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ABSTRACT Filamentous and dimorphic fungi cause invasive mycoses associated
with high mortality rates. Among the fungal determinants involved in the establish-
ment of infection, glycosphingolipids (GSLs) have gained increased interest in the
last few decades. GSLs are ubiquitous membrane components that have been iso-
lated from both filamentous and dimorphic species and play a crucial role in polar-
ized growth as well as hypha-to-yeast transition. In fungi, two major classes of GSLs
are found: neutral and acidic GSLs. Neutral GSLs comprise glucosylceramide and
galactosylceramide, which utilize Δ4-Δ8-9-methyl-sphingadienine as a sphingoid
base, linked to a C16 –18 fatty acid chain, forming ceramide, and to a sugar residue,
such as glucose or galactose. In contrast, acidic GSLs include glycosylinositol phos-
phorylceramides (GIPCs), composed of phytosphingosine attached to a long or very
long fatty acid chain (C18 –26) and to diverse and complex glycan groups via an
inositol-phosphate linker. GIPCs are absent in mammalian cells, while fungal gluco-
sylceramide and galactosylceramide are present but diverge structurally from their
counterparts. Therefore, these compounds and their biosynthetic pathways represent
potential targets for the development of selective therapeutic strategies. In this
minireview, we discuss the enzymatic steps involved in the production of fungal
GSLs, analyze their structure, and address the role of the currently characterized
genes in the biology and pathogenesis of filamentous and dimorphic fungi.
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INVASIVE FUNGAL INFECTIONS

Invasive fungal infections represent a major threat to immunocompromised patients,
leading to approximately one-and-a-half million deaths per year worldwide (1).

Among invasive mycoses, those caused by dimorphic and filamentous fungi are
associated with significant morbidity and high mortality rates. The dimorphic fungal
species Blastomyces dermatitidis, Coccidioides immitis, Histoplasma capsulatum, Paracoc-
cidioides brasiliensis, and Sporothrix schenckii are the most prevalent etiologic agents of
blastomycosis, coccidioidomycosis, histoplasmosis, paracoccidioidomycosis, and sporo-
trichosis, respectively, and together cause more than 1 million new infections per year
in the United States alone (2). Except for Sporothrix, the occurrence of these dimorphic
fungal pathogens is geographically restricted, and it is estimated that they infect 10
million people worldwide, remaining latent and establishing systemic infections when
the host becomes immunodeficient (3–6). Among filamentous fungal infections, inva-
sive aspergillosis (usually caused by the mold Aspergillus fumigatus) is one of the four
most life-threatening, with a mortality rate of up to 90% if the infection is not properly
diagnosed and treated (1). Mucormycosis is another fungal infection of emerging
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medical importance that is most frequently caused by the filamentous fungus Rhizopus
oryzae (7). Unlike other molds which affect only immunodeficient patients, R. oryzae can
cause lethal infections in otherwise immunocompetent individuals (8), including mili-
tary personnel who sustained combat-related injuries. In fact, approximately 6.8% of
the U.S. soldiers wounded in Afghanistan between 2009 and 2011 developed trauma-
associated fungal infections (9), indicating that individuals exposed to blast injuries are
at risk for invasive mycoses.

The medical relevance of systemic infections caused by dimorphic and filamentous
fungi has brought great interest in the mechanisms underlying host immune response
and fungal pathogenesis. Dimorphic and filamentous mycelia usually grow in soil, at 22
to 25°C, and produce easily aerosolized conidia (or arthroconidia, in the case of
Coccidioides immitis) (10, 11). The primary route for most fungal entry in the mammalian
host is the respiratory tract, with the inhalation of airborne conidia. In contrast, R. oryzae
and S. schenckii infections are usually established after the traumatic inoculation of soil
material contaminated with these fungi. The host body temperature (37°C) induces
filamentous fungi to germinate from conidia to germlings and dimorphic fungi to
switch morphologically from the infectious propagules (asexual conidia) to the patho-
genic yeast (or spherules, in the case of Coccidioides immitis) form. Alveolar macro-
phages are the first line of immune defense against fungal conidia in the lungs and, in
healthy individuals, are able to kill conidia or inhibit fungal growth through phagocy-
tosis (12, 13). Pathogen evasion of lung macrophages and other immune system cells,
such as neutrophils and dendritic cells, can lead to fungal dissemination to other organs
(12). The establishment of the fungal disease is a combination of the host immune
status and/or virulence factors produced by the fungus. For example, neutropenic
patients are highly susceptible to invasive aspergillosis, whereas T-cell immunodefi-
ciency is the main condition predisposing individuals to infection by dimorphic fungi.
Whereas the role of the host immune system in fungal recognition and growth
inhibition and, thus, in controlling the infection has been extensively studied (12, 14),
the pathways that contribute to fungal virulence, particularly those involved in the
regulation of hypha-to-yeast transition and conidial germination in dimorphic and
filamentous fungi, are less appreciated. In this review, we discuss the relevance of
glycosphingolipids (GSLs) in fungal growth, dimorphism, and virulence, which are key
to lung colonization and systemic dissemination in mammalian hosts.

GSL STRUCTURE AND MEMBRANE LOCALIZATION

Glycosphingolipids (GSLs) are key components of the plasma membrane and are
involved in cellular processes crucial for fungi, such as growth, differentiation, signal
transduction, and pathogenesis (15). The basic structure of these compounds consists
of a sphingoid base backbone (also called long-chain base [LCB], highlighted in blue in
Fig. 1A) linked to a fatty acid chain (highlighted in black in Fig. 1A) through an amide
bond, forming ceramide, which is then linked through a glycosidic bond to a polar head
group, represented by one or more sugar units (highlighted in red in Fig. 1A) (16). In the
last few decades, GSLs have been isolated from distinct fungal species, such as
A. fumigatus, P. brasiliensis, H. capsulatum, and S. schenckii. Two major classes of GSLs
were identified in these opportunistic pathogens, neutral GSLs (or monohexosylcer-
amides) and acidic GSLs (reviewed in references 17 and 18).

Neutral GSLs are conserved among fungi, plants, and mammals, although struc-
tural divergence is found among different species (19). In fungi, neutral GSLs
(Fig. 1A) exhibit Δ4-Δ8-9-methyl-sphingadienine as the sphingoid base, usually
attached to N-2=-hydroxyoctadecanoate or to the unsaturated counterpart N-2=-
hydroxy-(E)-3=-octadecenoate as the fatty acid, and a glucose or galactose residue, to
form glucosylceramide (GlcCer) and galactosylceramide (GalCer) (17). Whereas in mam-
malian cells GlcCer and GalCer are then used to make hundreds of complex sphingo-
lipids, such as cerebrosides, gangliosides, and globosides, in fungi, GlcCer and GalCer
are considered the final step of the pathway. In contrast, acidic GSLs include inositol
phosphorylceramides (IPCs), which are then used as building blocks for more complex
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molecules, such as mannosylinositol phosphorylceramide (MIPC) and mannosyldiinosi-
tol phosphorylceramide [M(IP)2C] (Fig. 1B) and others. The ceramide moiety of the IPCs
is usually formed by a 4-hydroxysphinganine (phytosphingosine) as the LCB, attached
to a very long fatty acid (VLFA) chain (C18 –26). The major differences between the

FIG 1 Glycosphingolipid structure and biosynthesis. (A) Basic structure of a neutral glycosphingolipid, made
up of a sphingoid base (highlighted in blue) and a fatty acid chain (highlighted in black) to form ceramide,
which is linked to a sugar residue (highlighted in red). (B) The structure of IPC, a simple acidic glycosphin-
golipid, is shown. Acidic glycosphingolipids differ from neutral glycosphingolipids in that they contain an
additional -OH group at C4 of the sphingoid base and lack C9-methylation and Δ4- and Δ8-unsaturations
(highlighted in orange). Another difference is that acidic glycosphingolipids are made up of a very long fatty
acid (C18 –26, highlighted in purple) instead of the C16 –18 chain found in neutral glycosphingolipids. (C)
Proposed biosynthetic pathway of glycosphingolipids. The reactions indicated by the number 3 are common
to acidic and neutral GSL synthesis, while those indicated by the numbers 4 and 5 are exclusive of neutral (see
Neutral GSL Synthesis in the text) and acidic (see Acidic GSL Synthesis in the text) GSLs, respectively.
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ceramide moieties of neutral and acidic GSLs are highlighted in orange and purple in
Fig. 1B. The LCBs from acidic GSLs contain a hydroxyl group at C-4 and lack the
C9-methylation and Δ4- and Δ8-unsaturation present in the LCBs from neutral GSLs
(Fig. 1A). Additionally, the distinct classes of GSLs exhibit fatty acid chains of various
lengths. The resulting phytoceramide is linked via an inositol-phosphate group to one
of the sugar cores of fungal GIPCs: GlcN�1-2Ins, Man�1-6Ins, and Man�1-2Ins. Thus, the
acidic GSLs in fungi are structurally diverse and more complex than the neutral GSLs.

More than mere constituents of the plasma membrane, glycosphingolipids are
clustered along with sterols in specialized membrane microdomains termed lipid rafts,
which play a crucial role in the establishment of the fungal cell polarity (20). Polarized
growth is a hallmark of filamentous fungal morphology, as fungal hyphae grow by
apical extension, in which vesicles containing precursors required for cell wall growth
are transported to the hyphal tip through a network of microtubules and the actin
cytoskeleton (reviewed in reference 21). In fact, in Aspergillus nidulans, lipid rafts are
observed in hyphal tips (22), and sphingolipid synthesis and localization in these active
growth sites seem to be relevant for its differentiation, as the disruption of sphingolipid
production by myriocin treatment impairs the establishment of the cell polarity axis in
spores and prevents normal hyphal branching in germlings (23). Although the role of
sphingolipids in dimorphic fungal biology (e.g., hypha formation and hypha-to-yeast
transition at 25°C and 37°C, respectively) remains largely unknown, membrane mi-
crodomains enriched with sphingolipids have been isolated from H. capsulatum and
P. brasiliensis (17, 24), suggesting that they are involved in signal transduction and
yeast-host cell interaction.

THE SHARED PATHWAY OF GSL SYNTHESIS

GSL synthesis is conserved among fungal species and results from the catalytic
action of membrane-bound enzymes located in the endoplasmic reticulum (ER) (25, 26).
This section focuses on the first two reactions of GSL synthesis (Fig. 1C, reactions 3.1
and 3.2), which are common to the production of neutral (Fig. 1C, reactions 4.1 to 4.6)
and acidic (Fig. 1C, reactions 5.1 to 5.4) GSLs. The first and rate-limiting step is the
condensation of palmitoyl coenzyme A (palmitoyl-CoA) and serine, catalyzed by the
enzyme serine palmitoyltransferase, producing the intermediate 3-keto dihydrosphin-
gosine (3-keto DhSph) (16). The generation of 3-keto dihydrosphingosine is followed by
its reduction to dihydrosphingosine (DhSph) through the activity of the 3-keto dihy-
drosphingosine reductase. As reported for other fungal species (27–29), the generation
of 3-keto dihydrosphingosine seems to be essential for filamentous fungal growth.
Although the role of 3-keto DhSph reductase in filamentous and dimorphic biology
remains poorly investigated, the deletion of the Candida albicans 3-keto DhSph
reductase-encoding gene compromised filamentation (30), suggesting that dihy-
drosphingosine synthesis may be important for polarized growth.

3-Keto dihydrosphingosine synthesis. In A. nidulans, the gene encoding serine
palmitoyltransferase was identified as lcbA, named due to its homolog LCB1 in Saccha-
romyces cerevisiae. The contribution of sphingolipid synthesis to fungal biology was
investigated through the generation of a conditional mutant (23). In this strain, lcbA is
under the control of the promoter of the alcohol dehydrogenase I gene (alcA), which
is strongly induced when alcohol is the sole carbon source and repressed when glucose
is the main carbon source (31). The alcA::lcbA conidia were not able to grow in
glucose-containing medium (alcA-repressing conditions), suggesting that sphingolipid
synthesis is essential for A. nidulans cell polarity and growth (23).

Dihydrosphingosine synthesis. Dihydrosphingosine synthesis has been poorly
studied thus far in dimorphic and filamentous fungi. In A. fumigatus, 3-keto DhSph
reductase is encoded by the ksrA gene (30), but the role of ksrA for Aspergillus biology
remains to be elucidated. The production of DhSph constitutes a branching point in the
sphingolipid synthesis, as this compound can generate two distinct pools of ceramide
(dihydroceramide and phytoceramide), which are used for the formation of neutral
(GlcCer and GalCer) or acidic (IPC and MIPC) glycosphingolipids, respectively. These
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results strongly indicate that 3-keto DhSph and DhSph synthesis contribute to the
fungal viability and filamentation process.

NEUTRAL GSL SYNTHESIS

To form GlcCer or GalCer, dihydrosphingosine is first N acylated with C16 or C18,
saturated or (E)-Δ3-unsaturated fatty acids through the catalytic activity of ceramide
synthase (Fig. 1C, reaction 4.1), resulting in the production of dihydroceramide. Two
ceramide synthases, BarA and LagA, have been described in A. nidulans to play an
important role in growth (32, 33). The ceramide pool involved in the neutral sphingo-
lipid synthesis (dihydroceramide) is generated by BarA, identified in a screening of
mutant strains resistant to the antifungal polyketide heat-stable antifungal factor
(HSAF) (32). The deletion of barA reduces growth and causes extensive apical branch-
ing, along with a mislocalization of lipid rafts from the hyphal tips (32). The barA mutant
produces normal amounts of IPCs but totally lacks GlcCer, indicating that neutral GSLs,
and not acidic IPCs, contribute to the organization and growth at the hyphal tip, at least
in this fungus.

Recently, the BarA homolog Cer1 has been characterized in Cryptococcus neofor-
mans. Interestingly, similarly to the A. nidulans barA mutant, the C. neoformans cer1
mutant also produces normal levels of IPCs but totally lacks neutral GSLs, such as GlcCer
(34). The C. neoformans cer1 mutant was found to be avirulent as it cannot survive in
the lung environment, from which it is eliminated within a few days after inhalation.
This phenotype was ascribed to the lack of GlcCer and impairment of Pma1 activity,
necessary for fungal survival in the host neutral/alkaline and acidic environments,
respectively (34). These studies indicate that the GlcCer pathway may be more impor-
tant than the IPC pathway in the regulation of fungal virulence, even though IPCs are
essential for fungal growth (35). In fact, IPCs alone are not sufficient to produce a
pathogenic strain in C. neoformans and to promote growth at the hyphal tip in
A. nidulans. These studies clearly suggest that BarA and Cer1 represent excellent target
candidates for the research and development of new antifungal compounds, which will
have a broad spectrum of activity as this ceramide synthase is highly conserved in many
fungi.

After dihydroceramide synthesis, a hydroxyl group is inserted at C2 of the fatty acid
chain, generating OH-dihydroceramide. It is of note that fungal OH-dihydroceramide
can be composed of fatty acid chains of distinct lengths and levels of saturation.
An interesting feature is the unsaturation at C3, which has been reported in neutral
GSLs from A. oryzae (36), A. fumigatus (37, 38), Fusarium solani (39), P. brasiliensis (40),
H. capsulatum (41), and S. schenckii (42), a modification unique to fungal sphingolipids.
The ratio of saturated and (E)-Δ3-unsaturated 2-hydroxy fatty acid can vary among the
GSLs from different fungal morphotypes. In fact, only 15% of the total GlcCer extracted
from the P. brasiliensis yeasts is composed of (E)-Δ3-unsaturated fatty acids, while 50%
of the total GlcCer contains the Δ3-unsaturation in P. brasiliensis mycelium (37). Simi-
larly, a higher proportion of saturated fatty acids was described in the yeast GlcCer from
H. capsulatum (41), and the GlcCer from H. capsulatum mycelium is almost exclusively
constituted by the (E)-Δ3-unsaturated 2-hydroxy fatty acids (41). The higher content of
(E)-Δ3-unsaturated GlcCer in mycelial forms of P. brasiliensis and H. capsulatum may be
ascribed to the activation of desaturase activity that has been observed during the
yeast-to-hypha transition (41), suggesting that (E)-Δ3-unsaturation of the fatty acid may
be involved in signaling pathways that control morphological switch.

The saturation of the sphingosine backbone is also important. Previous studies in
C. neoformans showed that a mutant making only saturated GlcCer (sld8) is more
susceptible to membrane stressors and has increased membrane permeability, even
though biophysical studies showed that saturated GlcCer produced more lipid rafts
than unsaturated GlcCer species (43). These studies clearly suggest a connection
between GSL saturation and fungal biology and pathogenesis, although the molecular
mechanisms regulating these effects await further characterization.
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OH-ceramide synthesis, LCB �8-unsaturation, and C9-methylation. The next
step of the neutral sphingolipid synthesis consists of the C-4 reduction in the sphingoid
base of OH-dihydroceramide by the enzyme sphingolipid Δ4-desaturase (Fig. 1C,
reaction 4.2), which occurs in the cytosolic face of the ER and generates OH-ceramide
(44–46). Then, a double bond between C8-C9 and a methyl group at C9 are introduced
in the LCB by sphingolipid Δ8-desaturase (Fig. 1C, reaction 4.3) and sphingolipid
C9-methyltransferase (Fig. 1C, reaction 4.4), respectively, forming OH-Δ8-9-methyl-
ceramide (47–49). The Δ8-unsaturated and C9-methylated sphingoid base is character-
istic of fungal GlcCer and GalCer, distinguishing them from the mammalian counter-
parts, which exhibit sphingosine as the LCB (50). These structural modifications found
in the fungal LCB are required for normal growth, differentiation, and pathogenesis. The
disruption of the A. nidulans Δ8-desaturase-encoding gene (sdeA) leads to an accumu-
lation of saturated (and unmethylated) GlcCer, reduced growth, and attenuated viru-
lence in Galleria mellonella larvae (51), similarly to what is observed in C. neoformans
(43). The phylogenetic profiling of genes encoding fungal C9-methyltransferases in
filamentous fungi revealed the presence of two genes in A. nidulans (smtA and smtB)
and Fusarium graminearum (FgMT1 and FgMT2), while just one candidate was identified
in Neurospora crassa (48). Surprisingly, the deletion of F. graminearum FgMT1 neither
compromises the synthesis of C9-methylated GlcCer nor impairs mycelial growth (52).
In contrast, the ΔFgmt2 mutant produces 65 to 75% of unmethylated GlcCer and 25 to
35% of methylated GlcCer, showing severe growth defects compared to the wild-type
strain (52). These results suggest that F. graminearum FgMT2 encodes a predominant
C9-methyltransferase.

While high levels of unmethylated GlcCer are observed in both A. nidulans ΔsmtA
and ΔsmtB mutants, only the deletion of smtB is followed by a reduction in 50% of
C9-methylated GlcCer content (51), therefore corroborating the existence of a predom-
inant C9-methyltransferase in filamentous fungi. Additionally, the smtA deletion com-
bined with the smtB conditional repression remarkably compromises filamentous
growth (51). In agreement with the observation for F. graminearum, this result suggests
that C9-methyltransferases are essential for filamentous fungal growth/differentiation.
Pathogenic yeasts contain only one C9-methyltransferase, and its deletion results in a
mutant with attenuated virulence (53, 54). Interestingly, certain plant defensins require
the C9-methylation for fungal GSL recognition (51, 55). Because C9-methylation is
fungus specific, plant defensins may have a therapeutic potential for treatment of
fungal infections.

GlcCer and GalCer synthesis. The last step of the pathway involves the transfer of
a sugar residue in the Golgi apparatus from UDP-glucose or UDP-galactose to the
ceramide backbone by glucosylceramide synthase (Fig. 1C, reaction 4.5) or ceramide
galactosyltransferase (Fig. 1C, reaction 4.6), respectively (19, 56). Therefore, the final
products contain 9-methyl-4,8-sphingadienine as the sphingoid base attached to 2=-
hydroxyoctadecanoic or 2=-hydroxy-3-octadecenoate fatty acid and glucose or galac-
tose as a polar head group. The structural characterization of GSLs from fungi revealed
the presence of GlcCer in A. nidulans (57), F. solani (39), F. graminearum (58), H. cap-
sulatum (41), P. brasiliensis (37), and B. dermatitidis (50), while the occurrence of both
GlcCer and GalCer has been reported in A. fumigatus (37, 38), A. oryzae (59), and
S. schenckii (42) so far. Although GlcCer has been isolated from several fungal species,
the role of the glucosylceramide synthase (GCS) in polarized growth has been inves-
tigated only in the filamentous A. fumigatus, A. nidulans, and F. graminearum. Its
function remains unexplored in dimorphic fungi.

In filamentous fungi, the pharmacological inhibition of glucosylceramide synthase
enzyme by 20 �M D-threo-3P,4P-ethylenedioxy-P4 (EDO-P4) compound prevents the
germ tube emergence in A. fumigatus and impairs the hyphal extension in A. nidulans
germlings (57). Furthermore, the deletion of the A. nidulans gene encoding the gluco-
sylceramide synthase (gcsA) abolishes GlcCer production and reduces filamentation
(51). Similarly, the disruption of the F. graminearum FgGCS1 gene was followed by the
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lack of GlcCer production and compromised growth (58), suggesting that glucosylce-
ramide synthase expression is crucial for the establishment and maintenance of the
polarity axis in filamentous fungi (Fig. 2).

In contrast to the GlcCer synthases, whose sequences were previously identified in
a wide range of species (56), the gene encoding ceramide galactosyltransferase has
been cloned only from rat brains (60), and its fungal homolog, as well as its biological
function, remains unknown. Interestingly, the production of GalCer can vary among the
dimorphic morphotypes: while S. schenckii mycelia synthesize only GlcCer, both GlcCer
and GalCer are found in the lipid extract of the yeast forms (42), suggesting that the
ceramide galactosyltransferase may be activated during the S. schenckii mycelium-yeast
switch or inactivated during the yeast-to-hypha transition. It has been previously shown
that sphingolipids regulate the activity of protein kinases, such as protein kinase C
(PKC), and protein phosphatases, involved in signaling cascades that ultimately mod-
ulate cell growth, differentiation, and proliferation (61). Similarly, the differential (E)-
Δ3-unsaturation of fatty acids and GalCer production may constitute a mechanism of
GSL control over fungal morphogenesis through the activation/deactivation of signal
transduction pathways.

After the synthesis in the Golgi apparatus, GSLs are transported to the their final
location, which for the most part is the plasma membrane (reviewed in reference 62).

FIG 2 Role of glycosphingolipids in Aspergillus biology and pathogenesis. The filamentous fungus Aspergillus is ubiquitously dispersed
in the environment, and the asexual sporulation produces airborne conidia. The inhalation of Aspergillus conidia (1) by a severely
immunocompromised host leads to germination and extensive hyphal growth in the lungs (2), which can culminate in disseminated
infection through the bloodstream. In growing conidia (1), PhCer and Δ8-9-Me-Cer are produced in the endoplasmic reticulum (ER) and
transported to the Golgi apparatus for synthesis of GSLs, such as GalCer, GlcCer, and IPC. The inhibition of steps of this pathway, by gene
deletion or antifungal drugs, prevents germination or leads to loss of viability. In the absence of inhibition, IPC, GlcCer, and GalCer can
be directed to the active sites of the plasma membrane, playing a role in polarized growth and contributing to fungal invasion (2). The
asterisk indicates that after synthesis, IPC can achieve further complexity through the addition of glucosamine, mannose, and galacto-
furanose residues before being anchored in the plasma membrane.
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In addition, GlcCer can also be found in the fungal cell wall (63) and in vesicles that are
exported to the extracellular environment (extracellular vesicles [EVs]) (64). These
vesicular compartments were first reported in C. neoformans (65) and, since then, have
been identified in many fungi, including the dimorphic species P. brasiliensis (66) and
S. schenckii and H. capsulatum (67). The lipid and proteomic analyses of fungal EVs
revealed the presence of several virulence factors, such as sterols and proteins involved
in pathogenesis and the immune response (64). Although the secretion of EVs seems
to be a conserved mechanism across fungal species, their presence in filamentous fungi
remains to be elucidated.

ACIDIC GSL SYNTHESIS

The production of acidic GSLs in fungi is structurally more diverse and more difficult
to analyze as standards to be used by mass spectrometry are not commercially
available. The final products of this arm of the GSL pathway are IPCs, GIPCs, and MIPCs
(and perhaps more), and they have been involved in dimorphic and filamentous fungal
biology and virulence.

Phytosphingosine synthesis. The synthesis of acidic GSLs starts with the hydroxy-
lation of the DhSph sphingoid base on C-4, catalyzed by the enzyme sphingolipid C4

hydroxylase and which generates phytosphingosine (PhSph) (Fig. 1C, reaction 5.1).
PhSph production seems to be crucial for filamentous fungal growth. In A. nidulans,
sphingolipid C4 hydroxylase is encoded by the basA gene and the basA1 mutant was
identified in a chemical genetic screening showing hypersensitivity to the antifungal
polyketide HSAF (32). In the absence of HSAF, the basA1 mutation impairs fungal
growth at 42°C, which is partially restored by the addition of exogenous PhSph to the
culture medium or by the complementation of the mutant strain with the wild-type
allele (68). Moreover, the repression of the basA gene in the alcA::basA conditional
mutant abolishes fungal growth (68). These results suggest that PhSph synthesis is
essential for Aspergillus viability and, therefore, may indicate that filamentous fungi are
unable to use DhSph in the synthesis of complex GSLs.

Echinocandins constitute a class of antifungal drugs, including caspofungin and
micafungin, which interact with hot spots of the integral protein �-1,3-glucan synthase
(Fks) and inhibit its activity, compromising cell wall synthesis (69). Very interestingly, the
A. nidulans basA1 mutant exhibits a caspofungin reduced susceptibility (CRS) but a
micafungin increased susceptibility (MIS), and this phenotype is reversed by adding
myriocin, an inhibitor of serine-palmitoyl transferase, to the cell suspension (70). In
addition, previous observations in clinical isolates of Candida glabrata demonstrated
that CRS-MIS is associated with higher levels of DhSph and PhSph (71). Together, these
results suggest that the CRS-MIS phenotype observed in the A. nidulans basA1 strain
can be attributed to the accumulation of DhSph and indicate that sphingolipids may
interact with echinocandins or/and with Fks. They also suggest that the effect of
echinocandins on sphingolipids seem to be restricted to IPCs, as C. glabrata does not
make any GlcCer (72).

Phytoceramide and IPC synthesis. Next, a very long fatty acid (VLFA) chain
containing 18, 24, or 26 carbons is amide linked to phytosphingosine by the ceramide
synthase, forming phytoceramide (PhCer) (Fig. 1C, reaction 5.2) (49, 73, 74). PhCer
production seems to be relevant for fungal viability and hyphal morphogenesis. In
A. nidulans, the ceramide synthase that generates the phytoceramide pool is encoded
by the lagA gene (32), and the contribution of LagA to the fungal growth was assessed
in a conditional alcA::lagA mutant. Under lagA-repressing conditions, the alcA::lagA
strain shows a striking reduction in growth and distorted hypha, suggesting that lagA
is an essential gene and controls the polarized growth (32).

Phytoceramide is then used as the substrate for the synthesis of complex sphingo-
lipids, which occur in the Golgi apparatus. PhCer is transported from the ER to the outer
leaflet of the Golgi membrane (as illustrated in Fig. 2), by both vesicle-dependent and
independent mechanisms, and is then flipped to the Golgi inner membrane (75). The
first reaction involves the transference of the myo-inositol-1-phosphate group from the
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phosphatidylinositol to the C1 hydroxyl of phytoceramide, generating IPC (Fig. 1C,
reaction 5.3). The inositol-phosphate attachment is catalyzed by the IPC synthase
(Fig. 1C, reaction 5.3), encoded by the aurA gene (from aureobasidin A resistance) in
Aspergillus species (76), also called IPC1, which is essential in fungi. The production of
IPC is crucial for fungal viability. Repression of aurA in A. nidulans alcA::aurA spores
prevents germination, causing a terminal phenotype (23).

The integrity of the IPC synthesis pathway is relevant for filamentous fungal viability,
not only due to the role of IPC in fungal differentiation but also because the level of
DhSph, PhSph, and PhCer needs to be highly regulated, as DhSph and PhSph are highly
toxic to fungal cells. In addition, these molecules act as signaling molecules in distinct
processes such as heat stress adaptation, endocytosis, and apoptosis (77, 78). Thus,
changes in their level may have uncontrolled effects on signaling events, resulting in
fungal cell death. Indeed, DhSph and PhSph possess robust antifungal activity against
A. nidulans, and the addition of these sphingoid bases to the culture medium induces
DNA condensation, DNA fragmentation, and phosphatidylserine externalization, char-
acteristic hallmarks of apoptotic cell death (79). In Neurospora crassa, phytoceramides
containing C18 and C24 fatty acid chains are produced in response to the combined
stresses of heat shock and 2-deoxyglucose treatment, suggesting that ceramides
mediate the signaling of fungal cell death (80).

These observations indicate that PhCer synthase and IPC synthase constitute po-
tential targets for the development of new antifungal drugs, as inhibiting these
enzymes will lead to the accumulation of PhSph and PhCer and, ultimately, fungal
death. In fact, the inhibition of A. nidulans IPC synthase by aureobasidin A is followed
by an accumulation of ceramide and cell cycle arrest (23). Aureobasidin A also showed
antifungal activity against H. capsulatum, B. dermatitidis, A. nidulans, and Aspergillus
terreus (81), in addition to Candida albicans and Cryptococcus neoformans (81, 82).
Because mammalian cells lack Ipc1, this enzyme represents an ideal antifungal target
(83).

GIPC synthesis. Further IPC processing by glycosyltransferases generates glycosy-
linositol phosphorylceramides (GIPCs), anionic glycosphingolipids which are found in
several fungi and are particularly regulated during morphogenesis (17, 18, 84). The glycan
moieties of the fungal GIPCs show great diversity and complexity, varying among species
and dimorphic morphotypes. Nonetheless, glucosamine and mannosyl residues are com-
monly linked to the inositol group of the IPC, forming three carbohydrate “cores” used as
building blocks for GIPCs: (i) the glucosamine-�-1,2-IPC (GlcN�2IPC), (ii) mannose-�-1,6-IPC
(Man�6IPC), and (iii) mannose-�-1,2-IPC (Man�2IPC) (17). To date, the simultaneous expres-
sion of these three core linkages has been reported only in S. schenckii GIPCs, although in
distinct fungal morphotypes (85, 86). While the GIPCs isolated from the S. schenckii
mycelium are constituted by the Man�6IPC and Man�2IPC cores, the most abundant
GIPC from the yeast form is composed of the GlcN�2IPC core, indicating that the
differential expression of the GIPCs may contribute to the dimorphic transition (85, 86).
The zwitterionic GlcN�2IPC core of GIPCs has also been described in A. fumigatus, which,
as in S. schenckii, is elongated by the addition of two mannose residues to produce
Man�1,3Man�1,6GlcN�1,2IPC (87, 88). In A. fumigatus, the glucosamine head group is
attached to the IPC molecule through the activity of the N-acetylglucosaminyltransferase
(UDP-GlcNAc:IPC�1,2GlcNAcT) GntA, and the deletion of the gntA gene was found to
abolish Man�1,3Man�1,6GlcN�1,2IPC synthesis (89).

Although previously observed in mycobacteria (90), in fungi GIPCs possessing the
�-1,6-linked mannose core seem to be exclusive of S. schenckii (86, 91). In contrast,
the mannose-�-1,2-IPC structure has been isolated from S. schenckii (86), P. brasil-
iensis (92), H. capsulatum (93, 94), A. fumigatus (87, 88), and A. nidulans (95). The
�-1,2-mannosylation of the IPC backbone is promoted by the enzyme GDP-mannose:
inositol-phosphorylceramide transferase, generating mannosyl inositol phosphoryl-
ceramide (MIPC). In A. fumigatus, the deletion of the gene encoding the MIPC
transferase (mitA) abolishes the production of MIPCs and leads to the accumulation
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of IPC (96). Surprisingly, the ΔmitA mutant exhibits radial growth and virulence
comparable to the wild-type strain, suggesting that MIPC is not critical for fungal
differentiation and pathogenesis (96). Further structural complexity can be achieved
through the addition of mannose, galactofuranose (Galf), and choline-phosphate groups to
the MIPC molecule. In fact, a compound (Man�1,3Galf-�1,6Man�1,2IPC) containing the
Galf�1,6Man�1,2IPC structure has been identified in both dimorphic forms of P. brasil-
iensis and named Pb-1 (92). Interestingly, a high titer of anti-Pb-1 antibodies has been
detected in the sera of patients with paracoccidioidomycosis, and the Pb-1 reactivity is
reduced after the oxidation of the Galf residue (97). Two A. fumigatus GIPCs exhibiting
the Galf-�1,6Man�1,2IPC motif have also been isolated, including Af-3b, which is
structurally identical to P. brasiliensis Pb-1 and has been proposed to be the synthetic
precursor of Af-4 (Man�1,2Man�1,3Galf-�1,6Man�1,2IPC) (87). Like Pb-1, Af-3b and Af-4
are also recognized by MEST-1, a mouse monoclonal antibody which binds to Galf-�
residues (87, 98). Although the specific enzymes involved in the synthesis of these
complex sphingolipids await further identification and characterization, the structural
identification of these specific fungal glycosphingolipids may open a new road for the
development of specific monoclonal antibodies which can be used for diagnostic
or/and therapeutic approaches.

CONCLUDING REMARKS

This minireview highlights the relevance of GSL synthesis to fungal growth and
pathogenesis and suggests that the enzymes of this pathway may represent promising
targets for the development of new antifungal drugs.

In filamentous fungi, impairment of GlcCer synthesis reduces growth, differentiation,
and virulence. Therefore, small molecules capable of inhibiting GlcCer synthase con-
stitute promising candidates for antifungal therapy. In fact, acylhydrazones inhibiting
the synthesis of fungal but not mammalian GlcCer have been recently described as
potent antifungal agents with a broad spectrum of activity and low toxicity to mam-
malian cells (99, 100). Interestingly, these compounds were found to be efficacious
against invasive cryptococcosis, candidiasis, and aspergillosis in a murine model of
infection (99, 100). Another important aspect of neutral GSLs is the fatty acid unsatu-
ration and the sphingosine unsaturation and C9-methylation of LCB. Targeting the
enzymes involved in these processes, which are also fungus specific, may impair fungal
growth in the host and, ultimately, improve the outcome of the infection.

The production of IPC is also crucial for filamentous growth, and the inhibition of
PhCer and IPC synthesis leads to the accumulation of PhSph and PhCer intermediates,
inducing fungal apoptosis. Therefore, the design of new compounds that target these
enzymes constitutes a promising alternative in antifungal therapy to be pursued.

Although the role of the GSL pathway in dimorphic fungi remains largely under-
studied, GSLs are clearly involved in the regulation of the yeast-to-hypha transition in
this class of fungi. Structural differences between fungal and mammalian GSLs exist,
and as we improve our method of detection, their structural features could be exploited
for the isolation of specific plant defensins or/and for the generation of specific
monoclonal antibodies to be used as new therapeutic strategies.
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