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ABSTRACT Phage SN1 infects Sphaerotilus natans and Pseudomonas aeruginosa strains.
Its genome consists of 61,858 bp (64.3% GC) and 89 genes, including 32 with predicted
functions. SN1 genome is very similar to Pseudomonas phage M6, which contains hypermo-
dified thymidines. Genome analyses revealed similar base-modifying genes as those found
in M6.

Phage SN1 was isolated in 1979 from activated sludge samples obtained from a waste-
water treatment plant (Lincoln, Nebraska, USA) using S. natans ATCC 13338 as the host

(1, 2). An early study showed that the siphophage SN1 has unusual bases in its genome as
confirmed by cellulose thin-layer chromatography (1). Its genomic DNA also showed resist-
ance to type II restriction endonucleases (2). Host range studies indicate that phage SN1
can also infect Pseudomonas aeruginosa strains PAO33 and OT684 (2).

Here, phage SN1 was amplified with its host S. natans ATCC 13338 in nutrient broth (3 g/L
beef extract, 5 g/L peptone) and agitated at 30°C (2). Cell debris were removed by filtration
(0.45 mm) and filtrates were stored at 4°C until use. Phage SN1 also infected P. aeruginosa
PAO1 (HER1153) in TSB/TSA medium at 30°C using both plaque assays and lysis of liquid cul-
tures. Species identification of the above two host strains was confirmed by 16S sequencing.

Phage genomic DNA was purified from lysate (S. natans as host) using the phenol-chloro-
form extraction method (3). Library preparation for sequencing was carried out with Nextera
XT DNA Sample Preparation kit (Illumina). A total of 186,025 paired-end reads (250 bp) were
generated using the Illumina MiSeq Platform with Reagent kit v2. Read quality was evaluated
with FastQC (4). Illumina adapters were removed and reads trimmed using Trimmomatic
v0.39 (5). Trimmed reads assembly was performed by Spades assembler v3.13.0 (6). Two
assemblies from independent lysates generated identical contigs of 61,858 nucleotides
(218� and 170� coverage, respectively) with a GC content of 64.3%. Gene prediction and
functional annotation were performed using RAST v2.0 (7) in combination with NCBI domain
searches (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and blastp (https://blast.ncbi
.nlm.nih.gov/Blast.cgi) (8, 9) using NCBI non redundant and nucleotide databases. Comparisons
with other phage genomes were carried out with NCBI blastn (8). Bioinformatic tools were run
with default parameters.

Annotation of phage SN1 genome predicted 89 genes and 32 predicted functions,
which included proteins involved in nucleotide synthesis modification, genome replication,
structural proteins, and cell lysis. The top hits for similar genomes consisted of several
Pseudomonas phages with 95 to 98% nucleotide identity (73 – 96% query cover). Interestingly,
phage SN1 has 96.76% nucleotide identity (91% query cover) with Pseudomonas phage M6
genome, which contains hypermodified thymines (reviewed in reference [10]). Half of the
thymine residues in the M6 genome contain moieties synthesized through postreplicative
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modifications of 5-hydroxymethyl uridine. In M6-like phages, including SN1, the thymidine
modification pathway includes several genes located upstream of the DNA polymerase
gene (10). This cassette consists of genes that code for pyrimidine hyroxymethylase (Locus
tag SN1_071), Nmad5 (SN1_019), aGPT-Pplase1 (SN1_020), nucleotide kinase (SN1_021),
rSAM (SN1_022), pyridoxal-59-phosphate (PLP) dependent enzyme (SN1_023), and aGPT-
Pplase2 (SN1_024). The hypermodified thymidines likely explain the resistance of the
SN1 genome to certain type II endonucleases (2). Finally, we observed a gene that codes for
a putative antirestriction protein (Locus tag SN1_075). These proteins typically mimic the DNA
structure and block type I restriction enzymes (11–12).

Data Availability. Genome sequence is available under GenBank number ON165687.
Raw sequence reads are available under SRA number SRR18758685. Phage SN1 is available at
www.phage.ulaval.ca.
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