, regulation by DARPP-32 occurs
both upstream of ERK and at the level of the downstream-
activated striatal-enriched tyrosine phosphatase (STEP),
which demonstrates its cyclic functional relevance [155]. In
summary, ERK plays a primary role in mediating long-
lasting effects of psychostimulants within the striatum (espe-
cially dorsal striatum and NAc). In fact, blockade of the ERK
pathway or mutation of DARPP-32 alters locomotor
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sensitization induced by amphetamines [155]. Altered sig-
naling during DRD1 overstimulation also applies to cyclin-
dependent kinase 5 (CDK5), which is recruited by both
DRD1 and NMDAr in the striatum [178]. In physiological
conditions, CDK5 phosphorylates DARPP-32 at threonine
75 (Thr75), thus inhibiting the phosphorylation of Thr34
carried out by PKA [157, 179, 180]. The decreased phos-
phorylation of DARPP-32 at Thr34 could decrease PKA
activity; however, in the context of noncanonical signaling,
there is an activation of phosphatase protein PP2A, which
in turn dephosphorylates DARPP-32 at Thr75. In this
way, PKA activity turns out to inhibit CDK5-DARPP-32/
Thr75 activity [163, 181]. Such a switch is typical of nonca-
nonical DRD1 signaling triggered by DRD1/PKA pulsatile
activation. Therefore, in the presence of DRD1 overstimula-
tion, a sustained CDK5-mediated mechanism would fuel,
rather than dampen, the phosphorylation of DARPP-32 at
Thr34 (Figure 9).

In this way, the cyclic signaling pathway of CDK5 and
DARPP-32 in the striatum represents an endogenous
feedback mechanism, which is likely to enhance the phos-
phorylation of various substrates thus sustaining the sensi-
tized behaviors produced by reiteration of pulsatile DRD1/
PKA stimulation. In line with this, the activity of CDK5 is

implicated in motor- and reward-related behaviors following
drug abuse including METH [160, 178, 182, 183].

In addition to the mechanism described above, DRD1
signaling may also activate PLC to generate inositol 1,4,5 tris-
phosphate (IP3) which participates in Ca2+-regulated signal-
ing pathways [184–187]. In fact, DA was reported to generate
robust intracellular Ca2+ oscillations in about 40% of stria-
tal MSNs via a DRD1-dependent mechanism involving
both PKA and PLC [184]. Nonetheless, recent studies indi-
cate the existence of DRD1-DRD2 heterodimers that
require a coincident activation of both receptors for intra-
cellular Ca2+ release. This is coupled with activation of a
calmodulin-dependent kinase II (CaMKII), which translo-
cates in the nucleus to regulate gene expression [185–187].
Taken together, these observations suggest that multiple
interactions exist between PKA, PLC, and intracellular Ca2+

transduction mechanisms within DRD1-expressing striatal
MSNs. In response to neurotransmitter receptor activation
and enhanced oxidative stress, specific TFs are recruited
to regulate gene transcription. These TFs are often present
within large protein complexes, which bind to a specific
DNA sequence corresponding to promoter or enhancer
regions of target genes. In the next paragraph, we will
focus on those TFs and genes recruited during METH
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Figure 8: METH-induced noncanonical DRD1 signaling. FollowingMETH,MSNs become supersensitive to pulsatile DA stimulation despite
that the number of DA receptors is not increased. As a result, DRD1 move towards noncanonical signaling and the activity of DRD2 is
enhanced. In these conditions, DRD1 overactivates AC, which enhances the production of cAMP and leads to abnormal activation of
PKA. DRD1/PKA cascade turns out to increase the amount of DARPP-32 phosphorylated at Thr34, which inhibits PP1. Thus, all PKA
targets, including voltage-gated ion channels and GLUT NMDAr and AMPAr, are abnormally phosphorylated and activated. In addition,
DRD1/PKA leads to increased levels of MAPK and ERK1/2, which in turn phosphorylate several cytosolic and nuclear substrates. At the
same time, DRD2-enhanced activity potentiates the increase of intracellular Ca2+ release, which cannot be properly mobilized, since ion
channels and GLUT receptors are abnormally activated and potentiate the influx of Ca2+ within postsynaptic neurons. Such an event also
promotes the activation of calmodulin-dependent kinase II (CaMKII), which can translocate into the nucleus to regulate gene expression.
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administration according to the biochemical pathways we
just described.

4.2. Transcription Factors and Immediate Early Genes (IEGs)
Induced by METH. The cascade of biochemical events medi-
ated by the combined effects of DA and oxidative species
following METH administration activates a plethora of TF
families beyond CREB, encompassing activator protein 1
(AP-1), early growth response (Egr) proteins, Elk-1, nuclear
factor of activated T-cells (NFAT), nuclear factor κB (NFκB),
which modulate the expression of several IEGs [98, 100, 110,
122, 123, 125, 154, 188–198].Bydefinition, IEGsundergoearly
synthesis and they canassociate to formavariety ofhomo- and
heterodimers binding to common DNA sites to regulate
further gene expression. This leads to a variety of plastic
effects ranging from neuronal metabolism to neuromor-
phology. In line with this, METH alters the expression of
a multigene machinery coding for proteins involved in sig-
nal transduction, metabolic pathways, and transcriptional
regulation. This alters protein expression and alters the
amount of inflammatory cytokines, neuropeptides, and tro-
phic factors (mainly brain-derived neurotrophic factor
(BDNF)), as well as oxidative-, mitochondrial-, and endo-
plasmic reticulum stress-related events and proapoptotic
cascades [91, 122, 125, 197–210]. DA-related events and
oxidative mechanisms converge to alter TF expression fol-
lowing METH (Figure 10).

On the one hand, DA per se and its metabolites provide a
powerful source of radical species, which in turn interact with
DNA and TFs to modulate gene expression [110, 115, 211].
In fact, ROS can alter the DNA-binding activity of diverse
TFs, by oxidizing DNA bases or specific amino acidic
domains (mainly cysteine and lysine residues) of histones
and/or TFs. ROS also act as signaling molecules and second
messengers by activating intracellular cascades such as

MAPKs. These effects converge in recruiting TFs such as
AP-1 and NFκB [110, 115, 211], which govern the expression
of specific IEG coding for proteins involved in neuronal
functions such as death and survival control, cellular
defense mechanisms, and immunological and inflamma-
tory responses, which in turn are a powerful source of
ROS. On the other hand, several studies have shown that
genetic or pharmacological repression of DRD1 can revert
METH-induced activation of redox-sensitive TFs, includ-
ing AP-1, NFκB, CREB, Egr, and NFAT by producing a
normalization of the levels of IEGs [122, 123, 212–215].

For instance, CREB, which during baseline DA stimula-
tion is slightly recruited, becomes overactive in the presence
of pulsatile DA levels, which lead to a DRD1/PKA-medi-
ated aberrant phosphorylation cascade driven by oxidative
stress and/or DRD1 overstimulation [129, 168, 216]. CREB
activates genes through the binding to cAMP-responsive
element (CRE). Phosphorylation of CREB by PKA at ser-
ine119 is required for its interaction with DNA, while phos-
phorylation at serine-133 allows CREB to interact with
CREB-binding protein (CBP) in the nucleus. Members of
the CREB gene family include activating transcription fac-
tors 1–4 (ATF 1–4), CREB-1, and CREB-2, and each of
the ATF/CREB proteins can bind to CRE motifs as either
homodimers or heterodimers. In fact, METH administra-
tion increases both phosphorylated CREB (pCREB) and
members belonging to the CREB family, which then bind
to CRE motif of several genes to increase their expression
[91, 122, 190, 197, 205, 209, 210, 215, 217–220]. In addi-
tion, ATF/CREB dimers also bind to Fos/Jun members
belonging to the AP-1 family, thus forming cross-family
heterodimers [221]. AP-1 is mainly known for its role in
cell proliferation, while it plays a compensatory effect on
redox stress and DNA damage [222]. AP-1 DNA-binding
complex is in fact a dimer composed of IEGs, which are
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Figure 9: The effects of DRD1/PKA pathway on CDK5 and DARPP-32. In physiologic conditions, CDK5 phosphorylates DARPP-32 at
Th75, thus softening the effects of PKA on DARPP-32. However, the abnormal phosphorylation of Thr34 carried out by enhanced DRD1/
PKA cannot be counterbalanced by CDK5. This occurs since DRD1/PKA activates phosphatase PP2A, which inhibits the effects of CDK5
and enhances those of PKA. As a result, DARPP-32 phosphorylated at Thr34 increases and potentiates the inhibition of PP1.
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members of Jun (c-Jun, Jun B, and Jun D) and Fos (c-Fos, Fos
B, Fra-1, and Fra-2) TF families [222]. Several studies dem-
onstrate that METH causes an early increase in IEG expres-
sion belonging to Jun and Fos families [91, 123, 197–199,
205–207, 209, 212, 218, 219, 223–227]. Among these genes,
a special emphasis is given to ΔFosB, which consists of a sta-
ble splice variant of FosB. In fact, differently from other Fos/
Jun family proteins featuring a transient induction by acute
drug exposure, the increase in ΔFosB (mRNA and/or pro-
tein) persists for longer time intervals within the striatum
[228, 229]. In line with this, ΔFosB may play a key role in
triggering addiction [209, 218, 228, 230–232]. This posed
ΔFosB as a master regulator of persistent nuclear effects
induced by METH, which are the core of METH-related
epigenetics. Thus, reaching out ΔFosB is considered as a
key point to trigger persistent epigenetic changes through
persistent alterations of transcriptional regulatory proteins
(including CDK5 and epigenetic enzymes), which all influ-
ence the phenotype of MSNs [229].

ΔFosB-related epigenetic changes occurring in various
nuclear sites mainly consist in acetylation/deacetylation
and methylation/demethylation at the level of histones or
DNA (Figure 11).

Those simple phenomena occurring in specific sites and
critical time windows generate the remarkable diversity and
specificity in the epigenetics of METH. In fact, the tran-
scriptome/exome alterations generated by METH-induced
epigenetics create the specific structural plasticity that we
appreciate within MSNs. This is achieved by diverse effects
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on a number of genes. A critical site concerns genes involved
in building the architecture of dendritic spines, such as
GLUT NMDAr [108] and AMPAr [233] subunits, GABA-A
[176] and GABA-B [233] receptor subunits, and the GABA-
synthesizing enzyme GAD-67 [176] (Figure 10).

BeyondΔFosB, the Egr family represents another subclass
of zinc finger structural motifs involved in eukaryotic
protein-nucleic acid interaction. Members of Egr include
IEGs such as Egr1 (Krox-1, NGF1A, and Zif268), Egr2
(Krox20, NGF1B), Egr3 (Pilot), and Egr4 (NGF1C), which
are regulated by posttranslational changes such as phosphory-
lation and redox state [234]. In line with this, METH activates
and overexpresses several members of the Egr family, espe-
cially Egr1 and Egr2 [91, 123, 188, 198, 212, 225, 235–237].

Again, METH causes substantial increases in the
expression of nuclear TF families including nuclear recep-
tor 4a (Nr4a), nuclear factor erythroid 2- (NFE2-) related
factor 2 (Nrf2), and NFAT, which regulate genes involved
in metabolism, development, and axonal growth within
the mammalian brain [91, 225, 226, 237]. In detail, METH
produces a shuttling of NFATc3 and NFATc4 from the
cytosol to the nucleus [91, 195]. Similar findings were
reported for the DNA-binding protein NFκB, which, fol-
lowing METH, redistributes to the nucleus of striatal neu-
rons [197, 204, 208, 209, 242]. NFκB is rapidly activated
and overexpressed by METH. In detail, once in the nucleus,
NFκB promotes a vicious cycle of oxidative events, which
include an increased expression of inducible nitric oxide
synthase (iNOS) and cyclooxygenase-2 (COX-2) to gener-
ate nitric oxide (NO), prostaglandins, and inflammatory
cytokines as well as activation of the apoptosis-promoting
factor p53 [200, 201, 238].

A critical point to decipher the effects of METH upon the
activity of all these TFs is the pattern of drug administration.

Again, early time intervals compared with late time intervals
from METH exposure (i.e., withdrawal time) make a sub-
stantial difference. In most cases, acute METH induces an
early activation of TFs, which is followed by upregulation of
most IEGs. This early effect is short lived, which makes it
unlikely to produce behavioral sensitization. This is con-
firmed by the fact that chronic METH administration pro-
duces opposite changes mainly featuring a downregulation
of IEGs. Remarkably, chronic METH also blunts the effects
of an acute single METH injection on several striatal IEG
expression [237] which is more reminiscent of a “gene desen-
sitization” (Figure 12).

Conversely, a single exposure to a subthreshold dose of
METH may suffice per se to induce a persistent increased
response to further administration [239], a phenomenon
which mirrors the “gene priming” (Figure 13). In fact,
the effects of a single dose of METH on specific genes
are markedly different depending on the existence of a
previous METH exposure [240, 241]. These differences
appear to be related to the occurrence of a previous epige-
netic switch [229, 242].

4.3. METH as a Brain Epigenetic Modifier. Epigenetics in the
CNS is currently accepted as the set of mitotic changes in
gene transcription and/or phenotypic alterations that occur
in the absence of modifications to DNA sequence itself
[243]. Dynamic epigenetic remodeling allows perpetual alter-
ations in gene readout within cells, and within the CNS, it
may have a crucial impact on neuronal function. Posttransla-
tional modifications of histone proteins, changes in the bind-
ing of TFs at gene promoters, and covalent modifications of
DNA bases represent the main mechanisms through which
gene expression is regulated. Over the past decade, studies
investigating the regulation of transcription, through
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Figure 12: METH-induced gene desensitization. Exposure to chronic METH produces epigenetic effects, which repress further gene
expression. This occurs mainly through increased activity of deacetylation enzymes (HDAC), increased methylation of lysine 9 and 27
(K9/K27) residues of histones (i.e., H3K9/27) by methyltransferases (KMTs) and hypermethylation of gene promoters by DNA
methyltransferases (DNMTs), which produce a “closed chromatin” conformation. Me: methyl groups; Ac: acetyl groups.
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modifications of DNA (hypo-/hyper-/hydroxymethylation of
cytosine residues) and chromatin structure (acetylation and
methylation of histones) (Figure 11), have exploded in addic-
tion research [244–246]. In recent years, METH was shown
to induce epigenetic modifications, which underlie persistent
changes in gene expression and long-lasting behavioral
responses to the drug [198, 210, 228, 237, 247–251].

4.3.1. METH and Histone Acetylation. Histone acetylation
and deacetylation are a dynamic process balanced by histone
acetyltransferase (HAT) and histone deacetylase (HDAC),
a subset of enzymes, which carry out reversible histone
modifications by adding or removing acetyl groups. In gen-
eral, by adding acetyl groups to histones, HATs promote
gene expression by creating an “open” chromatin conforma-
tion, while HDACs produce a “closed” conformation and
represses transcription by removing acetyl groups [252].
These enzymes physically interact with sequence-specific
TFs and target-specific promoters, to modify acetylation
patterns of core histones, thus manipulating the functional
state of chromatin and orchestrating the transcriptional
machinery [252]. The HAT families include CREB-binding
protein (CBP)/p300, while HDACs can be classified into four
families according to sequence similarities [253]. These
include class I (HDAC1, HDAC2, HDAC3, and HDAC8),
class II (HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and
HDAC10), class III (sirtuins, SIRTs 1–7), and class IV
(HDAC11) HDACs. HDACs are widely implicated in synap-
tic plasticity and long-term memory, which is key in drug
addiction [254].

(1) Histone Acetylation and Increased Gene Expression. Acet-
ylation-Related Transcriptional Effects of Acute METH. Sev-
eral studies documented that METH at short-time intervals
increases H4 acetylation (H4K5ac and H4K8ac) in the rat
NAc and striatum [225, 228, 255, 256]. This associates with
increased gene expression detected at early time intervals

following METH [225, 255]. In detail, such an increase
(mainly concerning IEGs such as Egr1, Egr2, c-Fos, JunB,
Nr4a3, and corticotrophin releasing factor (Crf)) correlates
with increased binding of H4K5ac to the promoters of these
very same genes [225, 228, 255]. METH-induced H4 acetyla-
tion may follow either decrease in HDAC1 expression or
increase in CBP expression in the Nac [255]. In fact, acute
METH also induces an increase of ATF2, a member of the
ATF/CREB family [255], which behaves as a HAT by acety-
lating histone H4 [257].

Acetylation-Related Transcriptional Effects of Chronic
METH. In 2013, Krasnova et al. [210] used an experimental
model of chronic METH self-administration in order to deci-
pher large-scale epigenetic and transcriptional changes
occurring specifically within the NAc and dorsal striatum,
to explain compulsive behavior characterizing drug addiction
[258]. In detail, METH self-administration enriches pCREB
on the promoters of genes coding for c-Fos, FosB, BDNF,
and (synaptophysin) Syp. Both pCREB and gene expression
followed the same expression pattern being upregulated at
2 h after drug intake and going back to normal levels at 1
month of withdrawal. This suggests that CREB is relevant
as an epigenetic mediator of transcriptional changes pro-
duced by METH. In contrast to c-Fos mRNA, chronic
METH self-administration does not affect c-Fos protein
levels after 2 or 24 h. Remarkably, at 1 month of METHwith-
drawal, c-Fos protein was found to be decreased compared
with controls. In contrast, no changes were observed inΔFosB
mRNA levels, whileΔFosB protein was significantly increased
at 2 and 24 h after chronic METH self-administration. Simi-
larly to c-Fos, ΔFosB decreased at 1 month of withdrawal
[210], which dampens an exclusive role of ΔFosB as an irre-
versible switch for addiction.

(2) Histone Deacetylation and Decreased Gene Expression.
Deacetylation-Related Epigenetic Effects of Acute METH. A
recent study shows that in HDAC2-KO mice, METH
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Figure 13: METH-induced gene priming and sensitization. A single dose of METH may be sufficient to induce an epigenetic switch
consisting in increased gene expression. Such an effect may also occur during chronic METH resulting in long-term sensitization. This
occurs through increased histone acetylation and methylation at specific K residues (i.e., H3K4) joined with poor activity of DNMTs
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produces a greater increase in some IEG transcripts (FosB,
Fra-2, Egr1, and Egr3) when measured at early time inter-
val (1 h postinjection) [227]. The levels of these transcripts
persist for 2 hours in HDAC2-KO mice. In contrast, in WT
mice, at 2 h, these IEGs are suppressed. This demonstrates
that METH recruits HDAC2 to the promoters of these IEGs
thereby bringing back transcript levels to normal values.
Remarkably, in HDAC2-KO mice, the persistency of IEG
expression is correlated with increased enrichment of pCREB
on the promoters of the very same genes. Downregulation of
other genes (follistatin (Fst), inhibin beta A (InhbA), neuro-
medin U (Nmu), cholecystokinin (Cck), and BDNF), which
occurs at delayed time intervals (8, 12, and 24 h) after METH
administration, combines with increased expression of
HDACs in the Nac and dorsal striatum [255]. In fact, METH
decreases histone H3 acetylated at lysine 9 and 18 (H3K9Ac
and H3K18Ac) on the promoters of these genes [255].

Deacetylation-Related Epigenetic Effects of Chronic
METH. Renthal et al. [228] found that, at 5 days of amphet-
amine withdrawal, when c-Fos was maximally repressed,
ΔFosB accumulated on c-Fos promoter, suggesting that
ΔFosB desensitizes c-Fos expression. Conversely, the HDAC
inhibitor sodium butyrate reverts METH-induced repression
of c-Fos, supporting the idea that hypoacetylation on the c-
Fos promoter desensitizes the gene [228]. The question of
whether ΔFosB remains steady linked to specific gene pro-
moters for longer periods of time or ΔFosB alters gene induc-
ibility by producing long-lasting chromatin changes still
remains to be elucidated.

McCoy et al. [237] showed that chronic METH reduces
the expression of several TFs and IEGs (i.e., AP1, Erg1-3,
and Nr4a1) way below control levels. This occurs along
with decreased CREB expression. Remarkably, chronic pre-
treatment with METH suppresses the stimulatory effects on
these IEGs when elicited by an acute challenge with the
drug. This paradoxical response occurs along with a greater
decrease in CREB levels compared with those measured
during chronic administration [237]. Similar findings were
produced by Cadet et al. [225], who reported that a chal-
lenge of METH to rats treated chronically leads to down-
regulation of 53 out of 71 genes. These effects were
related to decrease H4K5Ac binding. In addition, chronic
administration of low METH doses decreases the abun-
dance of H4K5ac, H4K12ac, and H4K16ac on the pro-
moters of genes coding for GluA1-2 and GluN1 subunits
of AMPAr and NMDAr, respectively [259]. Accordingly,
there was a decrease in the expression of GLUT receptors
causing a decrease in the current generated by GLUT stim-
ulation. These phenotype changes occurred along with
increased striatal expression of HDAC1, HDAC2, SIRT1,
and SIRT2. A causal relationship is strengthened by the
opposite effects produced by the HDAC inhibitor valproate,
which prevents METH-induced alterations at the very same
receptor subunits [259]. When METH is administered in
higher doses, a change in the expression of different clas-
ses of HDACs is found [260]. This confirms a dose depen-
dency for METH-induced epigenetic alterations. In fact,
depending on the dose of METH being administered, some-
times, opposite phenotypic changes occur. METH was

shown to upregulate other epigenetic proteins including
methyl CpG-binding protein 2 (MeCP2), repressor element-
1 silencing transcription factor (REST), and corepressor-
REST (Co-REST), which are members of corepressor
complexes with class I HDACs [259]. Among these, the mul-
tifunctional complex MeCP2 received some attention since
METH increases MeCP2 expression in the ventral and dorsal
striatum [261, 262].

4.3.2. METH and Histone Methylation. Histone methylation
is regulated by enzymes that add methyl groups acting as
writers, namely, methyltransferases (KMTs) and enzymes
that remove methyl groups, acting as erasers, namely,
demethylases (KDMTs). KMTs are involved in mono-,
di-, and trimethylation of histone lysine residues (K), which
carry specific regulatory switches [263]. In fact, histone
methylation regulates both repression and activation of gene
expression, depending on the specific K being modified. For
instance, methylation of histone H3 at K4 (H3K4me) is asso-
ciated with increased transcriptional activity whereas meth-
ylation of H3 at K9 (H3K9me) and K27 (H3K27me) is
associated with repression of gene expression [263]. More-
over, several classes of KDMTs may counteract the effects
of the KMTs by erasing methyl moieties.

Several studies demonstrated the involvement of KMTs
and KDMTs in METH addiction [228, 247, 248]. For
instance, the study of Renthal et al. [228] demonstrated
that in addition to the role of HDAC1, repression of c-
Fos at 5 days after drug withdrawal was associated with
amphetamine-induced increase ofH3K9me2on the promoter
of c-Fos. This effect correlates with increased expression levels
of KMT1A.More recently, epigenetic mechanisms contribut-
ing to METH-associated memories were explored in the NAc
and dorsal striatum, given their role as a hub for drug craving.
While investigating such a phenomenon, Aguilar-Valles et al.
[247] provided evidence that genetic ablation of KDM5C
demethylase increases H3K4me at the level of promoters of
IEGs including Fos and oxytocin receptor gene (Oxtr),
which associates with increased METH-associated memory.
On the contrary, KO mice for MLL1 (mixed lineage leuke-
mia, a member of the KMT family) which possess decreased
H3K4me and transcript levels of Fos and Oxtr genes show
reduced METH-associated memory [247]. Again, METH
craving was shown to be related with epigenetic changes
occurring only in Fos-expressing neurons of the dorsal stri-
atum [248]. In these neurons, significant increase in mRNA
levels of IEGs (Arc, Egr1), BDNF, and its receptor tropomy-
osin receptor kinase B (TrkB), as well as metabotropic
GLUT receptor subunits (Gria1, Gria3, and Grm1), corre-
lates with several epigenetic enzymes including KDMA1
[248] and HDAC5 [248, 249].

4.3.3. METH and DNAMethylation.DNAmethylation refers
to the classic chemical covalent modification of DNA, which
results from the addition of a methyl group at the 5′ position
of a cytosine base via enzymes of the DNA (cytosine-5)-
methyltransferases (DNMTs) family [264]. These include
DNMT3A and DNMT3B, which are de novo methyltransfer-
ases, and DNMT1, that is, a maintenance methyltransferase
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[264]. This primarily occurs in DNA sequences where a cyto-
sine (C) precedes a guanine (G) with the interposition of a
phosphate group (CpG). CpG sites are unevenly distributed
throughout the human genome both as interspersed CpG
regions and as CpG clusters representing the so-called CpG
islands. In line with the concept that promoters are the most
sensitive to epigenetic changes, CpG islands occur mainly
within promoter regions [265]. DNA hypermethylation of
CpG within promoters represses transcription while DNA
hypomethylation is often associated with increased gene
expression [264]. It is worth mentioning that stability and
activity of DNMTs depend on posttranslational mechanisms
(phosphorylation, acetylation, and methylation) carried out
by several kinases, such as CDK5 [266] and histone remodel-
ing enzymes, especially HDACs [267]. In fact, in combina-
tion with increased HDACs, chronic METH reduces DNA
methylation of the promoter region of GluA1 and GluA2
AMPAr subunit genes. This is confirmed by the finding that
following chronic METH, there are decreases of 5′-methyl-
cytosine (5mc) and 5′-hydroxymethylcytosine (5hmc) at
the level of the promoter region of these genes [259]. At
striatal level, METH-induced hypomethylation or hyper-
methylation may also affect corticosterone and glucocorti-
coid receptors’ gene promoters [268, 269].

(1) DNA Methylation in Human METH Abusers: The Con-
vergent Role of DA and Oxidative Stress on Cell-Clearing
Pathways and a-syn Expression. Aspired by the vast body of
evidence reporting aberrant promoter DNA methylation in
psychotic disorders, a recent study investigated DNA meth-
ylation and gene expression pattern in human METH-
induced psychosis [270]. RNA and DNA samples were
extracted from the saliva of METH-addicted patients with
and without psychosis, as well as from control subjects (each
group N = 25). Despite carrying the inherent limit of a
peripheral analysis, which may not be relevant for brain
alterations, these findings demonstrate DNA hypomethyla-
tion within promoters of genes related to DA metabolism.
In fact, DNA hypomethylation was present on the pro-
moter of DRD3, DRD4, and membrane-bound catechol-
O-methyltransferase (MB-COMT) genes. COMT provides a
methylation of a hydroxyl group (which generates a methoxy
group) of DA-forming 3-methoxytyramine (3-MT). Thus,
DNA hypomethylation of MB-COMT gene promoter and
increased COMT expression associate with synaptic DA deg-
radation in the prefrontal cortex in psychotic METH abusers
[270, 271]. Furthermore, DNA hypomethylation of AKT1
promoter gene was detected in METH patients with and
without psychosis [270]. AKT1 gene encodes a serine/thre-
onine kinase protein, which is expressed at high levels in
the brain, and it is linked to DNA transcription, neural sur-
vival and growth, synaptic plasticity, and working memory
[272, 273]. For instance, AKT regulates CREB- and NFκB-
dependent gene transcription [274, 275]. In addition, it
phosphorylates DNMT1, thus playing a role in the switch
between methylation, phosphorylation, and UPS-dependent
degradation regulating DNMT1 stability and activity [276].
Remarkably, alterations of AKT levels and downstream
pathways are closely related to the activity of DA receptors

[277–280]. In line with this, dysregulation of AKT is reported
in PD patients [281] and in METH experimental models
[278]. Two downstream targets of AKT are glycogen syn-
thase kinase 3 beta (GSK3β) and mammalian target of rapa-
mycin (mTOR), a serine/threonine protein kinase complex.
mTOR phosphorylates AKT via a feedback mechanism,
while it activates p700Sk6 and 4EBP1 TFs. Once activated,
TFs translocate in the nucleus to promote cell proliferation
and survival. In line with this, inhibition of mTOR by the
gold standard inhibitor rapamycin blocks drug-induced sen-
sitization [282]. In contrast, mTOR activation inhibits ATG,
which worsens METH toxicity [83, 283, 284]. In fact, pro-
longed METH exposure engulfs ATG machinery, which is
upregulated as a compensatory mechanism [83, 86, 283,
284]. However, the bulk of oxidative species overwhelms
the ATG machinery, which becomes progressively impaired
as witnessed by the stagnant nature of ATG vacuoles sup-
pressing the clearance of α-syn aggregates [83]. In line with
this, an epigenetically induced upregulation of the α-syn cod-
ing gene SNCA was recently detected in the SN of rats
exposed to METH [285], lending substance to an increase
in α-syn protein levels [79]. Such an effect is associated with
hypomethylation of the SNCA promoter, as shown by a
decreased occupancy of MeCP2 and DNMT1 in such a
region [285]. The effects of mTOR also relate to UP, which
seems to be activated by mTOR inhibition [286–288] and
inhibited during METH toxicity [38, 79–81, 289]. Notewor-
thy, the clearance of α-syn depends also on UP activity [79]
and on a recently described ATG-UP merging organelle
(the “autophagoproteasome”), which is directly activated by
mTOR inhibition [287].

No study so far demonstrated an epigenetic regulation
of SNCA within the striatum following METH; however,
epigenetic modifications of SNCA have been documented
in PD patients [290–292]. In fact, significant hypomethyla-
tion of CpG sites in the promoter region of SNCA is
reported within leukocytes [292] and postmortem brain
samples from patients with sporadic and complicated PD
[290, 291, 293, 294].

4.3.4. METH and DNA Hydroxymethylation. In recent years,
DNA hydroxymethylation, generated by the oxidation of 5-
methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC),
became increasingly important in epigenetics [295]. It has
been has suggested that 5hmC recruits DNA repair proteins
and DNA demethylating machinery [295]. The formation
of this modified base is mediated by ten-eleven transloca-
tion (TET) proteins and by TET-dependent generation of
5-formylcytosine and carboxyl-cytosine, which are then
processed by thymine DNA glycosylase (TDG) and base
excision repair (BER) mechanisms. The biological functions
of 5hmC, which is highly enriched in the adult brain,
appear to be crucial to promote gene expression related to
quick behavioral adaptation [296]. Two recent studies
demonstrated that compulsive METH intake is associated
with large-scale changes in DNA hydroxymethylation in the
rat NAc, which is consistent with a potential role for DNA
hydroxymethylation in addiction [250, 251]. Remarkably,
DNA hydroxymethylation around the transcriptional start

15Oxidative Medicine and Cellular Longevity



site (TSS) or within intragenic regions of genes coding for
neuropeptides was shown to occur following chronic METH
administration [251]. This is the case of corticotrophin-
releasing hormone/factor (Crh/Crf), arginine vasopressin
(Avp) and cocaine- and amphetamine-regulated transcript
propeptides (Cartpt), which increase in the NAc of
METH-treated rats [251, 297]. In detail, Crh and Avp
hydroxymethylation is mediated by TET1 and TET3
enzymes, respectively. In contrast, METH-induced changes
in Cartpt expression derive from the binding of pCREB at
the Cartpt promoter [251]. Together, these results support
the hypothesis that METH produces a variety of epigenetic
changes in the neuroendocrine circuitry within the NAc.
This same epigenetic mechanism was recently studied within
a context of compulsive METH intake [250]. It was found
that in METH-addicted animals, which develop compulsive
self-administration, hydroxymethylation occurs near or
within genes coding for voltage-gated Ca+ channels. This
occurs in different postsynaptic sites within the NAc, dorsal
striatum, and prefrontal cortex of METH-addicted animals.
Interestingly, hydroxymethylation of K+ channel-coding
genes was found only within the NAc of nonaddicted
animals [250].

5. Concluding Remarks

The influence of epigenetics in drug abuse provides a
novel and deeper insight to understand the molecular
mechanisms of addiction. This is key in the case of METH
abuse since this drug possesses a variety of effects, which
recapitulate the molecular alteration occurring in some
neuropsychiatric disorders. As novel epigenetic changes
are constantly being identified, it is more and more clear
how simple effects induced by transient neurotransmitter
alterations may translate into persistent alterations of brain
physiology. Moreover, the multiplicity of findings revised
here, when joined with a better knowledge of the genetic
background, may clarify the interdependence between
genetics and epigenetics underlying diversity in the human
genome [298]. This leads to take into account the fact that
a molecular cause-effect interplay between genetic and
epigenetic factors during METH addiction may exist as
well. Despite being yet unexplored in the context of drug
abuse, such a close relationship is likely to explain the very
peculiar phenotypic alterations observed during METH
abuse. Such an intriguing issue surely deserves further
attention and may represent a powerful tool for identify-
ing additional genetic and epigenetic biomarkers to
develop personalized treatments.
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