
genes
G C A T

T A C G

G C A T

Article

BAF57/SMARCE1 Interacting with Splicing Factor SRSF1
Regulates Mechanical Stress-Induced Alternative Splicing of
Cyclin D1

Jianguo Feng 1,2,3,† , Xichao Xu 1,†, Xin Fan 4, Qian Yi 5 and Liling Tang 1,*

����������
�������

Citation: Feng, J.; Xu, X.; Fan, X.; Yi,

Q.; Tang, L. BAF57/SMARCE1

Interacting with Splicing Factor

SRSF1 Regulates Mechanical

Stress-Induced Alternative Splicing

of Cyclin D1. Genes 2021, 12, 306.

https://doi.org/10.3390/

genes12020306

Academic Editors: Paolo Cinelli and

Christos K. Kontos

Received: 5 November 2020

Accepted: 19 February 2021

Published: 21 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering,
Chongqing University, Chongqing 401120, China; fengjianguo@swmu.edu.cn (J.F.);
20161901022@cqu.edu.cn (X.X.)

2 Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University,
Luzhou 646000, China

3 Department of Anatomy, School of Basic Medical Sciences, Southern Medical University,
Guangzhou 510515, China

4 Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 401120, China;
fanxin.5@163.com

5 Department of Physiology, College of Preclinical Medicine, Southwest Medical University,
Luzhou 646000, China; yiqian2010@yeah.net

* Correspondence: tangliling@cqu.edu.cn; Tel.: 86-23-65102507
† These authors contributed equally to this work.

Abstract: Background: Cyclin D1 regulates cyclin-dependent protein kinase activity of the cell
cycle, and cyclin D1 alternative splicing generates a cyclin D1b isoform, acting as a mediator of
aberrant cellular proliferation. As alternative splicing processes are sensitive to mechanical stimuli,
whether the alternative splicing of cyclin D1 is regulated by mechanical stress and what kinds of
factors may act as the regulator of mechano-induced alternative splicing remain unknown. Methods:
The alternative splicing of Cyclin D1 was examined using reverse transcription polymerase chain
reaction (RT-PCR) in osteoblast cell lines and keratinocyte cells loaded by a cyclic stretch. The
expression of splicing factors and switching defective/sucrose non-fermenting (SWI/SNF) complex
subunits were detected in stretched cells using real-time quantitative PCR (RT-qPCR). The protein
interaction was tested by co-immunoprecipitation assay (Co-IP). Results: Cyclin D1 expression
decreased with its splice variant upregulated in stretched cells. Serine/arginine-rich splicing factor 1
(SRSF1) and SWI/SNF complex subunit Brahma-related gene-1-associated factor 57 (BAF57), also
named SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E
member 1 (SMARCE1), could respond to mechanical stimuli. Overexpression and knockdown
experiments indicated the BAF57/SMARCE1 is probably a critical factor regulating the alternative
splicing of cyclin D1. Co-IP showed an interaction between BAF57/SMARCE1 and SRSF1, implying
a possible underlying mechanism of the regulator role of BAF57/SMARCE1 in the splicing process of
cyclin D1. Conclusions: The splicing factor SRSF1 and BAF57/SMARCE1 are possibly responsible
for the mechanical stress-induced alternative splicing of cyclin D1.

Keywords: alternative splicing; BAF57/SMARCE1; cyclin D1; mechanical strain

1. Introduction

Gene alternative splicing is a physiologic process that enormously enriches the
proteome, which plays an important role in organ development and function disorder.
Alternative splicing contains four basic modules, including alternative 5′ splice-site choice,
alternative 3′ splice-site choice, cassette-exon inclusion or skipping, and intron retention.
It involves the use of one or more of four basic modules to create protein diversity [1].
Splicing factors SR proteins and hnRNPs could bind to splicing enhancers or splicing si-
lencers in exons or flanking introns to influence the alternative splicing process [2]. Except
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for intrinsic factors, extracellular stimulus also regulates gene alternative splicing, such as
mechanical stimuli.

Mechanical stimuli regulate the process of gene alternative splicing, generating gene
variants which are crucial for physiological activities and pathological changes, such as
inflammatory injury [3], muscle hypertrophy [4] and bone formation [5]. Mechanical stim-
uli, including stretch and fluid shear stress, modulate the alternative splicing of vascular
endothelial growth factor-A (VEGF-A) [6], transcriptional factor FosB [7], CD44 [8] etc.
Roosa and colleagues [5] evaluated the extent of alternative splicing in a bone subjected
to mechanical loading using Affymetrix exon arrays and found that the gene alternative
splicing pattern in stress sensitive cells could be changed by mechanical stimuli. Our
previous study also provided that insulin-like growth factor-1 (IGF-1) gene alternative
splicing can be regulated by mechanical stress in osteoblast cells [9]. IGF-1 is alternatively
spliced to produce IGF-1 EC (also named MGF) mRNA variant after stress loaded. While
MGF retains a very low level in normal physiological or culture condition, the expression
of MGF dramatically increases in response to mechanical stimuli. Although, the interaction
between splicing factors and splicing regulatory elements is crucial for the alternative
splicing process, the research on splicing factors is insufficient for elucidating the molecular
mechanisms whereby the gene alternative splicing is regulated by mechanical stress.

In recent years, the roles of the switching defective/sucrose non-fermenting (SWI/SNF)
complex in alternative splicing process have attracted increasing attention. In mammalian
cells, there are more than 10 subunits which constitute the SWI/SNF complex, includ-
ing BAF53a (ACTL6A), BAF57 (SMARCE1), BAF60a (SMARCD1), BAF60b (SMARCD2),
BAF60C (SMARCD3), BAF155 (SMARCC1), BAF170 (SMARCC2), Brg1 (SMARCA4), Brm
(SMARCA2), SNF5ini (SMARCB1) etc., in which Brg1 or Brm exerts itself as the cat-
alytic subunit [10,11]. The SWI/SNF complex was capable of regulating cell-cycle pro-
gression, DNA replication, development, differentiation, elongation, signaling, splicing,
DNA-damage repair [12,13]. Underhill’s research first showed the association between
the SWI/SNF complex and the spliceosome, indicating that four SWI/SNF complex sub-
units, including Brg1, Brm, BAF155 and SNF5/INI1, splicing factor SF3a120 and spliceo-
some associated protein SAP 130 were found to colocalize in the N-CoR-1 complex [14].
Batsche and colleagues [15] demonstrated that Brm, the core subunit of the SWI/SNF
complex, was found to regulate the alternative splicing of cyclin D1 and CD44, and co-
immunoprecipitation assay showed the interaction of Brm with U5 SnRNAs and Sam68.
Tyagi [16] further found that Brm is associated with nascent pre-mRNPs, and influences
the levels of alternatively processed mRNAs through the microarrays experiments. This
accumulating evidence indicates that SWI/SNF not only acts at the transcriptional level to
regulate the amount of mRNAs synthesized from a given promoter, but also exerts itself at
the post-transcriptional level to modulate the type of alternative transcript produced.

However, whether other subunits of SWI/SNF influence the alternative splicing pro-
cess is still unknown. More recently, the SWI/SNF complex was identified as a mechanoreg-
ulated inhibitor of YAP and TAZ [17]. Therefore, in this study, we screen the subunits of
the SWI/SNF complex’s response to mechanical stress, and investigate the functions of the
subunits on regulating mechanotransduction-mediated alternative splicing.

2. Material and Methods
2.1. Cell Culture and Cell Stretch

The mouse osteoblast Mc3t3-E1 and human keratinocyte HaCaT cells were grown
in Ham’s F12 medium or Roswell Park Memorial Institute (RPMI) 1640 medium supple-
mented with 10% fetal bovine serum at 37 ◦C in 5% CO2. The two cell lines were provided
by Stem Cell Bank, Chinese Academy of Sciences. The osteoblast or skin cells were seeded
on the surface of a silicone membrane, and the cyclic-loading experiments as we previously
described were performed [18]. Briefly, the cells were cultured overnight, and stretched for
3 and 6 h, at a strain magnitude of 15% with a frequency of 30 cycles/min. Cells cultured
on the silicone membranes with no cyclic-loading stress served as the control.
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2.2. RT-PCR Analysis

Loaded cells were harvested for total RNA isolation by Trizol regent according to the
manufacturer’s instructions. cDNA was synthesized from total RNA using PrimeScriptTM

RT reagent kit with gDNA Eraser (Takara, Kusatsu, Japan) at 42 ◦C for 2 min, 37 ◦C for
30min, 85 ◦C for 5 s and 4 ◦C for 5min. The mRNA levels of SWI/SNF complex subunits
were measured by quantitative real-time PCR using SYBR Green Dye (Takara, Japan), and
the relative gene expression was calculated through the 2−∆∆CT method. The real-time
quantitative PCR was conducted on a Bio-Rad CFX96 system (Bio-Rad, Hercules, CA, USA).
β-actin served as the internal reference gene. The primers used for RT-qPCR analysis are
shown in Table 1.

The mRNA levels of VEGF, CD44, cyclin D1 and spliced isoforms were detected by
reverse transcription semi-quantitative PCR. The PCR reactions were performed at 95 ◦C
for 5 min, followed by 40 cycles of 95 ◦C for 30 s, 54 ◦C for 30 s and 72 ◦C for 1 min, using
the DNA polymerase purchased from Tiangen Biotech CO. LTD. (Beijing, China), with the
specific primers which are also shown in Table 1. The PCR was conducted on a thermal
cycler MyCycler (Bio-Rad, CA, USA). The PCR product was analyzed by 1.5% agarose
gel electrophoresis.

2.3. Transfection of Plasmidand siRNA

pcDNA3.1-BAF57 used in this study was prepared in our lab as previously re-
ported [11,19]. BAF57/SMARCE1-specific siRNA was synthesized by GenePharma (Shang-
hai, China), and the sequence is 5’ AAGGAGAACCGUACAUGAGCA 3’ [11]. Plasmids
were transiently transfected in HaCaT cells by Effectene Transfection Reagent (Qiagen,
Hilden, Germany) and siRNAs were transfected in HaCaT cells using RNAiMAX Reagent
(Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. Cells
were collected for subsequent examination at 48 h after transfection.

2.4. Western Blot

Cells were lysed by iced radioimmunoprecipitation assay (RIPA) buffer (50mM Tris pH
7.4, 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 1mM ethylenediamine tetraacetic
acid (EDTA), 0.1% SDS) supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF).
Protein concentration was measured by bicinchoninic acid (BCA) assay (Beyotime, Shang-
hai, China). Protein samples were subjected to SDS-PAGE electrophoresis and then trans-
ferred to polyvinylidene fluoride (PVDF) membrane. After being blocked with 5% skim
milk in Tris-buffered saline plus Tween 20 (TBST) for 1h, the membranes were incubated
with primary antibodies at 4 °C overnight, and then incubated with corresponding radish
peroxidase-conjugated secondary antibodies (Proteintech, Wuhan, China) for 1 h at room
temperature. Western blot bands were detected via West Pico Super Signal chemilumines-
cent substrate (Pierce, Rockford, IL, USA) using ChemiDoc XRS Imaging System (BioRad,
Hercules, CA, USA). SRSF1 and β-actin antibodies were purchased from Santa Cruz. Vari-
ants were detected with anti-VEGF (Abcam, No.ab1316), anti-CD44 (ABclonal, No. A1351),
and anti-Cyclin D1(CST, No. 2926P) antibodies, respectively. For relative quantification,
the integrated optical density (IOD) was estimated using ImageJ (NIH). Relative protein
expression level was calculated as IOD Experimental/IOD Control.

2.5. Immunoprecipitations, IP

Cells were seeded into 10-cm diameter dishes, and harvested until 70–80% confluent,
then processed with a Dounce homogenizer in iced NP40 lysis buffer (50 mM Tris pH 7.4,
150 mM NaCl, 0.5% NP40, 1 mM EDTA) with 1 mM PMSF. After homogenization, the cell
samples were placed on ice for 30 minutes followed by centrifugation at 14,000 rpm at
4 ◦C for 30 min. The protein extract was incubated with antibodies overnight, then protein
A/G plus agarose beads (Santa Cruz, CA, USA) 40 µl slurry was added to each sample
and incubated at 4 ◦C on an end-to-end rotator for 4 h. After the incubation, beads were
triple-washed by lysis buffer and resuspended in 1× SDS-PAGE sample buffer (Beyotime,
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Shanghai, China). Samples were boiled at 95 ◦C for 10 min before loaded to 10% SDS-PAGE
for Western blot analysis.

Table 1. Primers.

β-actin
F 5′CTCTGGCTCCTAGCACCATGAAGA’3

R 5′GTAAAACGCAGCTCAGTAACAGTCCG’3

BAF53a/ACTL6A
F 5′TTGATTTCCCCACGGCTATCG’3

R 5′AGGCTGGCTTCGGATTTGAC’3

BAF57/SMARCE1
F 5′CCATACAGTCATCTCGCCTACA 3′

R 5′GGAATCGTAATGCCAGAGGAC 3′

BAF60a/SMARCD1
F 5′CAGCAGGCGGTCCAAAATC 3′

R 5′GCCGCTTCCTCATAATAGTCTGG 3′

BAF60b/SMARCD2
F 5′CCAGCGCCGAGGGTTAAAG 3′

R 5′GCTTCCTCTCGAAAGCTAAAAGA 3′

BAF60c/SMARCD3
F 5′AGCTGCGCCTTTATATCTCCA 3′

R 5′GAGTCTTCCGCATCAGGCTT 3′

BAF155/SMARCC1
F 5′ACACGGTGTCCCAGCTAGATT 3′

R 5′CCACCAGTCCAGCTAGTGTTTT 3′

BAF170/SMARCC2
F 5′CAGAACCGCCAACCAACAAG 3′

R 5′AGGAAACATTTGATCGGCAGT 3′

Brg1/SMARCA4
F 5′ TACCCCGACGAGATAGAGT 3′

R 5′CACGTAGTGTGTGTTAAGGACC 3′

BRM/SMARCA2
F 5′GTCACAACGCACAGACATTCA 3′

R 5′AGGACAATGGAGTCTTCGTAGA 3′

SNF5INI1/SMARCB1
F 5′GCTCCGAGGTGGGAAACTAC 3′

R 5′CAGAGTGAGGGGTATCTCTTGT 3′

CyclinD1a
F CCAGAGTGATCAAGTGTGAC

R CAAGGAGAATGAAGCTTTCCCTT

CyclinD1b
F CCAGAGTGATCAAGTGTGAC

R GGGACATCACCCTCACTTAC

VEGF
F GAGATGAGCTTCCTACAGCAC

R TCACCGCCTCGGCTTGTCACAT

CD44
F GATGGAGAAAGCTCTGAGCATC

R TTTGCTCCACCTTCTTGACTCC

2.6. RNA Immunoprecipitation (RIP) Assay

The RIP assay was carried out according to our previous study [19]. Briefly, 1 × 107

cells were harvested and lysed in nuclear isolation buffer (1.28 M sucrose, 40 mM Tris-HCl
pH 7.5, 20 mM MgCl2, 4% Triton X-100) to obtain the nuclear pellet. Then the nuclear
pellet was mechanically sheared by a dounce homogenizer, which was suspended in RIP
buffer (150 mM KCl, 25 mM Tris pH 7.4, 5 mM EDTA, 0.5 mM Dithiothreitol (DTT), 0.5%
NP40, 100 U/mL RNAase inhibitor, protease inhibitor cocktail). SMARCE1 antibody
was added to the supernatant after nuclear membrane and debris were discarded by
centrifugation, and incubated at 4 ◦C overnight. Subsequently, 40 µL Protein-A/G beads
were added with gentle rotation at 4 ◦C for 2 h. The beads were then resuspended in 1 mL
TRIzol reagent after triple RIP buffer washing. Total RNA was extracted according to and
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transcribed into cDNA. PCR was performed to detect cyclin D1 with the primers (forward:
GAGGAGCAGAAGTGCGAAGA, and reverse: TGGAGGGTGGGTTGGAAA).

2.7. Statistics

All data were presented as the mean ± SD. The Statistical Package for the Social
Sciences 19.0 (SPSS) was used for the statistical analyses. Differences between two groups
were determined by Student’s t-test. The Benjamini and Hochberg (BH) method was
applied for multiple testing correction. All experiments were repeated at least three times.
p values less than 0.05 were considered statistically significant differences.

3. Results
3.1. The SWI/SNF Complex Responded to Mechanical Strain

RT-qPCR was used to examine the expression alteration of SWI/SNF complex subunits
in osteoblast MC3t3-E1, including ACTL6A, SMARCE1, SMARCD1, SMARCD2, SMARCD3,
SMARCC1, SMARCC2 SMARCA4, SMARCA2 and SMARCB1. As shown in Figure 1A,
SMARCE1 was gradually upregulated at 3 h (26.0%) and 6 h (30.5%) after mechanical strain,
while SMARCD1 was also aroused at 3 h (43.9%) but showed no significant change at
6 h. SMARCD2 was downregulated at 6 h (40.0%). SMARCD3, SMARCC1 and SMARCA4
were downregulated at 6 h after mechanical strain, with no significant difference at 3 h.
SMARCC2, SMARCA2 and SMARCAB1 showed no statistical change at both 3 h and 6 h
after mechanical stimuli.

We further detected the mRNA expression (Figure 1B) and protein level (Figure 1C)
of SMARCE1 in HaCaT cells at 3 h and 6 h after mechanical strain, and similar results
were obtained. SMARCE1 expression was increased by 47% at 3 h and by 113% at 6 h
(Figure 1D). Because of low transfection efficiency of plasmids and siRNA in osteoblast
cells, HaCaT cells were used in following experiments.

3.2. Mechanical Stimulation Induced the Alternative Splicing of Cyclin D1

We investigated the alternative splicing of VEGF, CD44 and Cyclin D1 in HaCaT
cells after mechanical strain by RT-qPCR and Western blotting (Figure 2). RT-PCR was
performed to test VEGF165, VEGF121, CD44E, CD44S, cyclinD1a and cyclinD1b at 3 h and
6 h after a cyclic stretch. Results showed that VEGF165 expression was not changed at
3 h and increased at 6 h after mechanical strain (1.3-fold), while there were no changes of
VEGF121 levels at 3 h and 6 h in loaded cells. We found that cyclinD1a was downregulated
at both 3 h (0.57-fold) and 6 h (0.64-fold) after mechanical strain, while cyclinD1b showed
an increasing trend at 3 h (1.24-fold ) and 6 h (1.45-fold).

3.3. SMARCE1 Regulated the Alternative Splicing of Cyclin D1

The subunit SMARCE1 of the SWI/SNF complex has been reported to be associated
with regulating cell cycle-dependent transcription [20]. Therefore, we focused on the role
of SMARCE1 in mechanical stress-induced cyclin D1 alternative splicing. The results in
Figure 3A showed that overexpression of SMARCE1 decreased the expression of cyclin D1a
but increased cylcin D1b expression at mRNA level. Protein levels of cyclin D1a decreased
by 43% and cyclin D1b increased by 49% after SMARCE1 overexpression (Figure 3C,D).
Silencing of SMARCE1 by siRNA showed an opposite effect on the alternative splicing
of cyclin D1 (Figure 3B,E,F). The effects of SMARCE1 on alternative splicing of VEGF
and CD44 were also tested at 24 h after pcDNA3.1– SMARCE1 transient transfection into
HaCaT cells. The results in Figure 3G showed that overexpression of SMARCE1 had no
significant differences on the alternative splicing of VEGF and CD44.
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Figure 3. SMARCE1 influenced the alternative splicing of cyclin D1. The alternative splicing of cyclin
D1 was detected by reverse transcription semi-quantitative PCR (A) and Western blotting (C) at 24 h
after pcDNA3.1-SMARCE1 plasmid transfection in HaCaT cells. SMARCE1 siRNA was transfected
in HaCaT cells, and the alternative splicing of cyclin D1 was examined at 24 h after transfection by
reverse transcription semi-quantitative PCR (B) and Western blotting (E). Non-sense control (NC)
siRNA were used as control. The expressions of cyclin D1a and cyclin D1b in C and E were quantified
by Image J software and are shown in (D) and (F), respectively. (G). The alternative splicing of VEGF
and CD44 was also tested at 24 h after pcDNA3.1–SMARCE1 plasmid transfection. pcDNA3.1–GFP
plasmid served as control (Ctrl) group. Data present three sets of independent experiments. # p < 0.05
vs. the Ctrl or NC group. The stars * indicate the bands of gene variants.

3.4. SMARCE1 Interacted with SRSF1

SR and hnRNP proteins are crucial factors directly binding to splicing elements regu-
lating gene alternative splicing. SRSF1 (also named ASF/SF2), an important SR protein,
was capability of influencing the splicing of cyclin D1 to increase the expression of cyclin
D 1b [21]. However, whether SRSF1 responds to mechanical stimuli is still unknown.
Our immunoblotting results showed that mechanical stress resulted in upregulation of
SRSF1 in HaCaT (1.76-fold, Figure 4A). Co-immunoprecipitation experiments from Ha-
CaT cell extracts revealed the interaction of SMARCE1 with SRSF1 (Figure 4B). Another
SWI/SNF complex subunit SMARCB1 (SNF5/INI1) was reported to repress cyclin D1
transcription [22]; therefore, we then tested to see whether SMARCB1 could also interact
with SRSF1, and no association was detected between SMARCB1 and SRSF1 (Figure 4C). To
further confirm the binding of SMARCE1 to cyclinD1 pre-mRNA, RIP assay was conducted
in HaCaT cells and A375 cells (Figure 5), and the results showed the interaction between
SMARCE1 and cyclinD1 pre-mRNA was positive.
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4. Discussion

Previous studies reported that SWI/SNF complex subunits could respond to UV irra-
diation, ROS exposure, inflammatory stimulus etc. [11,23,24]. In addition, we further test
the alteration of SWI/SNF subunits after mechanical strains, and found significant changes
of several subunits including SMARCE1, SMARCD1, SMARCD2, SMARCD3, SMARCC1
and SMARCA4 post-mechanical stimulus (Figure 1). The ARID1A subunit of the SWI/SNF
complex also could be modulated by mechanical signals in cells according to Chang’s
study [17]. Mechanical stimuli lead to various gene expression alteration in cells through
mechanotransduction mechanisms by which cells integrate physicochemical signals into
cellular biological events [25,26]. Physicochemical networks of protein assemblies cou-
pling the cytoskeleton to the nucleus have now been elucidated, resulting in a prestressed
nuclear organization in living cells which perhaps serve as a substrate for transducing
mechanical signals to the nucleus [26,27]. Mechanical stimulus-induced changes in chro-
matin organization could lead to binding or differential accessibility of DNA regulatory
factors that are involved in RNA splicing or gene transcription [28]. Several subunits
of the SWI/SNF complex including Brm, Brg1, BAF155 and SNF5/INI1 were reported
involving the gene alternative splicing process [14–16]. In this study, we demonstrated that
the alternative splicing process of cyclin D1 was affected by mechanical strains (Figure 2)
and SMARCE1 could regulating the alternative splicing process of cyclin D1 (Figure 3).
The regulator roles of other subunits responding to mechanical strains in gene splicing
need further investigation. In addition, the ARID1A subunit exerted itself as an inhibitor
of the pro-oncogenic transcriptional coactivators YAP and TAZ to regulate downstream
related gene expression [17]. SNF5/INI1 repressed cyclin D1 transcription leading to cell
cycle arrest [22]. Brm-subunit targeting genes were identified by RNA-seq and chromatin
immunoprecipitation (ChIP)-seq techniques [29]. Works from these laboratories suggest
the widespread regulation roles of the SWI/SNF complex in gene transcription. Therefore,
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the SWI/SNF complex probably, or at least partly, mediated the mechanotransduction
dependent RNA splicing or gene transcription. However, the function of SMARCE1 on
gene transcription regulation is still not fully elucidated.

The spliceosome comprises five small nuclear RNAs (snRNAs) and associated reg-
ulatory factors, catalyzing constitutive and alternative splicing [30]. Regulatory proteins
including splicing factors involved in modulating splicing reaction; the splicing factors,
such as SR protein, hnRNPs and etc., acted as activators or repressors of splicing by binding
to exonic or intronic enhancer or silencer elements. SRSF1, a SR protein, was able to regulate
the alternative splicing of the cyclin D1 gene [21], and our results showed that SMARCE1
could bind to SRSF1 through co-IP assay (Figure 4), which is probably an explanation of
SMARCE1 influencing the alternative splicing process of cyclin D1. Moreover, another
subunit of the SWI/SNF complex, SMARCB1, was shown to be capable of repressing
cyclin D1 transcription [22], so we also tested the interaction between SMARCB1 with
SRSF1, and the result showed no interaction between the two proteins (Figure 4), indicating
that SMARCB1 probably affects cyclin D1 expression at a transcriptional level rather than
at a post-transcriptional level. However, the details of the interaction between SMARCE1
and snRNA were not disclosed in this study, which will be investigated in the future.

Multiple SWI/SNF subunits have been found to be mutated at high frequency across
many different tumor types, implicating a tumor suppressive role of SWI/SNF [31]. Several
subunits of the SWI/SNF complex including SNF5 (SMARCB1/INI1/BAF47), ARID1A
(BAF240A), SMARCA4 (BRG1), ARID1B (BAF250B), ARID2 (BAF200) and PBRM1 (BAF180)
exert critical tumor suppression activities, through inhibiting oncogenic transcription, cell
cycle, epigenetic instability and etc. [32]. However, other subunits such as SMARCE1
(BAF57), SMARCA2 (BRM) and SMARCAD1 (BAF60a) were implicated to promote can-
cers [33–35]. SMARCAE1 (BAF57) is elevated in a subset of tumors that, by interacting with
androgen receptor, promotes prostate cancer progression [33,36]. In our study, we found
that SMARCE1 (BAF57) could regulate the alternative splicing of cyclin D1 to generate
cyclin D1b isoform (Figure 3). We found that cyclin D1b could act as a mediator of aberrant
cellular proliferation in cancer [37]. It is indicated that the effect of SMARCE1 (BAF57) on
regulating cyclin D1 splicing may also contribute to cancer progression. We also examined
the influences of mechanical strain and SMARCE1 overexpression on the splicing of cy-
clinD1 in skin melanoma A375 cells and found that mechanical stimulation and SMARCE1
both could increase the cyclinD1a and cyclinD1b expression (Supplementary Figure S1).
RIP assay in A375 cells (Figure 5B) provided confirmation that SMARCE1 also could bind
to cyclin D1 pre-mRNA, indicating the important role of SMARCE1 in regulating the
alternative splicing of cyclin D1 gene in skin cancer cells. CCK8 assay data provided
confirmation that overexpression of SMARCE1 increased the cell proliferation by 27%
(Supplementary Figure S1D). We noticed that substrate stiffness can affect the migration of
cancer cells and the stiffness of cancer tissues is higher than that of normal tissues [38,39],
suggesting that SMARCE1 (BAF57), responding to mechanical stimulation, is probably a
novel factor mediating mechanotransduction signal pathways in cancers.

5. Conclusions

In conclusion, SMARCE1 (BAF57) was upregulated after mechanical strain, and reg-
ulated the alternative splicing of cyclin D1 gene to generate a cyclin D1b variant. SRSF1
splicing factor is probably involved the process of SMARCE1 regulating cyclin D1 alterna-
tive splicing because of the interaction between SRSF1 and SMARCE1.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/2/306/s1, Figure S1: The mechanical strain and SMARCE1 influenced the the alternative
splicing of cyclin D1 in A375 cells.
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