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Backgrounds: The COVID-19 pandemic has caused significant impact on human health. Whether
obstructive sleep apnea (OSA) increases the risk of COVID-19 remains unclear. We sought to clarify this
issue using two-sample Mendelian randomization (TSMR) analysis in large cohorts.
Methods: Bidirectional two-sample Mendelian randomization (MR) was used to evaluate the potential
causality between OSA and COVID-19 by selecting single-nucleotide polymorphisms (SNPs) as instru-
mental variables (IVs) from genome-wide association studies (GWAS). The inverse-variance weighted
(IVW) method was selected as the main approach for data analysis to estimate the possible causal effects.
Alternative methods such as MR-Egger, the MR pleiotropy residual sum and outlier (MR-PRESSO), and
leave-one-out analysis methods were implemented as sensitivity analysis approaches to ensure the
robustness of the results.
Results: All forward MR analyses consistently indicated the absence of a causal relationship between OSA
and any COVID-19 phenotype. In the reverse MR analysis, the IVW mode demonstrated that severe
respiratory confirmed COVID-19 was correlated with a 4.9% higher risk of OSA (OR, 1.049; 95%CI, 1.018
e1.081; P ¼ 0.002), consistent in MR-PRESSO (OR ¼ 1.049, 95%CI 1.018e1.081, P ¼ 0.004), weighted
median (OR ¼ 1.048, 95%CI 1.003e1.095, P ¼ 0.035), and MR-Egger (OR ¼ 1.083, 95%CI 1.012e1.190,
P ¼ 0.041) methods.
Conclusions: There is no significant evidence supporting a causal association between OSA and any
COVID phenotype, while we identified potential evidence for a causal effect of severe COVID-19 on an
increased risk of OSA.
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1. Introduction

For some individuals, the global COVID-19 pandemic caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
resulted in serious conditions such as pneumonia and respiratory
insufficiency [1]. Globally, as of June 1, 2022, 527 million confirmed
cases of COVID-19, including 6 million deaths, have been reported
to the World Health Organization (WHO). Given the broad spec-
trum of individuals susceptible to SARS-CoV-2 infection and the
wide range of disease severity, ranging from asymptomatic to fatal,
earlier studies have identified higher susceptibility and various
comorbidities linked to severe COVID-19 outcomes. These include
obesity, hypertension, diabetes, thyroid disease, dyslipidemia, car-
diovascular disease, and pulmonary disease [2,3].

Obstructive sleep apnea (OSA) is a prevalent and under-diagnosed
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disorder characterized by repeated closure of the upper airway tract
during sleep, resulting in sleep fragmentation and intermittent hyp-
oxia [4]. This disorder not only causes daytime drowsiness, but also
exacerbates cardiovascular issues, obesity-related metabolic
dysfunction, systemic inflammation, and aweakened immunological
response to infection [5,6].Whether OSA is a risk factor for COVID-19,
particularly severe COVID-19, has long been a subject of debate.
Recently, several observational studies have suggested that OSA is
associated with an increased risk of severe COVID-19 [7e11]. Ac-
cording to two meta-analyses of epidemiological research, OSA
increased the risk of severe COVID-19 1.7- and 2.0-fold, respectively
[7,9]. However, after controlling for common confounding factors
such as obesity and cardiovascular disease, Mashaqi et al. reported
that there was insufficient evidence to demonstrate OSA was asso-
ciated with severe COVID-19 [12]. In the reverse direction, although
COVID-19 is a multi-systemic disease, the lungs are the primary
source of infection and injury [13], subsequently decreased lung
volumes and upper airway inflammation might causally associate
with OSA. An observational study has demonstrated highly prevalent
(73%) of OSA among COVID-19 related moderate to severe survivors
[14]. Thus, there are complicated and potentially bidirectional re-
lationships between COVID-19 and OSA, whereby the progression of
one disease process causes the progression of the other. However, it is
difficult to speculate on their causal relationship given traditional
observational studies investigating the association between COVID-
19 and OSA are vulnerable to unmeasured confounding and reverse
causation. Thus, whether individuals with OSA are at a greater risk of
developing COVID-19, and if the severity of COVID-19 is causally
associated with OSA remains undiscerned.

Mendelian randomization (MR) is an analytical approach that
examines the causal effects of changeable exposure to diseases using
human genetic variation. MR has the appealing strength of being
frequently less vulnerable to reverse causality and confounders than
other study methods since the two alleles of an SNP are randomly
segregated under the Mendel's law [15]. We may be able to reduce
their impact on disease risk by establishing causative relationships
between OSA and COVID-19 susceptibility or severity and avoid
incorrect conclusions that lead to inaccurate information or undue
anxiety. Data from genome-wide association studies (GWAS), which
can provide regression coefficients summarizing the associations
between multiple genetic variations and several phenotypes, could
be a valuable source of information for MR analysis.

As a result, we performed bidirectional MR analyses to deter-
mine the causal relationship between COVID-19 (which includes
COVID-19, hospitalized COVID-19 compared with non-hospitalized
COVID-19, hospitalized COVID-19 compared with the general
population, and severe COVID-19) and OSA using summary statis-
tical results from GWAS data. Understanding the bidirectional
relationship between COVID-19 and OSA is critical to provide ac-
curate information to the public health sector regarding disease
prevention and complication management.

2. Methods

We used a univariate bidirectional two-sample MR analysis to
evaluate the causal relationship between OSA and COVID-19. First,
we explored the effects of OSA on COVID-19 and then the causal
effects of COVID-19 on OSA. The design of our MR framework is
illustrated in Fig. 1.

3. Data sources

3.1. GWAS of OSA

The OSA summary-level data were obtained from recently
29
published genome-wide association studies (GWAS), which
included 16,761 OSA patients and 201,194 controls in the FinnGen
study (Table 1) [16]. OSA was diagnosed using the International
Classification of Diseases, 10th edition (ICD-10) and 9th edition
(ICD-9) codes (ICD-10: G47.3, ICD-9: 3472A), which are based on
subjective symptoms, clinical examination, and sleep registration
using the apnea-hypopnea index of five per hour or respiratory
event index of five per hour [17]. Principal covariates, such as age
and sex, were adjusted in the association tests for all sources.

3.2. GWAS of COVID-19

The COVID-19 Host Genetics Initiative [18], launched on January
18, 2021, provided genetic connections with COVID-19 phenotypes.
This GWAS yielded the following four phenotypes: 1) COVID-19
patients vs. the general population (38,984 cases vs. 1,644,784
controls), 2) hospitalized COVID-19 patients vs. the general popu-
lation (3159 cases vs. 7206 controls), 3) hospitalized COVID-19
patients vs. non-hospitalized COVID-19 patients (9986 cases vs.
1,877,672 controls), 4) severe respiratory confirmed COVID-19 pa-
tients vs. the general population (5101 cases vs. 1,383,241 controls)
[19].

4. Statistical analysis

4.1. Selection of instruments

First, we chose single nuclear polymorphisms (SNPs) for OSA
that met the genome-wide significance criteria (P < 5 � 10�8). For
only a few significant SNPs of COVID-19 were found using the
P < 5 � 10�8 threshold, SNPs were chosen as IVs for COVID-
19 at P < 1 � 10�5. To ensure that the effect of SNPs on COVID-19
and OSA was related to the same allele, the effect direction was
harmonized. Furthermore, we removed SNPs that were in linkage
disequilibrium (r2 threshold <0.001 within a 10 Mb window) from
the outcome datasets and retrieved the remaining SNPs.

To ensure the strength of the exposures, we calculated the F
statistic, and an F statistic of 10 was regarded as sufficiently robust to
counteract weak instrument bias. The R2 and F statistics of the SNPs
were determined using the following formula: R2 ¼ 2 � EAF � (1-
EAF) � b2 and the F statistic ¼ R2 � (N-2)/(1-R2) [20]. Using non-
centrality parameter-based approach, the statistical power was
calculated using an online tool at http://cnsgenomics.com/shiny/
mRnd/ [21].

4.1.1. MR analyses
To analyze putative causal effects, the IVW method was used as

the main analytical strategy [22]. To address variant heterogeneity
and pleiotropic effects, we applied five different two-sample MR
approaches (MR-Egger, Weighted median [WM], the MR pleiotropy
residual sum and outlier (MR-PRESSO), simple mode, and weighted
mode). When less than half of the weights came from invalid var-
iants, the WM technique yielded effect estimates [23]. Even when
up to 50% of the genetic variation was invalid, the MR-Egger tech-
nique produced consistent results [24]. The MR-PRESSO approach
provides a corrective test by recognizing and deleting potentially
pleiotropic outliers [25]. The non-zero intercept of the MR-Egger
intercept test indicated that the inverse-variance weighted (IVW)
results might be invalid because of horizontal pleiotropy [26].
Furthermore, we performed a leave-one-out study to determine
how eliminating one genetic variant from the MR analysis affected
the results [27]. P < 0.05 was considered to indicate a statistically
significant difference when Cochran's Q statistic was used to assess
the heterogeneity among genetic variations [28]. R version 4.1.0 (R
Foundation for Statistical Computing, Vienna, Austria) with the

http://cnsgenomics.com/shiny/mRnd/
http://cnsgenomics.com/shiny/mRnd/


Fig. 1. Flowchart of our bidirectional two-sample Mendelian randomization analysis. OSA, obstructive sleep apnea; UKBB, UKbiobank; SNPs, single nuclear polymorphisms;
mGWAS, mata-analysis of genome-wide association studies; hospitalized COVID-19, hospitalized COVID-19 compared with the general population; hospitalized COVID-192, hos-
pitalized COVID-19 compared with non-hospitalized COVID-19; IVW analysis, inverse-variance weighted analysis.

Table 1
Characteristics of GWAS consortiums used for each variable.

Traits Sample size (cases/controls) Population Consortium Journal

Obstructive sleep apnea 16,761/201,194 European FINNGen European Respiratory Journal
COVID-19 vs. general population 38,984/1,644,784 European UKBB European Journal of Human Genetics
Hospitalized COVID-19 vs. general population 3159/7206 European UKBB European Journal of Human Genetics
Hospitalized COVID-19 vs. non-hospitalized COVID-19 9986/1,877,672 European UKBB European Journal of Human Genetics
Severe respiratory confirmed COVID-19 vs. general population 5101/1,383,241 European UKBB European Journal of Human Genetics

GWAS, genome-wide association studies; COVID-19, Corona Virus Disease 19; UKBB, UK Biobank; FINNGen, Finnish Gene.

X. Gao, T. Wei, H. Wang et al. Sleep Medicine 101 (2023) 28e35
two-sample MR and MR-PRESSO packages was used for all statis-
tical analyses.

5. Results

5.1. Causal effects of OSA on COVID-19 risk

All models in forward MR analyses consistently revealed no
statistically significant evidence for a causal relationship between
OSA and COVID-19 (IVW: OR, 0.984; 95%CI, 0.764e1.268;
P ¼ 0.903), hospitalized COVID-19 vs. the general population (IVW:
OR, 0.945; 95% CI, 0.704e1.269; P ¼ 0.708), hospitalized COVID-19
vs. non-hospitalized COVID-19 (IVW: OR, 1.233; 95% CI,
0.756e2.012; P ¼ 0.401), or severe respiratory confirmed COVID-19
(IVW: OR, 0.726; 95% CI, 0.471e1.121; P ¼ 0.149). The MR-Egger
intercept test and Cochran's Q statistic did not identify any direc-
tional pleiotropy or heterogeneity. Furthermore, no indication of
horizontal pleiotropy was observed in the MR-PRESSO global test
(all P > 0.10).
5.2. Causal effects of COVID-19 on OSA risk

In the IVW mode, we found that severe respiratory-confirmed
COVID-19 had a causal risk effect on OSA (OR, 1.049; 95% CI,
1.018e1.081; P ¼ 0.002). The other three sensitivity analyses also
consistently revealed causality between them (MR-Egger: OR,
30
1.083; 95% CI, 1.012e1.190; P ¼ 0.041; MR-PRESSO: OR, 1.049; 95%
CI, 1.018e1.081; P ¼ 0.004; WM: OR, 1.048; 95% CI, 1.003e1.095;
P¼ 0.035). The scatter plot in Fig. 2 shows the relationship between
severe respiratory-confirmed COVID-19 and OSA risk. In this study,
the MR-Egger intercept test revealed no pleiotropic effects
(P ¼ 0.681). Furthermore, neither Cochran's Q test nor the MR-
PRESSO global test revealed any significant heterogeneity for se-
vere respiratory-confirmed COVID-19 and OSA (all P > 0.10)
(Table 2). We also applied leave-one-out analysis and failed to
identify one SNP that substantially influenced the IVW estimate
(Fig. 3). The other three features (COVID-19 vs. the general popu-
lation, hospitalized COVID-19 vs. the general population, and hos-
pitalized COVID-19 vs. non-hospitalized COVID-19) did not appear
to have a causal effect on OSA (Table 3). The minimum F-statistic
was 32 and is shown in Supplementary Tables S1 and S2. Leave-
one-out plots are presented in Supplementary Figs. S1eS7.
Required sample size is shown in Supplementary Table S3.
6. Discussion

Understanding the causal link between OSA and COVID-19 is
crucial for developing disease prevention and therapy methods,
given the significant impact of both on human health. To the best of
our knowledge, this is the first study that evaluates the causal
relationship between COVID-19 and OSA using a bidirectional two-
sample MR analysis. In the current investigation, using publicly



Fig. 2. Scatter plot of the SNP effects on severe respiratory-confirmed COVID-19 and OSA, with the slope of each line corresponding to the estimated MR effect per method.
OR, odds ratio; CI, confidence interval; MR, Mendelian randomization; SNP, single-nucleotide polymorphism; OSA, obstructive sleep apnea.
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accessible summary statistical data, no substantial evidence was
found to suggest that genetic susceptibility to OSA increases the
likelihood of any COVID-19 trait (including non-hospitalized
COVID-19, hospitalized COVID-19 and severe respiratory-
confirmed COVID-19). On the other hand, there was MR evidence
that genetic susceptibility to severe respiratory-confirmed COVID-
19 was associated with increased risk of OSA, which provides a
novel direction for future clinical therapy for patients who expe-
rience severe COVID-19 infection.

Our MR study did not find genetic predisposition to OSA traits
would alter the susceptibility to SARS-CoV-2 infection, COVID-19
hospitalization, or severe. This finding is consistent with retro-
spective studies which have failed to uncover substantial evidence
for a causal relationship after adjusting obesity and cardiovascular
disease [12]. Although a growing number of observational studies
have reported that individuals with OSA have a greater risk of se-
vere COVID-19 [8,10,11], there are various possible explanations for
this disparity in the results. First, the discrepancy could be ascribed
to reverse causality and unmeasured confounders in observational
studies, such as socioeconomic status and smoking. In addition,
factors other than genetics may play a role in COVID-19 vulnera-
bility. For example, the deterioration of the pulmonary inflamma-
tory process in patients with OSA may be due to a lack of body
immunity caused by intermittent hypoxia and sleep fragmentation
[29]. Another possible explanation for the disparity is that the
condition of individuals with a genetic susceptibility to OSA may
deteriorate with age. Further investigation is required to identify
relevant discrepancies.
31
Based on public GWAS data, we performed two-sample MR to
evaluate whether genetic predisposition and severity of COVID-19
are causally associated with OSA susceptibility. Novelly and unex-
pectedly, genetic susceptibility to severe respiratory-confirmed
COVID-19 was causally associated with increased risk of OSA in
IVW mode, implying that OSA surveillance should be intensified in
severe respiratory-verified COVID-19 patients. Multiple sensitivity
studies were performed using various methodologies (e.g., MR-
Egger and MR-PRESSO) and instrument selection, with consistent
results. Therefore, we suspect that severe COVID-19 could lead to
OSA.

There was no meaningful difference in OSA susceptibility be-
tween hospitalized and non-hospitalized COVID-19 patients, indi-
cating that various host response mechanisms may alter
susceptibility to SARS-CoV-2 infection and development of more
severe COVID-19. According to the COVID-19 HGI's GWAS meta-
analysis, there are four loci for severe COVID-19 that are distinct
from those for SARS-CoV-2 infection and hospitalized COVID-19
[30]. A variant of rs2109069, an intronic variant of the gene
encoding dipeptidyl peptidase 9 (DPP9), encodes a serine protease
with a number of intracellular functions including cleavage of the
major antiviral signaling mediator CXCL [31], antigen presentation
[32], and inflammasome activation [33]. Idiopathic pulmonary
fibrosis is associated with variants in this locus [34]. A recent study
by Díaz-García et al. reported that inflammasome activation plays a
crucial role in the proinflammatory response in severe OSA [6].
According to their findings, the activity of nucleotide-binding
oligomerization domain-like receptor 3 (NLRP3) in monocytes



Table 2
Forward causal relationships between obstructive sleep apnea and COVID-19 risk performed by MR.

Phenotype nSNPs OR (95%CI) P Q pval Intercept pval Global P

COVID-19 vs. general population
IVW 5 0.984 (0.764, 1.268) 0.903 0.082
MR-Egger 5 0.746 (0.354, 1.572) 0.497 0.491
MR-PRESSO 5 0.984 (0.764, 1.268) 0.909 0.134
WM 5 0.962 (0.740, 1.251) 0.772
Simple mode 5 0.818 (0.525, 1.275) 0.425
Weighted mode 5 1.147 (0.816, 1.612) 0.475
Hospitalized COVID-19 vs. general population
IVW 5 0.945 (0.704, 1.269) 0.708 0.044
MR-Egger 5 0.620 (0.266, 1.444) 0.349 0.374
MR-PRESSO 5 0.945 (0.704, 1.269) 0.727 0.122
WM 5 0.971 (0.733, 1.288) 0.840
Simple mode 5 0.933 (0.563, 1.548) 0.803
Weighted mode 5 1.118 (0.814, 1.535) 0.529
Hospitalized COVID-19 vs. non-hospitalized COVID-19
IVW 5 1.233 (0.756, 2.012) 0.401 0.393
MR-Egger 5 1.311 (0.218, 7.902) 0.787 0.948
MR-PRESSO 5 1.233 (0.756, 2.012) 0.448 0.399
WM 5 1.302 (0.690, 2.456) 0.415
Simple mode 5 0.853 (0.293, 2.480) 0.784
Weighted mode 5 1.866 (0.806, 4.321) 0.219
Severe respiratory confirmed COVID-19 vs. general population
IVW 5 0.726 (0.471, 1.121) 0.149 0.149
MR-Egger 5 0.324 (0.131, 0.801) 0.093 0.156
MR-PRESSO 5 0.726 (0.471, 1.121) 0.222 0.226
WM 5 0.761 (0.489, 1.185) 0.227
Simple mode 5 0.511 (0.245, 1.068) 0.149
Weighted mode 5 0.817 (0.492, 1.357) 0.478

nSNPs, number of single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; Q_pval, P-value of the Cochran Q statistic; IVW, inverse-variance weighted; WM,
weighted median; MR-PRESSO, Pleiotropy Residual Sum and Outlier.

Fig. 3. Leave-one-out plot: MR sensitivity analysis for severe respiratory-confirmed COVID-19 and OSA. MR, Mendelian randomization; OSA, obstructive sleep apnea.
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Table 3
Reverse causal relationships between obstructive sleep apnea and COVID-19 risk performed by MR.

Phenotype nSNPs OR (95%CI) P Q pval Intercept pval Global P

COVID-19 vs. general population
IVW 27 1.057 (0.943, 1.184) 0.341 0.163
MR Egger 27 0.885 (0.646, 1.212) 0.452 0.247
MR-PRESSO 27 1.050 (0.944, 1.169) 0.376 0.154
WM 27 1.061 (0.910, 1.237) 0.453
Simple mode 27 1.131 (0.778, 1.642) 0.525
Weighted mode 27 0.824 (0.578, 1.175) 0.295
Hospitalized COVID-19 vs. general population
IVW 32 0.989 (0.946, 1.034) 0.633 0.625
MR Egger 32 1.088 (0.969, 1.222) 0.164 0.092
MR-PRESSO 32 0.989 (0.948, 1.032) 0.619 0.605
WM 32 1.003 (0.942, 1.068) 0.931
Simple mode 32 0.966 (0.851, 1.097) 0.597
Weighted mode 32 1.016 (0.922, 1.119) 0.757
Hospitalized COVID-19 vs. non-hospitalized COVID-19
IVW 20 0.997 (0.959, 1.037) 0.892 0.707
MR Egger 20 0.989 (0.901, 1.085) 0.815 0.845
MR-PRESSO 20 0.997 (0.963, 1.033) 0.881 0.698
WM 20 0.979 (0.926, 1.036) 0.468
Simple mode 20 0.982 (0.895, 1.077) 0.699
Weighted mode 20 0.966 (0.893, 1.045) 0.401
Severe respiratory confirmed COVID-19 vs. general population
IVW 33 1.049 (1.018, 1.081) 0.002 0.311
MR Egger 33 1.083 (1.012, 1.190) 0.041 0.681
MR-PRESSO 33 1.049 (1.018, 1.081) 0.004 0.332
WM 33 1.048 (1.003, 1.095) 0.035
Simple mode 33 1.030 (0.943, 1.126) 0.514
Weighted mode 33 1.041 (0.961, 1.128) 0.329

nSNPs, number of single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; Q_pval, P-value of the Cochran Q statistic; IVW, inverse-variance weighted; WM,
weighted median; MR-PRESSO, Pleiotropy Residual Sum and Outlier.
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from patients with severe OSA is directly connected to apnea-
hypopnea and hypoxia indices. Furthermore, decreasing lung vol-
umes associated with idiopathic pulmonary fibrosis might impair
upper airway stability and resistance, enabling collapse of the up-
per airway, particularly during REM sleep, when functional residual
capacity is further reduced because of decreased intercostal muscle
activity [35]. As a result, inflammation and genetic variations may
play a role in the higher risk of OSA in individuals with severe
COVID-19. However, few clinical or epidemiological studies have
investigated this association. Future clinical or functional studies
may confirm this, and validated disease-specific questionnaires
and/or portable devices may also aid in exploring the role of severe
COVID-19 in OSA susceptibility [36,37].

The COVID-19 pandemic has had the greatest impact on people
who already have health problems. Not only did it increase the
under-diagnosis of OSA, but also probably delayed or affected the
treatment of OSA patients who had been diagnosed [38]. Untreated
OSA is linked to an increased risk of cardiovascular issues, which
increases the risk of severe COVID-19 infection and death in what
appears to be a vicious cycle [39]. As a result, telemedicine for OSA
management assistance and the use of portable screening equip-
ment combined with artificial intelligence for prescreening sus-
pected OSA might be advantageous [40e42]. According to our
results, severe COVID-19 is causally related with OSA, shedding
fresh light on themechanisms underlying the relationship between
OSA and COVID-19. Importantly, it may have indications for clini-
cians to pay more attention to the OSA-monitoring and potential
comorbidity therapy such as airway management among severe
COVID-19 patients, as they are more likely to fail extubation and
require prolonged mechanical ventilation [43].

The main strength of this study is that we used theMR approach
to analyze the causal correlations between COVID-19 and OSA.
Despite not being able to investigate the causality among whose
phenotype for both COVID and OSA considering the available data
33
we used were summary-level statistics rather than individual-level
statistics, utilizes nonoverlapping, independent data and sample
sets for exposure and outcome groups, two-sample MR analysis
provided a more powerful causal relationship between the two
diseases, overcoming environmental confounding [44]. Another
strength is that the bidirectional analysis guaranteed the inference
of causality between OSA and COVID-19 in both directions, avoiding
misleading causal effect [45]. In particular, it provides an alternative
line of aetiological evidence that severe COVID-19 could cause OSA,
which may be frequently influenced by reverse causality in obser-
vational studies.

However, various limitations should be considered before
interpreting the outcomes of this MR investigation. First, despite
the fact that participants in the chosen GWAS were all of European
ancestry, residual confounding from other variables potentially
bring horizontal pleiotropy and subsequently biased estimation of
causal inference. However, no meaningful pleiotropic effect on the
results was detected in the multiple sensitivity analyses such as
MR-Egger regression. In addition, it is important to note that
ethnicity appears to influence craniofacial anatomy traits and
obesity liability in individuals with OSA, and which are likely to
account for approximately 40% of the OSA risk [46,47]. It remains
unclear whether our findings can be applied to other populations.
Further work should be carried out in other ethnic groups such as
Asian ethnicities. Second, causal estimates from MR should be
interpreted with caution. Our results indicate an insufficient sam-
ple size through power analysis (Supplementary Table S3), limited
by the small proportions of variance explained by the genetic in-
struments (<1% on any COVID phenotype and OSA) and minor
percentage of people with an outcome event. This generated an
impetus to perform MR studies on larger sample size populations.
Third, we cannot rule out the possibility that our findings were
influenced by weak instrument bias, which is dependent on the
selection of the genetic instrument through the relatively lenient
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threshold of P ¼ 1 � 10�5 for COVID-19 phenotypes although the F
statistics did not indicate that our instruments were weak. Fourth,
our results represent a lifetime effect between OSA and COVID-19,
while the risk of developing OSA may be time-dependent because
of age-related attenuation of pharyngeal abductor function.
Therefore, the MR method may have underestimated the risk of
OSA. The causative estimates from this MR study should be further
investigated before being translated into therapeutic action. Fifth,
OSA severity is a determinant of the development of severe COVID-
19, which could have an impact on the cause-and-effect relation-
ship between the two conditions. However, no subgroup analysis of
OSA severity was performed in our study because of the lack of
necessary data. Lastly, genetic associations represent odds ratios
value, not relative risk value, which may yield biased estimates
when testing causality for common outcomes such as OSA. Thus,
the estimate from a Mendelian randomization investigation is
therefore better interpreted as a test statistic for a causal hypothesis
rather than representing the estimated effect of a clearly defined
intervention at a particular time [22].
7. Conclusion

There is no evidence to substantiate a causal relationship be-
tween OSA and any COVID phenotype; however, we did find po-
tential evidence concerning the causal effect of severe COVID-19 on
an increased risk of OSA.
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