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Abstract

The kynurenine pathway (KP) of tryptophan metabolism is linked to antimicrobial activity and modulation of immune
responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells
(MSCs and NSCs) express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO) and IDO2, that it is highly
regulated by type I (IFN-b) and II interferons (IFN-c), and that its transcriptional modulation depends on the type of
interferon, cell type and species. IFN-c inhibited proliferation and altered human and mouse MSC neural, adipocytic and
osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types
offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation.
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Introduction

In mammalian tissues and organs, including the brain, the

kynurenine pathway (KP) is the central route that accounts for the

degradation of the essential amino acid tryptophan (Trp) and

ultimately generates the ubiquitous co-factor nicotinamide adenine

dinucleotide (NAD+), which participates in basic cellular processes

[1]. Named after a pivotal metabolite, kynurenine (KYN), the KP

is a metabolic cascade of enzymatic steps, which yields several

neuroactive compounds including quinolinic acid (QUIN), an N-

methyl-D-aspartate (NMDA) receptor agonist that has neurotoxic

effects [1]. The levels of these metabolites are determined by

several KP enzymes, which in the brain are primarily contained in

microglial cells and astrocytes (Fig. S1) [2]. The first and rate-

limiting KP enzyme is indoleamine 2,3 dioxygenase (IDO), which

has two isoforms IDO1 and IDO2 [3,4] that can catabolize a

similar range of substrates but with different efficiencies, and

distinct responses to inhibitors [5,6,7]. Type II interferon IFN-c is

the key regulator of the KP [8], whereas other cytokines (TNF-a,

IL-1, type I interferons IFN-a and IFN-b) or lipopolysaccharides

are also able to induce IDO activation, although to a much lesser

extent [9]. Additionally, a third KP enzyme, tryptophan 2,3

dioxygenase (TDO), catalyses the first step of the KP, and has

been described as a homeostatic enzyme involved in the control of

the basal levels of tryptophan in the serum. Unlike IDO, TDO

does not respond to immunological signals and is primarily but not

exclusively confined to the liver (for review [10]).

Involvement of the KP occurs in a variety of central nervous

system disorders, infection and inflammatory conditions including

multiple sclerosis (MS), AIDS-dementia complex and malaria

[1,11,12]. More recently, the KP has been found to be an

important determinant of immune responses and regulatory T-cell

tolerance. This is thought to be related primarily to the activation

of IDO and subsequent depletion of Trp in the microenvironment

leading to impairment of protein synthesis and compromise of cell

division [13] and/or the suppression of cell proliferation by a

number of downstream KP metabolites such as QUIN [14,15,16].

Additionally, emerging evidence has shown that expression of

IDO is required for the maturation of immune cells e.g. dendritic

cells and regulatory T cells [17,18]. Altogether these findings

support the hypothesis that IDO activity in cells expressing the KP

enzymatic machinery may play a critical role in modulating

proliferation and differentiation in both a paracrine and autocrine

manner.

Mesenchymal stem cells (MSCs) represent promising tools for

the treatment of a wide range of neurological disorders and other

degenerative diseases including MS, stroke, spinal cord injury and

heart disease [19]. In addition to their ability to differentiate into

osteoblasts, adipocytes, myoblasts, and controversially into neural

cells, a number of recent studies have thrown new light on their

unique immunomodulatory properties and possible therapeutic

use [20]. Indeed, MSCs express the major KP enzyme IDO in

response to IFN-c [21], and thus can inhibit T cell proliferation
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and modulate the function of major cell populations involved in

both the innate and adaptive immune systems, including antigen

presenting cells, natural killer cells, T- and B-cells [19].

Furthermore, IFN-c-induced activation of IDO in MSCs can

create a Trp-depleted milieu that promotes immunosuppression

and ameliorates experimental autoimmune encephalomyelitis

(EAE), an animal model of MS [20,22,23]. Similar to MSCs,

neural stem cells (NSCs) have also been shown to possess

immunomodulatory functions as evidenced by studies showing

that transplanted NSCs reduce brain inflammation in acute and

chronic EAE [24,25]. Of particular relevance to this is the

observation that synthetic Trp metabolites are capable of

suppressing proliferation of myelin-specific T cells and reversing

paralysis in mice with EAE [26]. However, the mechanism by

which MSCs and NSCs modulate the immune responses has not

been completely resolved. More generally, the role of IDO and KP

activity in stem cell biology and the exact nature of underlying

mechanisms controlling stem cell proliferation and differentiation

are completely unknown.

Here we describe a novel biological role for the KP and report

that IFN-c-induced IDO activation in MSCs leads to impaired

proliferation and an alteration of their differentiation capacity.

Our findings have immediate relevance to the optimization of

MSCs in therapies for a wide range of diseases and raise the

possibility that the selective manipulation of the KP in stem cells in

general may represent a valuable therapeutic target.

Results

RNAs encoding all Kynurenine Pathway Enzymes are
expressed in human and mouse MSCs under basal
culture conditions

In the absence of any pro-inflammatory agents, quantitative

real-time RT-PCR (qRT-PCR) revealed that human MSCs

express low levels of RNAs encoding all KP enzymes, namely

the major and rate limiting KP enzyme indoleamine 2,3-

dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO), kynuren-

ine formamidase (AFMID), tryptophan 5-monooxygenase 1 and 2

(TPH1 and TPH2), kynurenine aminotransferases I and II

(CCBL1 and AADAT respectively), kynureninase (KYNU),

kynurenine hydroxylase (KMO), 3-hydroxyanthranilate 3,4 diox-

ygenase (HAAO) and aminocarboxymuconate-semialdehyde de-

carboxylase (ACDMS) and quinolinate phosphoribosyltransferase

(QPRT) (Table 1). The levels of expression (i.e. the ratio gene/b-

actin) of RNAs encoding the KP enzymes in unstimulated human

MSCs were comparable to those observed in human total brain

tissue or purified astrocytes but lower than in unstimulated

macrophages (Table 1). In particular, the gene/b-actin ratios for

KYNU, KMO, CCBL1 and ACDMS were significantly lower in

human MSCs than in macrophages. Similar results were obtained

with mouse MSCs, when the gene/b-actin ratios were compared

to the expression of KP enzymes in mouse tissues including the

brain, testis, kidney, liver, thymus, spleen and PBMCs (Tables 1,
S2). Additionally, we provide the first evidence that mouse NSCs

express transcripts encoding all KP enzymes under basal

conditions of culture (Tables 1, S2).

Indoleamine 2,3-dioxygenase-2 (IDO2), also referred to as

indoleamine 2,3-dioxygenase-like protein (INDOL1), has been

recently described [4,5]. IDO2 is structurally similar to IDO1; it

can use a similar range of substrates but differs in the selectivity for

some IDO inhibitors [4,5] - norharmane is IDO1- and IDO2-

specific, while L- and D-isomers of 1-methyl tryptophan inhibitors

are specific of IDO1 and IDO2 respectively. The genes encoding

IDO1 and IDO2 utilize multiple promoters to express transcripts

of different lengths and generate both active and truncated

proteins [4,5]; their expression in stem cells remains to be

characterized.

Therefore, we optimized a qRT-PCR method to discriminate

active and truncated IDO transcripts and examined their

expression in both mouse and human MSCs. We demonstrate

that unstimulated mouse MSCs express detectable levels of

transcripts encoding full IDO1 and partial IDO2 genes, but no

full IDO2 or partial IDO1 RNAs (Table 1, Fig. 1A, Fig. S2).

Significant positive fold changes in RNA expression of partial

IDO2 (40 times), full IDO1 (44,000 times) and partial IDO1 were

detected after stimulation of mouse MSCs with 100 IU/ml IFN-c
over 72 hours (Table 1, Fig. 1A). However, full IDO2 transcripts

were not detectable in mouse MSCs at significant levels even after

IFN-c treatment, suggesting that, unlike IDO1, IDO2 gene

activity is not dependent on IFN-c and/or might not be translated

into a full, functional protein in these cells.

In line with observations from Ball et al. [4,5], the highest levels

of IDO2 mRNA were observed in the mouse liver, followed by the

kidney, testis and brain tissues. There was no significant expression

of full IDO1 transcripts, and only partial IDO1 and IDO2 RNAs

were detected in the healthy mouse brain (Table 1, Fig. 1A,

Table S2).

In contrast to mouse MSCs, unstimulated human MSCs can

express both full and partial mRNAs encoding IDO1 and IDO2

genes (Table 1, Fig. 1B, Table S2). Moreover, the levels of

expression of both genes were significantly up-regulated after

exposure of human MSCs to IFN-c over 72 hours. Indeed, the

analysis by qRT-PCR of IDO1 and IDO2 genes after exposure of

human MSCs to 100 IU/ml IFN-c revealed an increase of

409,000 and 76 times (for full transcripts) and 1,227,659 and 123

times (for partial transcripts) respectively (Table 1, Fig. 1B).

Interestingly, unstimulated human macrophages do not express

detectable levels of full or partial IDO1 transcripts but only full

and partial IDO2 and TDO RNAs (Table 1, Fig. 1B). However,

after treatment of macrophages with 100 IU/ml IFN-c over

72 hours, expression of full and partial IDO1 transcripts was

observed and interestingly, a significant decrease of full and partial

IDO2 RNAs.

IFN-c is a key regulator of the expression of the
kynurenine pathway enzymes in human and mouse
MSCs

To further examine the effects of pro-inflammatory cytokines on

the regulation of KP activity in MSCs, cultures of mouse and

human MSCs and mouse NSCs were exposed to TNF-a and/or

IFN-c for up to 72 hours. Total RNA was extracted and qRT-

PCR analysis was performed at 72 hours post-stimulation

(Table 1, Fig. 2, Table S2).

We demonstrate that in human and mouse MSC and mouse

NSC cultures, IFN-c was responsible for modulation of IDO at

both the gene and protein levels and its effect was dose-dependent

after 3 days in culture as revealed by qRT-PCR, western blot

analysis and immunocytochemistry (Table 1, Fig. 2A–D, Table
S2).

In addition, IFN-c treatment of human MSCs induced marked

changes of other KP enzymes at the RNA level (Table 1). In the

presence of IFN-c, IDO1 (409,000 times), and to a lesser extent

IDO2, KYNU, KMO and HAAO gene expression were

significantly up-regulated, while the expression of distal KP

enzymes AADAT, CCBL1, ACDMS and QPRTase were down-

regulated by IFN-c (Table 1). No significant effect of IFN-c was

noted for the expression of TPH1, AFMID and TDO genes. Thus,

these results suggest that activation of the KP by IFN-c in human
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MSCs favours the production of anthranilic acid and QUIN, at

the expense of kynurenic acid synthesis. This was confirmed by

HLPC, which demonstrated that upon stimulation with 100 IU/

ml IFN-c human MSCs were able to catabolize tryptophan, and

release kynurenine but not kynurenic acid (Fig. 2E).

In comparison to human MSCs, IFN-c-stimulated macrophages

show higher levels of induction of AFMID, KMO, TPH2, HAAO

and QPRT gene expression, and surprisingly, a lower level of

activation of IDO1, together with a down regulation of IDO2,

KYNU, TPH1, AADAT, CCBL1 and ACDMS (Table 1).

Notably, discrepancies were observed for the regulation of IDO2

and QPRT genes in MSCs and macrophages, demonstrating that

IFN-c effects on KP expression are cell-specific.

Surprisingly, in mouse MSCs IFN-c did not cause significant

changes in the expression of KP enzymes at the RNA level, with

the exception of IDO1, IDO2 (as described above) and KYNU,

which indicates that the regulation of the KP by IFN-c is also

species-specific.

IFN-b modulates the gene expression of Kynurenine
pathway enzymes in MSCs

Next, we investigated the effects of the type I interferon IFN-b on

the activation of the KP in human and mouse MSCs. After

stimulation of human MSC cultures with IFN-b for 72 hours, full

IDO1, partial IDO1, partial IDO2, KMO and KYNU gene

expression was significantly up-regulated (1,965, 1,808, 12, 74 and

11 times respectively) while the increase in the expression of other

transcripts i.e. full IDO2, TDO2, AFMID, CCBL1, AADAT,

HAAO, ACDMS, QPRT was more modest (Table 1, Fig. 1, Table
S2). Interestingly, while IFN-b treatment activated the expression of

full and partial IDO1, KYNU, KMO, TPH1, TPH2 and TDO2

genes in human adult astrocytes, ACDMS, HAAO, CCBL1,

Figure 1. Expression of full and partial IDO1 and IDO2 by human and mouse MSCs and various tissues as measured by quantitative
reverse transcription polymerase chain reaction (qRT-PCR). Human and mouse MSCs at passages 6 and 21 respectively were cultured in the
absence or presence of IFN-c (100 IU/ml) or IFN-b (2,000 IU/ml) for 72 hours. A: Mouse cells and tissues. B: Human cells and tissues. The gene/b-actin
ratios were multiplied by 10,000 for clarity purposes. Data are mean 6 standard deviation (SD). *p,0.05, **p,0.01, ***p,0.001 when compared with
control (without cytokine treatment). Differences between two groups were analyzed by the two-tailed Student’s t-test and of more than two groups
by one-way ANOVA with post-hoc Dunnett’s Multiple Comparison test. Abbreviations: IFN-c, interferon-c; IFN-b, interferon-b; MSCs, mesenchymal
stem cells; PBMCs, peripheral blood mononuclear cells; hAA, human adult astrocytes; IDO1 and IDO2, indoleamine 2,3-dioxygenase 1 and 2; MW,
macrophages.
doi:10.1371/journal.pone.0014698.g001
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AFMID and AADT mRNA was down-regulated. This indicates that

like IFN-c, IFN-b’s effects on KP expression are cell-specific.

Surprisingly, the levels of expression of most KP enzymes in

mouse MSCs were down-regulated following treatment with IFN-

b, in particular a decrease of the full IDO1 mRNA (Table 1,

Table S2). Hence, these results reveal a differential modulation of

IFN-b-induced expression of KP enzymes between species.

IFN-c inhibits the proliferation of mouse and human
mesenchymal stem cells through activation of the KP

To determine whether IFN-c may affect the proliferation of

human and mouse MSCs through the activation of the KP and

subsequent depletion of tryptophan from the extracellular milieu,

cells were cultured in a-MEM containing 20% and 10% FBS

respectively, in the presence of 100 IU/ml of IFN-c; cell growth

was then assessed in long-term cultures. Figure 3A shows a

significant decrease of the proliferative response of IFN-c-treated

human MSCs from Day 22 (94% inhibition) when compared to

the controls, which was not reversed by the addition of IDO

inhibitors norharmane (NH), L-1-methyl-tryptophan (L-1MT)

and/or D-1-methyl-tryptophan (D-1MT) in the culture medium

(Fig. 3A). Alterations in the levels of cell growth were comparable

in mouse MSCs, although equivalent levels of inhibition were

attained after 33 days of culture (Fig. 3B). In our experimental

conditions, the results indicate that in long-term cultures: a) the

effects mediated by IFN-c on the proliferation might not be

exclusively associated with IDO activity in MSCs and/or b) the

tryptophan originating from the FBS available to the cells was in

excess when compared to the amount catabolized by MSCs.

Therefore, in order to distinguish the effects of IFN-c and

tryptophan on the cell growth of mouse MSCs, we performed

experiments using custom made tryptophan-free media and

increasing concentrations of serum (0 to 10% FBS) or tryptophan

(0 to 44.2 mM). After 24 hours of culture, recombinant mouse

IFN-c was added at a concentration of 0, 1 and 10 IU/ml. As

shown in Figure 3C and Figure S3, mouse MSCs are still viable

Figure 2. IFN-c and IFN-b are responsible for IDO induction at the gene and protein level in human and mouse stem cells. Human and
mouse MSCs were cultured in the absence or presence of TNF-a (100 IU/ml) and/or IFN-c (0.1, 1 or 100 IU/ml) or IFN-b (100, 2,000 or 5,000 IU/ml) for
72 hours. Data are mean 6 standard error (SEM). Abbreviations: TNF-a, tumour necrosis factor-a; IFN-c, interferon-c; IFN-b, interferon-b; GAPDH:
glyceraldehyde-3-phosphate dehydrogenase; MSCs, mesenchymal stem cells; IDO1 and IDO2, indoleamine 2,3-dioxygenase 1 and 2; MW,
macrophages; Trp, tryptophan; KYN, kynurenine; KYNA; kynurenic acid; GFAP, glial fibrillary acidic protein. A. Gene expression of full IDO1 in human
and mouse MSC cultures at passages 6 and 21 respectively as measured by qRT-PCR. B. Western blot analysis of IDO1 protein in human MSCs
cultured with cytokines for 72 hours. b-actin was used as loading control. C. Immunocytochemistry analysis of IDO protein expression in human
MSCs. Macrophages were used as positive control. Magnification X200. D. Fluorescent immunocytochemical labelling for IDO and neural proteins in
mouse NSCs after 72 hours of culture in the presence of 100 IU/ml IFN-c and neural induction media (magnification X200). E. Tryptophan
degradation, kynurenine and kynurenic acid production by human MSCs and macrophages measured by HPLC 72 hours after stimulation with
cytokines. F. Full IDO1 mRNA expression of 72 hours stimulation of human and mouse MSCs with IFN-b (passages 6 and 21 respectively) as measured
by qRT-PCR. *p,0.05, **p,0.01, ***p,0.001 when compared with control (without cytokine treatment). Differences between two groups were
analyzed by the two-tailed Student’s t-test and of more than two groups by one-way ANOVA with post-hoc Dunnett’s and Tukey’s Multiple
Comparison test.
doi:10.1371/journal.pone.0014698.g002
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after 5 days in the culture medium without tryptophan and serum

but cell growth is compromised. Cells grown in 2% serum but

without additional tryptophan were inhibited to 46% and 42%,

respectively, of the control or the regular DMEMF12 10% FBS

culture conditions. Addition of IFN-c at concentrations of 1 and

10 IU/ml resulted in no significant alteration of the cell growth of

mouse MSCs grown in the medium without tryptophan (Fig. 3C).

Conversely, for cultures of mouse MSCs grown in the absence

of serum, 10 IU/ml of IFN-c added simultaneously with 5 mM of

tryptophan was required to obtain 25% inhibition of cell growth

(Fig. 3D). The maximum blockage of the anti-proliferative activity

of IFN-c was obtained in mouse MSCs when 44.2 mM of

tryptophan (concentration in the regular medium) was added to

the culture. The cell growth was proportionally compromised with

the increase of tryptophan concentration in the culture medium,

supporting IFN-c’s effects on the proliferation of mouse MSCs

being directly associated with KP-mediated tryptophan depletion.

Indeed, blocking the IDO enzymatic activity using the specific

inhibitors D-1MT and L-1MT re-established the cell growth of

mouse MSCs cultured in the presence of high concentrations of

tryptophan (10 mM) (Fig. 3E), further supporting the hypothesis

that IFN-c anti-proliferative effects are specifically linked with

IDO activity in these stem cells.

We also demonstrate that the concentration of tryptophan is

responsible for the transcriptional regulation of IDO1 (Fig. 3F).

For a given concentration of IFN-c, the IDO mRNA levels were

down-regulated at low concentrations of tryptophan (0 to 5 mM),

while high concentrations of tryptophan (10 and 44 mM)

significantly increase the IDO1 gene transcription levels (Fig 3F).

Interestingly, MSCs cultured in the presence of FBS and IFN-c
displayed lower IDO1 gene expression levels than cells grown in

serum-free medium (Fig. 3F).

In an effort to elucidate whether the suppressive effects of IFN-c
on the proliferation of MSCs were solely due to IDO activation

and the subsequent depletion of extracellular tryptophan, we

further investigated the ability of MSC i) to release toxic KP

metabolites i.e. QUIN that might hinder cell proliferation and ii)

to express WRS, STAT1 and PI3K, three genes involved in the

control of intracellular tryptophan levels [10,27,28]. Surprisingly,

significant QUIN production by MSCs was not detectable in our

experimental conditions, even after the treatment with IFN-c (data

not shown). However, we show that unstimulated human and

mouse MSCs express transcripts encoding WRS, STAT1 and

PI3K, and also that IFN-c and to a lesser extent IFN-b are potent

inducers of WRS and STAT1 expression (Fig. S4A,B, Table S2).

Similar to IDO1, for a given concentration of IFN-c, WRS and

Figure 3. IFN-c inhibits the proliferation of mouse and human MSCs. A and B. Cell growth of human and mouse MSCs showing cumulative
population doublings as a function of time in culture. Between P4 and P12, cells were cultured in the continuous presence of IFN-c (100 IU/ml) and/or
IDO inhibitors norharmane, D-1-methyl-tryptophan and L-1-methyl-tryptophan for 80 and 50 days respectively. At every passage, population
doubling was calculated by the formula logN/log2 as described by Stenderup [63] where N is the ratio between the number of viable cells reaching
confluence and the number of cells initially plated. Medium was changed every three days using a-MEM containing 2 mmol/L L-glutamine, 100 units/
mL penicillin, 100 mg/mL streptomycin, 20% or 10% non-inactivated FBS, for human and mouse cells respectively, specially tested for the ability to
sustain the growth of MSCs. C. Number of viable cells as measured by Alamar blue in mouse MSC cultures (passage 29) grown in DMEM F12 medium
without tryptophan and treated for 5 days with increasing concentrations of FBS (0, 0.1, 0.5, 2 or 10%) and IFN-c (0, 1 or 10 IU/ml) D. Number of
viable cells as measured by Alamar blue in mouse MSC cultures (passage 29) grown in DMEM F12 medium without serum and treated for 5 days with
increasing concentrations of tryptophan (0, 0.1, 1, 5, 10 or 44.2 mM) and IFN-c (0, 1 or 10 IU/ml) E. Number of viable mouse MSCs (passage 14)
cultured in serum free DMEM F12 medium in the presence of 10 IU/ml IFN-c, increasing concentrations of tryptophan (0, 0.1, 1, 5, and 10 mM) and/or
IDO inhibitors D-1-methyl-tryptophan and L-1-methyl-tryptophan (100 mM) for 5 days. Mouse MSCs were cultured with 10% FBS as positive controls.
F. Expression of full IDO1 mRNA in mouse MSCs (passage 20) as measured by qRT-PCR. Cells were grown in the presence of increasing concentrations
of tryptophan (0, 1, 5, 10 and 44 mM) and/or IFN-c (0, 2, 10 and 100 IU/ml) for 24 hours. Mouse MSCs were cultured with 10% FBS as positive controls.
Data are mean 6 standard error (SEM). *p,0.05, **p,0.01, ***p,0.001 when compared with control (without cytokine or KP inhibitors treatment).
Differences between two groups were analyzed by the two-tailed Student’s t-test and of more than two groups by one-way ANOVA with post-hoc
Dunnett’s Multiple Comparison test. Abbreviations: IFN-c, interferon-c; MSCs, mesenchymal stem cells; IDO1, indoleamine 2,3-dioxygenase 1; Trp,
tryptophan; NH, norharmane; D-1MT, D-1-methyl-tryptophan; L-1MT, L-1-methyl-tryptophan; FBS, foetal bovine serum; F12, DMEMF12.
doi:10.1371/journal.pone.0014698.g003
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STAT transcriptional activity in MSCs was modulated by the

concentration of tryptophan (Fig. S4C). At the physiological level,

this indicates that IFN-c’s effect on cell proliferation in MSCs is

correlated to both the amount of tryptophan available and the

level of IDO and WRS activity.

IFN-c and IFN-b modulate the differentiation potential of
mouse and human mesenchymal stem cells through the
activation of the KP

Given our findings that IFN-c inhibited the proliferation of

MSCs through activation of IDO, we hypothesised that IFN-c
might also affect the differentiation potential of these stem cells via

similar mechanisms i.e. the activation of the KP. In vitro

differentiation of both human and mouse MSCs into neural cells,

adipocytes and osteocytes was performed in the presence of IFN-c
and IDO1 and IDO2 inhibitors.

Differentiation of MSCs into osteoblastic and adipogenic

lineages. To confirm multipotentiality of MSCs, we assessed

their ability to differentiate into cells of osteogenic and adipogenic

lineages. Prior to differentiation experiments, fluorescent activated

cell sorting (FACS) analysis confirmed that the expanded, plastic

adherent cells were positive for the surface markers CD73 and

CD90, but negative for CD11b, CD19, CD34, CD45 and HLA-

DR (data not shown). Next, MSCs were placed in induction media

specific for the generation of adipocytes and osteocytes according

to our published protocol [29]. Lipid vacuoles in differentiated

adipocytes were visualised with Oil Red O (Fig. 4B) while the

osteogenic differentiation of MSCs was demonstrated by Alizarin

Red staining (Fig. 4A).

As previously published by our laboratory, qRT-PCR showed

that mouse and human MSCs maintained under basal condi-

tions constitutively express osteoblastic and adipocytic markers -

osteopontin (SPP1), integrin-binding sialoprotein II (IBSP) and

Figure 4. IFN-c modulates the osteogenic and adipogenic differentiation potential of human and MSCs. Human and mouse MSCs were
maintained in osteogenic (A, C) and adipogenic (B, D) differentiation media as described in Material and Methods. A. Representative photographs of
differentiated osteocytes derived from control and IFN-c-stimulated hMSCs. The osteocytic differentiation is demonstrated by Alizarin Red staining
(magnification X40). B. Visualisation of lipid vacuoles in differentiated adipocytes derived from control and IFN-c-stimulated mMSCs as revealed by
Oil Red O staining (magnification X40). C. and D. Fluorescent immunocytochemical labelling for the IDO protein in differentiating hMSCs after 14
days of culture in the presence of 100 IU/ml IFN-c and osteogenic (C) and adipogenic (D) induction media respectively (magnification X200). E. and F.
Gene expression of (E) osteoblastic (osteopontin, IBSP - integrin-binding sialoprotein II) and (F) adipocytic (adipsin, adipoQ, Fabp4) markers in human
and mouse MSC cultures after 3 and 7 days of differentiation procedures respectively as measured by qRT-PCR. Human MSCs (passage 12) and mouse
MSCs (passage 13) were cultured in the induction media together with 100 IU/ml IFN-c and/or IDO inhibitors norharmane (15 mM), D-1-methyl-
tryptophan (100 mM) and L-1-methyl-tryptophan (100 mM). Data are mean 6 standard error (SEM). *p,0.05, **p,0.01, ***p,0.001 when compared
with control (no treatment). Differences between two groups were analyzed by the two-tailed Student’s t-test and of more than two groups by one-
way ANOVA with post-hoc Dunnett’s and Tukey’s Multiple Comparison test. Abbreviations: IFN-c, interferon-c; MSCs, mesenchymal stem cells; IDO,
indoleamine 2,3-dioxygenase; NH, norharmane; D-1MT, D-1-methyl-tryptophan; L-1MT, L-1-methyl-tryptophan; IBSP, integrin-binding sialoprotein II;
SPP1, secreted phosphoprotein 1; Fabp4, fatty acid binding protein 4.
doi:10.1371/journal.pone.0014698.g004
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adipsin, adipoQ, Pparg respectively (Fig. 4E,F) - and the

expression of each greatly increased after induction [29]. We also

demonstrate here that treatment with 100 IU/ml IFN-c resulted

in the inhibition of SPP1 and IBSP gene expression and the

subsequent osteocytic differentiation of both mouse and human

MSCs (Fig. 4E). Additionally, blocking the IFN-c-induced IDO

activity with the inhibitor norharmane (15 mM) significantly

increased SPP1 gene expression, supporting the role of IDO in

the control of the osteocytic differentiation potential of MSCs

(Fig. 4E).

Similarly, IFN-c inhibited the expression of the adipocytic

markers adipsin, adipoQ and Fabp4 at the transcriptional level in

mouse and human MSCs during the differentiation experiments

(Fig. 4F). In agreement with our experimental paradigm that IDO

activity in MSCs influences their adipocytic differentiation

potential, inhibition of IDO by norharmane in MSCs led to an

improved gene expression for adipsin and adipoQ, whereas DMT

was effective on Fabp4 transcriptional activity. Notably, in contrast

to IFN-c, type I interferon IFN-b significantly increased the

expression of adipsin and adipoQ transcripts in differentiated

mouse MSCs.

Differentiation of MSCs into neural cells. Next, we

investigated whether the neural differentiation potential of

human and mouse MSCs could be affected by the type I and II

interferons IFN-c and IFN-b respectively, due to the activation of

the KP. Thus, to induce the neural differentiation of MSCs, we

optimised one media formulation as described in Material and

Methods (Fig. 5A,B). Immunocytochemical analyses with

antibodies specific for neural markers including A2B5, O1, O4,

Olig1, glial fibrillary acidic protein (GFAP), microtubule-

associated protein 2 (MAP2) and neuron specific enolase (NSE)

indicated robust expression of several of these markers in MSCs

after neural induction procedures (neuro-MSCs) (Fig. 5B, Fig.
S5).

In human neuro-MSCs at three different passages, cultured in

the presence of interferons and/or IDO inhibitors, both IFN-c
and IFN-b caused significant changes at the transcriptional level

for genes encoding a wide range of neural markers (Table S3).

Addition of IFN-c increased the levels of MAP2, CNP1, Hes1, and

GRM1 mRNA following neural induction of MSCs and repressed

the transcription of Id2, GalC, NG2, MOG, NPDC1 and SCLIA1

genes, whereas nestin, GFAP, NFkB and SCLAI3 expression

remained unaffected. In most cases, these effects were counter-

balanced by the addition of IDO inhibitors norharmane, DMT

and/or LMT to the neural induction media, with the exception

of nestin, Id2, CNP1, GFAP, SCLIA1 and SCLIA3 genes

(Table S3), confirming that IDO activity in neuro-MSCs

modulates their neural differentiation potential.

Interestingly, IFN-b significantly upregulated MAP2, CNP1

and SCLIA3 RNA, but had no effect on nestin, Hes and GFAP

gene regulation in neuro-MSCs. In addition, the transcription

levels of Id2, GalC, NG2, MOG, NPDC1, NFkB, GRM1 and

SCLIA1 were down-regulated by addition of IFN-b to the neural

induction media (Table S3).

Figure 5. IFN-c modulates the neural differentiation potential of human MSCs. A. Representative phase contrast photographs of human
MSCs cultured for 14 days using the nestin induction medium then 7 days in neural differentiation medium as described in Material and Methods
(Magnification X200). Cells were cultured in the neural differentiation media in the presence of 100 IU/ml IFN-c and/or IDO inhibitors norharmane
(15 mM), D-1-methyl-tryptophan (100 mM) and L-1-methyl-tryptophan (100 mM). a: Control, a-MEM, 20% FBS; b: 14 days with nestin induction
medium; c-g: 7 days with neural differentiation medium; c: Control neural differentiation, no IFN-c or IDO inhibitors; d: IFN-c, no IDO inhibitors; e:
IFN-c, norharmane; f: IFN-c, 1Methyl-D-Tryptophan; g: IFN-c, 1Methyl-L-Tryptophan. B. Fluorescent immunocytochemical labelling for IDO and neural
proteins in differentiating human MSCs after 7 days of culture in the presence of 100 IU/ml IFN-c and neural differentiation medium (magnification
X200). a: Undifferentiated human MSCs control, a-MEM, 20% FBS; b: Control neural differentiation; c: IDO, indoleamine 2,3-dioxygenase; d: MAP2,
microtubule-associated protein 2; e: O1; f: O4; g: A2B5. Magnification X200. C: Quantification of immunostaining for precursor and neural markers in
differentiating human MSCs after 7 days of culture in the presence of 100 IU/ml IFN-c and neural differentiation medium. Images were taken under
identical exposure conditions. Fold changes in the density of immunostaining normalised to the number of nuclei are represented as means 6 SEM
of at least three independent experiments. *p,0.05, **p,0.01, ***p,0.001 when compared with control (no treatment). Differences between two
groups were analyzed by the two-tailed Student’s t-test and of more than two groups by one-way ANOVA with post-hoc Dunnett’s Multiple
Comparison test.
doi:10.1371/journal.pone.0014698.g005
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To corroborate the involvement of IDO activation in this IFN-

c-mediated modulation of MSC neural differentiation potential of

MSCs, the IDO inhibitors norharmane, D-1MT and L-1MT were

used in conjunction with IFN-c in the neural differentiation

experiments and quantification of neural proteins expressed by

neuro-MSCs was performed by immunocytochemistry (Fig. 5C,

Table S4). As expected, IFN-c greatly enhanced IDO, MAP2,

O1, O4, Oct4, A2B5 protein levels in differentiated mouse and

human MSCs. Norharmane was the most effective of the IDO

inhibitors, drastically attenuating the expression of IDO, O1, O4,

MAP2 proteins by both human and mouse neuro-MSCs, while D-

1MT had a less profound inhibitory effect. These data confirm

that the IFN-c-induced activation of IDO in both human and

mouse MSCs specifically influences their neural differentiation

potential. Interestingly, the addition of norharmane or LMT

simultaneously with IFN-c to the neural induction media resulted

in a significant increase of the proportion of neuro-MSCs expressing

the markers Oct 4 and A2B5, suggesting that these inhibitors

might exert other cellular effects, in addition to the suppression of

IDO activity.

Discussion

In this investigation we have established that the KP is present

and active in MSCs and NSCs, and demonstrated that IDO

enzymatic activity is of critical importance in the control of

proliferation and differentiation of MSCs. We showed that mouse

and human MSCs express the complete, functional KP enzymatic

machinery, including IDO1 and its recently identified paralogue

IDO2 [4,5], and that the expression of the KP enzymes is highly

regulated by both type I and II interferons i.e. IFN-b and IFN-c
respectively. In addition to the recent findings that IDO1, IDO2

and TDO2 mRNA are expressed in human MSCs [30], we

accomplished a comprehensive examination of the transcriptional

regulation of full and truncated IDO1 and IDO2 transcripts in

both mouse and human MSCs. Species-dependent differences in

the expression and regulation of IDO paralogues were noted (e.g.

significant levels of full IDO2 transcripts were not detectable in

mouse MSCs even after IFN-c treatment), which indicate that

IDO activity may be dissimilar in human cells compared to rodent

cells [6,10].

We also report a differential transcriptional modulation of KP

components depending on the type of interferon, cell types and

species. Paradigmatic in this regard is the case of QPRT in MSCs

and macrophages, where IFN-c exerts opposite effects at the gene

level. These results probably explain the absence of significant

QUIN production by MSCs in our experimental conditions.

Although the signalling components that participate in the

regulation of QPRT gene activation are currently unknown, it is

of interest that IFN-c can activate the JAK-STAT or alternative

STAT-1-independent signalling pathways which could thus

account for a number of discrepancies observed between cell

types and species (for review see [31]).

Additionally, a prominent and novel species specific role for the

type I interferon IFN-b in the regulation of the entire KP

enzymatic machinery in MSCs was demonstrated in our study.

Although IFN-b-induced IDO expression has been demonstrated

in several cell types including macrophages, dendritic cells and

fibroblasts (for review [32], we report that IDO1 gene expression

was significantly up-regulated by IFN-b in human MSCs whereas

an inhibitory effect was observed in mouse cells. These results have

immediate relevance to the study of the pathogenetic role of the

KP in diseases when using animal models. Furthermore, the

observations shed light on the mechanisms responsible for the

immunosuppressive properties of MSCs and IFN-b therapeutic

efficacy in autoimmune diseases such as MS [33,34]. Indeed,

although MSC transplantation and IDO induction have been

shown to down-modulate neuroinflammation in animal models of

MS [20,26,35], the impact and functional consequences of KP

activation in patients receiving IFN-b treatment and potential

stem cell transplants have not been fully explored [36,37].

Our findings extend evidence that IFN-c has a significant anti-

proliferative effect, which has been previously demonstrated

mainly in carcinoma cells (for review see [31]). Although IFNs

have been broadly used as anti-tumor, anti-viral and immuno-

modulatory agents, the precise mechanisms that result in the

numerous therapeutic benefits of IFN treatment remain uncertain

[31]. Limited work on the effects of IFN-c on the precursor/

progenitor cell growth [38,39] is expanded here by the

identification of an important role of IDO in stem cell

proliferation. Together with other biochemical pathways induced

by IFN-c, we show that IDO can inhibit MSC growth via

depletion of tryptophan, an essential amino acid required for the

biosynthesis of proteins. Additionally, the production of down-

stream tryptophan metabolites (e.g. kynurenine) by MSCs could

potentiate and exacerbate the suppressive effects on cell prolifer-

ation in an autocrine manner. Although this type of negative

feedback has not been demonstrated in MSCs so far, many lines of

evidence indicate that kynurenine, hydroxy-anthranilic acid and

QUIN have significant inhibitory effects on the proliferation of

various cell types [15,16,30] [40]. Evidence for these complex

mechanisms in vivo is still extremely limited, due to the metabolic

adaptation processes that usually occur (for review [41], for

example, when tryptophan starvation is counteracted by alterna-

tive enzymes namely tryptophanyl-tRNA synthase (WRS or TTS)

that can maintain an intracellular reservoir of tryptophan available

for protein synthesis [27,28]. WRS can be co-induced by IFN-c
with IDO in various cell types [27,28], including human and

mouse MSCs (Fig. S4C, Table S2), however the dynamic

interplay between IDO and WRS is not completely understood. It

is notable that our findings show that despite the presence of WRS

in MSCs and the subsequent short-term counterbalance of the

tryptophan depletion, this was not sufficient to compensate the

impairment of cell proliferation associated with long-term IFN-c-

induced IDO activation.

Indeed, there are multiple mechanisms of induction and

regulation associated with the activation of IDO (for review, see

[42]). First, IDO activity can deplete tryptophan in local

microenvironment and can also generate downstream KP

products but neither mechanism alone can explain the diversity

of IDO-mediated effects [42]. In particular, combined effects of

tryptophan depletion and presence of KP metabolites are required

for IDO-mediated inhibition of T-cell proliferation in vitro [43] and

for the conversion of naive CD4+CD25- T cells into

CD4+CD25+FOXP3+ Treg cells [44].

Second, as discussed above, WRS activity could be another

prerequisite for IDO-mediated effects. We have shown that IFN-c
has been involved in WRS upregulation in MSCs, most likely

limiting tryptophan availability for IDO and reversing the IDO-

mediated tryptophan depletion. It is presently believed that the

balance between WRS and IDO activity will dictate tryptophan

availability for protein synthesis or for breakdown into KP

metabolites [45].

Thirdly, tryptophan availability is also regulated via amino-acid

transport systems across the membranes of mammalian cells

named LAT transporters, which can exchange tryptophan and

kynurenines in a bidirectional process (for review, see [45]). Recent

evidence for a tryptophan influx/kynurenine efflux cycle suggests
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that intracellularly produced kynurenines may serve as substrates

for the exchange of extracellular tryptophan by LAT transporters

[46] and most likely represents a rate-limiting step for IDO-

mediated tryptophan degradation (for review, see [45]). In this

respect, the literature indicates that in addition to acting at the

IDO enzyme active site, the IDO inhibitor 1MT inhibits the LAT

system in a dose dependent manner and thus limits tryptophan

availability [45,47,48]. Therefore, the mechanistic basis for IDO

inhibitors action remains to be thoroughly investigated [45].

Finally, IDO-mediated tryptophan depletion and production of

KP metabolites can activate GCN2 kinase, and this pathway is not

inhibited by the addition of exogenous tryptophan [40,44,45,49].

It should be also pointed out that recent data provide direct

evidence supporting the existence of a second substrate binding

site in human IDO [50]. Steady-state kinetic data showed that, at

high concentrations, tryptophan can bind to the inhibitory

substrate binding site of human IDO in addition to the active

site, thereby accounting for the substrate inhibition behaviour of

the enzyme [50].

To our knowledge this is the first study to link IDO to the

control of the differentiation potential of stem cells. Specific IFN-c-

and IFN-b-induced IDO activation in mouse and human MSCs

caused significant changes at the transcriptional and protein level

of neural, adipocytic and osteocytic markers after differentiation

induction procedures. Although previous studies have indicated

that type I and type II interferons can affect precursor cell

proliferation and differentiation and consequently can influence

the potential for tissue repair [38,39,51,52,53], no definitive

mechanism has been identified until now. IFN-c-induced IDO

activity has classically been linked to anti-proliferative effects on

immune cells including cytotoxic T cells, leading to the induction

of immune tolerance during infection, pregnancy, transplantation,

autoimmunity and cancer (see [54] for review). From our study, it

is apparent that the KP expression in stem cells plays an additional

key role in the control of cell proliferation and differentiation. As

such, the manipulation of IDO activity in MSCs and NSCs and

the in vivo administration of KP inhibitors or synthetic tryptophan

metabolites may represent an attractive strategy in a variety of

clinical settings, including neurological disorders [26]. In support

of this concept, it has been shown that transplantation of MSCs

and NSCs can contribute to tissue repair and functional recovery

not only though their transdifferentiation into neural cells, but

equally through the release of immunoregulatory factors (i.e. KP

metabolites), trophic support and possibly the control of

proliferation and differentiation of endogenous stem/progenitor

cells [55]. Lastly, our findings raise the possibility that the KP

machinery might be present and functional in other stem cell types

(Table 1, Fig. 2D), which together with emergent in vivo findings

[56] point towards a direct molecular link between tryptophan

metabolism and adult neurogenesis, thus offering entirely novel

therapeutic opportunities.

Materials and Methods

Culture of human Mesenchymal Stromal Cells (hMSCs)
Human MSC were from the kind gift of Professor Darwin J.

Prockop, Centre for Gene Therapy, Tulane University, New

Orleans, LA, USA. The cells were prepared from bone marrow

aspirates (20 mL) taken from the iliac crest of healthy adult donors

after informed consent as described previously by Sekiya et al. [57].

Purified MSCs were negative for hematopoietic markers CD11b,

CD14, CD34, CD45, CD117, HLA-DR, positive for CD105,

CD73 and CD90 (data not shown) and consistently differentiated

in vitro into adipocytes, osteocytes and chondrocytes. To expand a

culture, a frozen vial of MSCs (1 million cells, passage 1 or 2) was

thawed, resuspended in alpha minimal essential medium (aMEM;

GibcoH, Invitrogen, Australia), 20% ES (Embryonic stem cell

qualified fetal bovine serum (ESFBS, Invitrogen), 100 U/mL

penicillin, 100 mg/mL streptomycin and 2 mM L-glutamine

(Gibco, Invitrogen), plated in a 75 cm2 culture flask (Nunc), and

incubated at 37uC in 5% CO2 for further passages until sufficient

expansion. Five different experiments were performed with MSCs

from three different healthy donors and representative results are

presented.

Culture of mouse Mesenchymal Stromal Cells (mMSCs)
All animals (C57BL/6J mice) were handled in strict accordance

with institutional guidelines for animal care approved by the

Animal Care and Ethics Committees (ACEC), University of

Sydney and UNSW, Sydney, NSW, Australia (approval number

N08/32). Mouse MSCs were prepared from bone marrow as

previously described [29,57]. Briefly, C57BL/6J (B6) mice were

anesthetized with Avertin (2, 2, 2-Tribromoethanol) and killed by

cervical dislocation. Mouse femurs and tibias were aseptically

dissected and bone marrow was extruded by flushing media used

for the culture using a 10-mL syringe and a 21-gauge needle. The

cell suspension obtained was centrifuged at 500 g for 10 minutes

and washed with fresh medium: a-MEM or DMEM/F12 (Gibco,

Invitrogen) containing 10% non-inactivated ESFBS (Gibco,

Invitrogen), specially tested for the ability to sustain the growth

of MSCs, 2 mmol/L L-glutamine (JRH Bioscience), 100 units/mL

penicillin and 100 mg/mL streptomycin (penicillin-streptomycin,

GSL) [58]. The cell suspension was passed through a 70 mm nylon

filter and centrifuged at 500 g for 10 minutes, washed one more

time and centrifuged at 500 g for 10 minutes. In order to remove

the erythrocytes, the cell suspension was treated with lysis buffer

(0.144 M ammonium chloride, 17 mM TrisHCl). Viable cells

were counted after a trypan blue stain (Sigma) using a Neubauer

hemocytometer. Cell suspension at a density of 206106 whole

marrow cells per mL media was either: i) sorted using MACS

microbeads; ii) plated in chamber slides (SlideFlask, 10 cm2, Nunc)

for immunostaining; iii) plated in 6-well plates for selection of

mMSCs by adhesion to plastic dishes and subcultures, for RNA

isolation and differentiation assessments. When the mMSCs

became confluent, they were resuspended with 0.25% trypsin

(JRH Biosciences, Brooklyn, Australia) and then subcultured. The

media was changed twice a week and the cells cultured in

humidified 5% CO2/95% air (37uC). Custom made tryptophan-

free DMEM/F12 media (Gibco, Invitrogen) was used for the

proliferation experiments. Five different experiments were per-

formed with different C57BL/6J mice and representative results

are presented.

Cell selection using magnetic cell sorting (MACS method)
Fresh murine bone marrow cells and mMSC cultures obtained

by classic plastic adherent selection were immunodepleted using

the following MACS microbeads (Miltenyi Biotec) [29]: lineage

cell depletion kit (mature hematopoietic cells, T cells, B cells,

monocytes/macrophages, granulocytes and erythrocytes), Ter119

(erythrocytes and erythroid precursor cells), CD45 (cells of

hematopoietic origin), CD11b (myeloid cells), c-kit/CD117

(hematopoietic progenitor cells, myeloid, erythoid and lymphoid

precursor cells, few mature hematopoietic cells), Sca-1 (hemato-

poietic cells with differentiation potential) according manufactur-

er’s instructions. Briefly, the magnetically labelled lineage positive

cells are depleted by retaining them on a MACSH column

(Miltenyi Biotec) in the magnetic field of a MACS Separator, while

the unlabelled lineage negative cells pass through the column.
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Both fractions were resuspended in medium and placed in

chambers slides at a concentration of 16106 cells per mL.

Modulation of kynurenine pathway expression in MSCs –
cytokine and IDO inhibitor treatment

MSC cultures were seeded into T75 culture flasks for protein

analysis by western-blot, into 12-well plate for mRNA analysis

(triplicate) and into 9 cm2 slideflask (Nunc) for immunocytochem-

istry. Subconfluent cultures were treated separately with 100 IU/

ml of recombinant TNF-a and IFN-g (Biosource, Camarillo, CA,

USA). In addition, MSCs were treated with different doses of

human IFN beta-1b (100, 1,000 and 2,000 IU/ml) (BetaferonH,

Schering Pty. Ltd), commercially available mouse IFN-b (Bio-

source), and mouse IFN-b kindly donated by Biogen Idec. In each

case, RNAs and protein samples were collected after 72 hours of

incubation and stored at 270uC until use. Inhibition of IDO

activity in mouse and human MSCs was performed with

norharmane (15 mM), D- and L-isomers of 1-methyl tryptophan

(100 mM) (Sigma).

Mouse and human MSCs were tested at different passages

(spanning from P4 to 51) for each type of experiment to ensure the

reproducibility of our results, even at late passages. Results were

consistent at all passages.

Isolation and culture of mouse NSCs
Mouse mNSCs were purchased from StemCell Technologies

and cultured in the NeuroCultHNSC proliferation supplemented

with 20 ng/ml of EGF (Biosource) or the differentiation media

provided by the manufacturer. Because mNSCs proliferate in

neurosphere forms, they were passaged every three days using the

NeuroCult Chemical dissociation kit (StemCell Technologies) or

mechanical trituration to dissociate them into single cells.

Measurement of cell viability
AlamarBlueH testing was conducted according to the manufac-

turer instructions (Biosource). Briefly, after incubation of MSCs for

a period of 3 hours with 1/10th volume of AlamarBlueH in the

culture medium, the colour change in the supernatants corre-

sponding to the metabolised AlamarBlueH was measured at an

OD of 620 nm. The reduction of AlamarBlueH is an indirect

measure of cell numbers and produces linear results with a high

specificity and sensitivity. Cell numbers for each experimental

condition was calculated by linear regression in relation to a

standard curve derived from controls of untreated cells plated at

different densities.

Quantitative real-time RT-PCR (qRT-PCR) analysis
qRT-PCR was optimised and performed according to MIQE

guidelines [59]. Total RNA was isolated from MSCs, human and

mouse cells and tissues by the guanidium-thyocyanate method using

Trizol (Gibco, Invitrogen) followed by phenol extraction. After

quantification of nucleic acids by spectrophotometry (Nanodrop,

Thermo Scientific), RNA samples (2 mg) were subjected to reverse

transcription using AMV Reverse Transcriptase (Roche) according to

the supplier’s instructions. cDNA products were amplified on a

LightcyclerH 480 PCR system (Roche Diagnostics) in 20 ml of

reaction mixture containing the SYBR GreenERTM qPCR Super-

Mix Universal (Invitrogen) and 50 mM of forward and reverse

primers (Table S1). A standard curve with five dilutions steps and

three replicates at each dilution steps was constructed and overall

amplification efficiency was calculated from its slope as E =

1021/slope21. All primers have similar amplification efficiency (data

not shown but can be provided on request). Each amplification cycle

consisted of an initial step at 95uC (5 minutes), followed by 45 cycles

of denaturation at 95uC (10 seconds), annealing at 60uC (15 seconds),

and extension at 72uC (15 seconds). Quantification of the levels of

gene expression for each sample was calculated using the comparative

Cq method (DDCq). Results are expressed relative to the reference

genes GAPDH or b-actin. To confirm product specificity, a melting

curve analysis was performed after each amplification.

Immunocytochemistry
The cells were rinsed with PBS (JRH), fixed with 4%

paraformaldehyde (ProSciTech) at room temperature for 20

minutes and washed twice in PBS. Cells were then permeabilized

with 0.1% Triton X-100 in PBS for 10 minutes. Following one

wash in PBS, the cells were treated with 10% normal goat serum

(NGS) (Sigma) at room temperature during one hour and washed

3 times in PBS. Cells were then incubated with primary antibodies

(diluted in 5% NGS in PBS) at room temperature during 2 hours.

Monoclonal antibody directed against IDO was a kind gift from

Prof Osamu Takikawa (Japan). Anti-MAP2, -O1, -O4, -A2B5,

-Oct4, -NSE, -Olig1, -nestin (Chemicon, Australia) and anti-

GFAP (Novocastra, Australia) antibodies were used according to

manufacturer’s instructions. Monoclonal IgG1, IgG2a and IgM

negative controls were used in the same conditions. After three

washes in PBS, the cells were incubated with secondary antibodies

(diluted in 5% NGS in PBS) for 1 hour in the dark (Alexa FluorH
488 and Alexa FluorH 488 594 goat anti-mouse IgG or IgM,

Molecular Probes, Invitrogen). After 3 washes in PBS, cells were

treated 5 minutes with 49,6-diamidino-2-phenylindole dihydro-

chloride (DAPI, Sigma) diluted to 1/500 in water. After three

washes in PBS, slides were then mounted with Fluoromount-G

(SouthernBiotech) and a coverslip sealed to the slide. The slides

were examined with a fluorescence microscope (Olympus BX61)

and quantification performed using the Image Pro-Plus 5.0

software (Media Cybernetics, Bethesda MD, USA).

Western-blot
IDO and b-actin expression was determined by western blot

analysis using monoclonal antibodies - mouse IgG3 anti-IDO1

(Chemicon) and mouse IgG2a anti-actin (Sigma). Macrophage and

MSC cultures were washed with PBS and scraped off into lysis

buffer (CelLytic M, Sigma, with cocktail anti-protease, Roche

Diagnostics). Protein samples (2.5 to 20 mg) were separated by 12%

SDS-PAGE and transferred to a Immobilon-P membrane (Milli-

pore). The blots were blocked in Tris-buffered saline-0.1% Tween-

20 containing 5% nonfat milk and then incubated with the primary

monoclonal antibodies at a dilution of 1:500 for 3 hours at room

temperature. This was followed by incubation with the appropriate

peroxidase-conjugated secondary antibodies (Bio-Rad, Hercules,

CA, USA) and ECL detection (Amersham Pharmacia Biotech).

HPLC
Tryptophan, kynurenine and kynurenic acid were measured as

previously described [60,61]. Briefly, samples were precipitated with

an equal volume of 5% trichloroacetic acid, centrifuged at 3000 g for

5 mins, and the supernatants used for the analysis. Tryptophan and

kynurenine were measured by HPLC using UV absorption at 278

and 363 nm, respectively, by separate detectors arranged in series

after the column [60]. The samples were passed though a Waters

Bondapak C18 column in a mobile phase consisting of 80 mM

sodium acetate, 80 mM citric acid, pH 5, and 5% acetonitrile at a

flow rate of 1 ml/min. Kynurenic acid was measured with a

fluorescence detector using an excitation wavelength of 344 nm and

an emission wavelength of 398 nm [61], after passing through a

Polymer Laboratories PLRP-5 1560.46 cm column in a mobile
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phase consisting of 50 mM sodium acetate and 0.25 M zinc acetate,

pH 6.3 to which acetonitrile was added (5%).

Induction of osteogenic and adipogenic differentiation
of MSCs

Osteoblastic differentiation was induced by culturing confluent

human and mouse MSCs for two weeks in complete medium

supplemented with dexamethasone 1027 M, b-glycerophosphate

10 mM, and acid ascorbic 60 mM (all from Sigma) [29]. Cells were

maintained in induction medium, which was changed every two

days to overcome the instability of ascorbic acid in neutral pH.

After 2 to 3 weeks, cells were fixed for 20 minutes with 4%

paraformaldehyde, rinsed twice with PBS and stained with

Alizarin red, pH 4.1 for 20 minutes at room temperature.

Alternatively, treated cells were used for RNA extraction and

qRT-PCR analysis of IBSP (integrin binding sialoprotein) and

osteopontin/secreted phosphoprotein 1 (SPP1) gene expression.

To induce adipocytic differentiation, sub-confluent MSCs

cultures were cultured from 1 to 3 weeks in complete medium

supplemented with dexamethasone 1027 M, indomethacin

60 mM, insulin 5 mg/ml, IBMX (3-isobutyl-1-methylxanthine)

0.5 mM, and hydrocortisone 0.5 mM [29]. Cells were used for

RNA extraction and qRT-PCR analysis of Fabp4 (fatty acid binding

protein 4), adipsin and adipoQ gene expression. Treated cells were

fixed with 4% paraformaldehyde and stain with 0.5% Oil Red O

in methanol for 20 minutes.

Induction of neural differentiation of MSCs
Neural differentiation of human and mouse MSCs was performed

using a modified two-step protocol from Song et al, 2007 [62]. Briefly,

for the generation of nestin-positive cells from MSCs, cells were

cultured in the presence of nestin induction medium: DMEM/F12

medium, 2% FBS (Gibco, Invitrogen), supplemented with N2

supplement (Invitrogen), 5 mg/ml insulin (Sigma), transferrin

100 mg/ml, 60 mM putrescine, 0.02 mM progesterone, 0.03 mM

selenium, together with 20 ng/ml epidermal growth factor (EGF)

and 16 ng/ml basic fibroblast growth factor (bFGF, Biosource). After

14 days, the cells continued to proliferate and were passaged when

70–80% confluent. At this stage, the cultures expressed a high

proportion (80%) of nestin positive cells. For the neural differentiation

of nestin positive cells, cells were replated onto poly-D-lysine-coated

cell culture slides and cultured in neural differentiation medium:

DMEM/F12 (Gibco, Invitrogen) with N2 supplement (Invitrogen),

20 mg/ml insulin (Sigma), transferrin 100 mg/ml, 60 mM putrescine,

0.02 mM progesterone, 0.03 mM selenium, supplemented with

0.5 mM all-trans retinoic acid (Sigma), 10 ng/ml brain derived

neurotrophic factor (BDNF, Invitrogen) and 2% FBS, in the presence

of 100 IU/ml IFN-c and/or IDO inhibitors norharmane (15 mM),

D-1-methyl-tryptophan (100 mM) and L-1-methyl-tryptophan

(100 mM). After 7 days, neuro-MSCs changed morphology and

expressed markers of neurons (MAP2, NSE), astrocytes (GFAP) and

oligodendrocyte progenitor cells (Olig1, A2B5, O1 and O4) (Fig. S5).

Statistical analysis
Statistical analysis was carried out with GraphPad Prism version

5.0 (GradPad Sofware Inc., San Diego, CA, USA). Differences

between two groups were analyzed by the two-tailed Student’s t-

test and of more than two groups by one-way ANOVA with post-

hoc Dunnett’s or Tukey’s Multiple Comparison tests. p,0.05 was

considered statistically significant. If not differentially indicated,

data are representative from at least two independent experiments.
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