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Abstract

Background Approximately 2.4 million patients in Japan would benefit from treatment for
thyroid disease, including Graves' disease and Hashimoto's disease. However, only 450,000
of them are receiving treatment, and many patients with thyroid dysfunction remain largely
overlooked. In this retrospective study, we aimed to develop and conduct preliminary testing
on a machine learning method for screening patients with hyperthyroidism and hypothyr-
oidism who would benefit from prompt medical treatment.

Methods We collected electronic medical records and medical checkup data from four
hospitals in Japan. We applied four machine learning algorithms to construct classification
models to distinguish patients with hyperthyroidism and hypothyroidism from control sub-
jects using routine laboratory tests. Performance evaluation metrics such as sensitivity,
specificity, and the area under receiver operating characteristic (AUROC) were obtained.
Techniques such as feature importance were further applied to understand the contribution
of each feature to the machine learning output.

Results The results of cross-validation and external evaluation indicated that we achieved
high classification accuracies (AUROC =93.8% for hyperthyroidism model and AUROC =
90.9% for hypothyroidism model). Serum creatinine (S-Cr), mean corpuscular volume
(MCV), and total cholesterol were the three features that were most strongly correlated with
the hyperthyroidism model, and S-Cr, lactic acid dehydrogenase (LDH), and total cholesterol
were correlated with the hypothyroidism model.

Conclusions \We demonstrated the potential of machine learning approaches for diagnosing
the presence of thyroid dysfunction from routine laboratory tests. Further validation,
including prospective clinical studies, is necessary prior to application of our method in the
clinic.

2 Yasuyo Nakajima3, Ryousuke Sema’, Tsuyoshi Kikuchi,

2,5 &

Plain language summary

Thyroid dysfunction, including over-
activity of the thyroid (hyperthyroid-
ism) and under-activity (hypothyr-
oidism), is a leading hormonal
disorder with major health implica-
tions, and many patients with thyroid
dysfunction are not formally diag-
nosed. We aimed to develop a
computer-based approach for
screening patients for hyperthyroid-
ism and hypothyroidism who might
benefit from medical treatment. We
used routine laboratory data and
specialised computer software to
detect  thyroid  dysfunction in
patients. We show that we can do
this accurately, and so might be able
to use our system to screen patients
based on data from routine medical
tests. Further testing in clinical stu-
dies is needed, however, before our

approach can be used in the clinic.

TAl Strategy Team, Cosmic Corporation Co., Ltd, Tokyo, Japan. 2 First Department of Internal Medicine, Wakayama Medical University Hospital,
Wakayama, Japan. 3 Department of Internal Medicine, Gunma University Hospital, Maebashi, Gunma, Japan. % Health Control Center, Hidaka Hospital,
Takasaki, Gunma, Japan. °Present address: Department of Internal Medicine, Kuma Hospital, Kobe, Hyogo, Japan. ®Present address: Department of
Biosciences and Informatics, Keio University, Yokohama City, Kanagawa, Japan. 'These authors contributed equally: Min Hu, Chikashi Asami.

Memail: yasu@bio.keio.ac.jp

COMMUNICATIONS MEDICINE| (2022)2:9 | https://doi.org/10.1038/s43856-022-00071-1| www.nature.com/commsmed


http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-022-00071-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-022-00071-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-022-00071-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-022-00071-1&domain=pdf
http://orcid.org/0000-0001-8033-0736
http://orcid.org/0000-0001-8033-0736
http://orcid.org/0000-0001-8033-0736
http://orcid.org/0000-0001-8033-0736
http://orcid.org/0000-0001-8033-0736
http://orcid.org/0000-0003-4960-8271
http://orcid.org/0000-0003-4960-8271
http://orcid.org/0000-0003-4960-8271
http://orcid.org/0000-0003-4960-8271
http://orcid.org/0000-0003-4960-8271
http://orcid.org/0000-0002-6932-3452
http://orcid.org/0000-0002-6932-3452
http://orcid.org/0000-0002-6932-3452
http://orcid.org/0000-0002-6932-3452
http://orcid.org/0000-0002-6932-3452
mailto:yasu@bio.keio.ac.jp
www.nature.com/commsmed
www.nature.com/commsmed

ARTICLE

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00071-1

major health implications, including an increased risk of

heart disease and hypercholesterolemia. One of the greatest
challenges in thyroid dysfunction treatment is not to overlook or
misdiagnose these diseases. Thyroid hormone excess and defi-
ciency are frequently misunderstood and are too often overlooked
and misdiagnosed!. For hyperthyroidism, the diagnosis may be
delayed or missed because some symptoms can be easily attrib-
uted to other conditions, such as stress?, and are often mistaken
for cardiac disease or gastrointestinal malignancies. Hypothyr-
oidism can present with nonspecific constitutional and neu-
ropsychiatric complaints, and patients with hypothyroidism are
often misdiagnosed with dementia, cardiac disease, liver disease,
or hyperlipidemia and therefore do not receive proper treatment>.
The American Association of Clinical Endocrinologists has esti-
mated that in the United States, ~4.78% of the population has
misdiagnosed thyroid dysfunction?, and the authors argue that
~15 million adults are estimated to have unrecognized thyroid
disease®. In Japan, it is estimated that ~2.4 million patients need
treatment for thyroid disease®. However, only ~450,000 of them
are receiving treatment. Thus, patients with thyroid dysfunction
are frequently overlooked and misdiagnosed®.

Hyperthyroidism is a condition that occurs due to excessive
production of thyroid hormones. The first step to diagnose
hyperthyroidism is to measure thyroid-stimulating hormone
(TSH), free thyroxine (FT4) and free triiodothyronine (FT3)”. In
contrast, hypothyroidism is a condition in which serum thyroid
hormones are decreased. Typical diseases involving hypothyroid-
ism include Hashimoto’s disease and are diagnosed by anti-
thyroid antibody tests such as anti-thyroid peroxidase antibody
(TPO) and anti-thyroglobulin antibody (TgAb)”. Despite their
clinical significance, thyroid function tests and anti-thyroid anti-
body tests are not included in Japanese national health checkups.

As a popular and effective approach to predictive analytics,
machine learning is highly regarded due to its success in diag-
nosis, prediction, and choice of treatment. Recently, an emerging
technique in the field of medical informatics has employed
machine learning to accurately derive insights from medical
records to support clinical screening and to predict disease
misdiagnosis®. For instance, a study emphasized the superiority of
machine-learning technology for predicting cardiovascular risk
from routine clinical data®. In another study, the incidence of
myocardial infarction or cerebral infarction was predicted using
the results of a health checkup!?. Numerous studies have also
attempted to assess the efficacy of detecting misdiagnosed dis-
eases, including thyroid dysfunction!!~17. Aoki et al.!%!7 found
that there were strong, multiple correlations between a set of
routine clinical parameters and FT4 in patients with both overt
hyperthyroidism and overt hypothyroidism. These studies used
pattern recognition methods such as neural networks and pre-
dicted the likelihood of thyroid dysfunction from a set of routine
clinical tests.

Despite such efforts, there are still several concerns regarding
machine-learning applications in the diagnosis of disease. These

Thyroid dysfunction is a leading endocrine disorder with

include the issues of data cleaning, missing value completion,
dysfunction labeling criteria, the integration of multiple hospital
datasets, and the validation and interpretation of machine-
learning models. In this study, we developed an explainable
diagnosis support system using machine-learning algorithms to
identify thyroid dysfunction with routine clinical data, and
demonstrated the potential to improve medical screening and
prevent overlooking and misdiagnosing thyroid dysfunction.
High accuracy was achieved in the discrimination of evident
hyperthyroidism and hypothyroidism using 23 routine laboratory
tests, and these features can be useful for individuals who are not
thyroid disease specialists.

Methods

Data source. In the present study, we acquired laboratory finding
datasets from different clinical university medical institutions in
Japan, including Wakayama Medical University Hospital, Gunma
University Hospital, Hidaka Hospital, and Kuma Hospital. The
anonymized EMRs included age, sex, diagnosis codes for insur-
ance billing, prescribed drugs, and biochemical test results.

A sample of 176,727 subjects aged 13 to 88 from different
regions in Japan between 2004 and 2019 were included in our
study, as illustrated in Table 1. Among the four institutions,
Wakayama Medical University Hospital and Gunma University
Hospital are hospitals affiliated with a medical college, Hidaka
Hospital is a regional medical care support hospital, and Kuma
Hospital is a hospital specializing in thyroid diseases. The data of
the 176,727 subjects consisted of physician evaluations, prescrip-
tions, clinical examinations, and laboratory findings. The
physician evaluations addressed medical history, medication
use, and differential diagnosis, among other topics. If a subject
was prescribed medication, the name and dose of the prescription
were recorded. The examinations involved anthropometric
measurements and laboratory tests, among others. The institu-
tional ethics review boards of the four institutions at which the
study was conducted gave their approval (Approval Numbers:
Wakayama Medical University Hospital: 2301, Hidaka Hospital:
257, Gunma University Hospital: HS2018-245, Kuma Hospital:
20180208-4). All methods were performed in accordance with the
relevant guidelines and regulations, including ethical guidelines
for Medical and Health Research Involving Human Subjects
presented by the Ministry of Health, Labor and Welfare in Japan.
According to the ethical guidelines for Medical and Health
Research Involving Human Subjects, with this study design,
written informed consent is not required, but we widely disclosed
the outline of our study and provided opportunities for
unenrollment.

The K-nearest neighbor (KNN) algorithm was used to predict
and complement the missing values, with k set to 3 in the data
filling process. A previous study!! reported the KNN algorithm to
substantially increase the number of applicable subjects. Com-
pared with missing value deletion, the KNN algorithm is easily
applied, performs well for nonparametric datasets, and provides a

Table 1 Summary of the data from each institution.

Institution Wakayama Medical University Gunma University Hidaka Hospital Kuma Hospital
Number of prescriptions 8,249,286 34,561,268 23,450 61,590
Number of patients 14,249 27133 10,482 124,863
Average age 60.9 51.7 47.7 50.3
Male/female ratio 1.03 (5,888/5,723) 0.53 (8,143/15,296) 1.82 (15,125/8,325) 0.21

Data period 2010-2018 2004-2019 2004-2007 2007-2020

The demographic summary is shown for each institution. “Number of prescriptions” represents the number of prescription records in each dataset, and “Number of patients” represents the number of
patients in each dataset. “Average age", and “male/female ratio” and “data period” represent the demographic summary of the patients in each institution.
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Table 2 List of verification items.

No. Verification item Option

1 Training data labeling
criterion
Institution
combination 1
(Inst. comb. 1)
GBDT

Feature set 1

2 Institution combination (for patient data and
control group data)

3 Machine-learning algorithm
4 Input features

Thyroid function test

Prescription criterion

Institution combination 3  External
(Inst. comb. 3)

Institution combination 2
(Inst. comb. 2)

SVM
Feature set 2

Logistic regression ANN

specific verification options and was verified in our experiments.

Verification items in this study are categorized into four groups: “Training data labeling”, “Institution combination”, “Machine-learning algorithm”, and “Input features”. Each category contains several

larger sample size. Furthermore, since the age and sex distribu-
tions were different among the institutions, as shown in Table 1,
we also conducted random undersampling to address these
differences. From this dataset, the model was constructed using
thyroid patient data from Wakayama Medical University and
Gunma University and control group data from Hidaka Hospital
and was evaluated using cross-validation. To validate the external
data, the model was also evaluated on the dataset from Kuma
Hospital.

Construction of the machine-learning model. As shown in
Table 2, four verification items were devised in this study to
improve the performance of our machine-learning model. The
criteria of data labeling and the combination of multiple insti-
tutions were evaluated first. Then, four different machine-
learning algorithms and three sets of input features were eval-
uated to achieve the best performance of our thyroid dysfunction
classification models.

Data labeling criterion. According to the guidelines of the
Japanese Thyroid Association for the diagnosis of hyperthyroid-
ism and hypothyroidism, if thyroid disorder is suspected from the
clinical findings, first, a thyroid function test (TSH and FT4
measurement) is conducted, and on the basis of these results,
thyroid disorder is classified into three categories—hyperthyr-
oidism, hypothyroidism, or euthyroidism’. Therefore, we devised
and compared the performance of two data labeling criteria.

We first devised the labeling criterion by using the result of the
thyroid function test as a reference (hereinafter referred to as the
“thyroid function test criterion”). Specifically, in the dataset from
Wakayama Medical University, FT4 and TSH were measured
with ECLusys kits (Roche Diagnostics GmbH, Mannheim,
Germany). TSH<0.5 and FT4>1.7 were defined as overt
hyperthyroidism, and TSH >5.0 and FT4<0.9 were defined as
overt hypothyroidism (TSH unit: pIU/mL; FT4 unit: ng/dL). In
the dataset from Gunma University, in which FT4 and TSH were
measured with the Architect kits, TSH < 0.35 and FT4 > 1.48 were
defined as overt hyperthyroidism, and TSH >4.94 and FT4 < 0.7
were defined as overt hypothyroidism.

Data for the control group were extracted from the third
institution, Hidaka Hospital, and consisted of the test results from
regular medical examinations. We extracted comprehensive
medical examination data for subjects who did not have any
symptoms, suggesting thyroid dysfunction or abnormal values in
the laboratory tests of TSH and FT4. The normal ranges were set
to 0.34-3.88 uIU/mL for TSH and 0.95-1.74ng/dL for FT4.
Random undersampling was conducted for the control group in
such a way that the sample size of the control group was
equivalent to the sizes of the hyperthyroidism and hypothyroid-
ism groups.

The thyroid function test criterion required both TSH and FT4
test results, but a small number of patient records had both of
these results. Therefore, as an alternative solution, we devised
another criterion of labeling the training data according to the
presence of a prescription for thyroid disorder (hereinafter
referred to as the “prescription criterion”). Specifically, the use of
the prescription criterion satisfies the following conditions: (a) it
includes patient records with standard prescribed medications for
thyroid dysfunction (including thiamazole, propylthiouracil, and
potassium iodide for the hyperthyroidism group and levothyr-
oxine and thyronamine for the hypothyroidism group) obtained
at the patients’ first visits, (b) it includes patients not diagnosed
with thyroid nodules, (c) it includes patient records containing
laboratory findings obtained within four weeks after the patient’s
first prescription, and (d) it excludes records with missing values
for more than half of our selected features. Since the age
distributions were different among the institutions, as shown in
Table 1, we also conducted data sampling to address these
differences. Between the two criteria designed in this study, we
focused on evaluating thyroid function test criteria as the gold
standard criteria while exploring the effect of the prescription
criteria, which may benefit from a larger dataset.

In machine learning, a control group is generally used as a
negative label. Since hyperthyroidism and hypothyroidism are
conditions of thyroid dysfunction, both often express similar
symptoms and effects on some routine laboratory findings (e.g.,
Hb is decreased in both hyperthyroidism and hypothyroidism
patients). Therefore, we considered the confounding of
hyperthyroidism and hypothyroidism as “crosstalk” and refined
the labeling criteria in such a way that the negative label was set as
both the healthy subjects of the control group and the patients
with the opposite type of thyroid dysfunction. For instance, in the
data labeling process of the hyperthyroidism classification model,
the hyperthyroidism group was set as a positive label, whereas
both healthy subjects in the control group and hypothyroidism
patients were set as a negative label.

Integrating multiple hospital datasets. The demographics were
different among the three institutions in different districts. To
investigate the effect of integrating the datasets from these three
hospitals, we explored three combinations of datasets to increase
the generalizability of our models. Specifically, three dataset
options, namely, thyroid dysfunction group data from both
Wakayama Medical University and Gunma University and con-
trol group data from Hidaka Hospital (referred to as Inst. comb.
1), thyroid dysfunction group data from Wakayama Medical
University and control group data from Hidaka Hospital (refer-
red to as Inst. comb. 2), and thyroid dysfunction group data from
Gunma University and control group data from Hidaka Hospital
(referred to as Inst. comb. 3), were set to train and evaluate the
models.
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Machine-learning algorithms. Four representative machine-
learning algorithms were applied, and their thyroid dysfunction
classification performance was evaluated:

The gradient boosting decision-tree (GBDT), as proposed by
Friedman!$, produces a prediction model in the form of an
ensemble of weak prediction models, typically decision trees. The
GBDT is based on a machine-learning technique that consists of
an “ensemble” family of algorithms, creates multiple models
(called weak learners), and combines them to increase prediction
accuracy. The main idea of this technique is to build a set of
decision trees and use them to classify a new case. Each decision-
tree is generated using randomly selected variable subsets from all
feature variables and a randomly selected subset of data combined
by bootstrapping!. In this study, we employed the most accurate
algorithm, called CATBoost?’, in the GBDT family.

The artificial neural network (ANN) is a well-established
classification technique that is widely used in pattern recognition
studies. In general, an ANN consists of 3 layers: an input layer
that receives information, a hidden layer that processes informa-
tion, and an output layer that calculates the results?!. In the
present study, a standard feed-forward ANN was applied due to
its relative simplicity and stability.

The support vector machine (SVM) is a supervised machine-
learning technique that is widely used in pattern recognition and
classification problems. In this method, each data sample is a
vector whose dimensions are equal to the number of features to
be considered, and the SVM creates a hyperplane that separates
samples into two categories. The induced hyperplane is
constructed to maximize its distance from the samples of both
classes. This algorithm achieves high classification performance
by using special nonlinear functions called kernels to transform
the input space into a multidimensional space?2. In this study, the
radial basis function kernel was used.

Logistic regression is a statistical classifier that provides the
probability of predicting the labeled class of categorical type by
using a number of attributes. Logistic regression is frequently
used to examine the risk relationship between disease and
exposure, with the ability to test for statistical interaction and
control for multivariable confirmation?3. Logistic regression is a
linear model and is used as the baseline model for the
performance comparison.

Explanatory features (variables) for machine learning. In terms
of the input feature used in machine-learning models, we used the
following 23 features referred to as Feature set 1, which are all
features available at the four hospitals: sex, aspartate amino-
transferase (AST), alanine aminotransferase (ALT), gamma-
glutamyl transpeptidase (y-GTP), red blood cell count (RBC),
serum creatinine (S-Cr), alkaline phosphatase (ALP), uric acid
(UA), lactic acid dehydrogenase (LDH), total protein (TP), blood
urea nitrogen (BUN), albumin, albumin/globulin ratio (A/G), total
cholesterol, total bilirubin (TB), C-reactivate protein, white blood
count (WBC), hemoglobin (Hb), platelet, hematocrit, mean cor-
puscular volume (MCV), mean corpuscular hemoglobin (MCH),
and mean corpuscular hemoglobin concentration (MCHC). To
further verify the performance of the model depending on the set of
most basic laboratory tests for our aim of rapid screening for
overlooked patients, we trained and evaluated a model limited to
five routine tests referred to as Feature set 2, including AST, ALT, y-
GTP, total cholesterol, and sex, of which four features are the
required (mandatory) laboratory tests conducted in the Japanese
national health screening program called Specific Health Checkups.

Model validation. Cross-validation was applied to evaluate the
performance of our machine-learning method in classifying

patients. The evaluation was conducted by extracting 9/10
training data and 1/10 test data by conducting 10-fold cross-
validation. This was repeated 10 times to extract the training and
test data uniformly, and the average and standard deviation of
each evaluation score of each time were calculated. During the
model training and test process, we avoided including the same
subject in both the training dataset and test dataset. The following
measures were used for the performance evaluation criteria: the
area under the receiver operating characteristic curve (AUROC);
positive predictive value (PPV), defined as TP/(TP + FP); nega-
tive predictive value (NPV), defined as TN/(TN + FN); sensitiv-
ity, defined as TP/(TP + FN); and specificity, defined as TN/
(TN + FP), where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false positives, and
FN is the number of false negatives. Note that the cutoff value for
classification as positive or negative is determined by the
Youden?* index.

In addition, the data of Kuma Hospital were employed for
external validation. The model was constructed using the
hyperthyroidism group and the hypothyroidism group of
Wakayama Medical University and Gunma University and the
control group of Hidaka Hospital as the training data. The model
was evaluated using the hyperthyroidism group and hypothyr-
oidism group of Kuma Hospital and the control group of Hidaka
Hospital (referred to as External).

Feature importance. To further understand how each feature
contributes to the classification of patients in our model, we
introduced feature importance. Feature importance represents the
factor by which the model error is increased compared to the
original model error. In the decision-tree-based machine-learning
algorithms, including the GBDT, impurities and the features at
which the node is split are recorded for all the nodes when the
decision-tree-learning process is finished, and the decision-tree
calculates the feature importance using this information!®.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results

Model validation. Table 3 summarizes the performance results of
the machine-learning model constructed in this study. According
to the result of 10-fold cross-validation, as shown in No. I of
Table 3, the best classification model for overt hyperthyroidism
achieved an AUROC of 93.8%, sensitivity of 89.1%, and specifi-
city of 88.6%. The best classification model for overt hypothyr-
oidism achieved an AUROC of 90.9%, sensitivity of 82.4%, and
specificity of 86.5%. In the external evaluation, as shown in No.
IX of Table 3, the classification model for overt hyperthyroidism
achieved an AUROC of 97.2%, and the classification model for
overt hypothyroidism achieved an AUROC of 94.0%.

The results of the comparisons of different labeling criteria are
shown in Nos. I and II of Table 3. When the prescription criterion
was applied as the labeling criterion, the accuracy of the
hyperthyroidism classification model achieved an AUROC of
93.0%, and that of the hypothyroidism classification model
achieved an AUROC of 92.1%. The hyperthyroidism model
trained on the thyroid function test criterion data achieved
superior performance, while the hypothyroidism model trained
on the prescription criterion data achieved superior performance.
The results of the comparison of models built on different
institution combinations is shown in Nos. I, III, and IV of
Table 3, and the highest performance was obtained when
institution combination 1 was used as the training set.
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Table 3 Results of the validation of models with different label

1X
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No.

Thyroid function test criterion

Prescription
criterion

Thyroid function

test criterion

Data labeling

Training

Inst. comb. 3 Inst. comb. 1

Inst. comb. 2

Inst. comb. 1 Inst. comb. 1

Institution

combination
Machine-

Logistics ANN GBDT

SVM

GBDT

regression

learning

algorithm

Feature set 1

Feature set 2

Feature set 1

Input features

Thyroid function test criterion

Inst. comb. 1

Labeling criteria

Institution

Validation

External

97.2+0.5%
98.5+0.5%
67.4+6.0%
90.0 £2.9%
93.7+21%

85.5+3.9%
724+7.0%

91.9£2.7%
73.9+7.9%
93.6 +3.4%
883+7.0%
83.6+6.7%
89.0+3.6%
71.6 £9.2%
925+2.9%
86.4+63%
81.8+8.0%

90.9+3.3%
79.4+6.8%
91.7£3.7%
83.6+8.4%
88.7+4.6%
86.7+3.1%

91.8 £3.4%
7.6 £ 4.5%
941+£3.7%
89.4+6.7%

82.0+4.1%

92.8+3.0%
782+71%

931+2.4%
76.6+81%

93.0£2.3%
81.4+4.7%
93.1+3.4%

93.8+2.7%

combination
AUROC
PPV

Hyperthyroidism

80.3+6.2%

94.4+27%
89.1+5.8%

88.5+4.2%
773+9.7%

92.4+£35%
85.4+7.0%
87.7+51%

93.9+2.7%
88.6+£5.5%
85.7+6.3%
89.3+22%
73.2+7.4%
923+4.7%
85.1+£10.2%
83.4+7.9%

NPV

86.4+7.7%

Sensitivity

94.0 £1.5%
59.8+5.2%

84.6 £5.9%
825+3.7%

88.6+4.0%
741+7.0%
90.1+23%
81.2+4.7%
853%53%

88.5+4.5%
729+81%

89.9+3.5%
921+3.2%

88.6+4.7%
90.9 +33%

Specificity
AUROC
PPV

Hypothyroidism

70.0£10.3%
85.2+2.5%
70.6+82%

67.7+6.6%
90.4+4.3%
822+9.2%
795+7.7%

73.9+6.2%
94.8+3.8%

79.9 £8.4%
91.3+53%

98.3+0.8%
91.6 £3.9%

91.7 £3.6%
84.9+6.7%

NPV

90.5+7.2%
83.7+52%

82.4+£12.5%

86.5+6.8%

Sensitivity
Specificity

88.5+2.6%

83.4+8.6%

83.8+6.2%

The mean and standard deviation for the tenfold cross-validation are shown for each score.

The evaluation metrics AUROC, PPV, NPV, sensitivity, and specificity for each model are shown. Two criteria for labeling of data, a thyroid test criterion and a prescription criterion, were devised. Inst. comb. 1 represents thyroid dysfunction group data from both Wakayama

Medical University and Gunma University, and a control group data from Hidaka Hospital, Inst. comb. 2 represents thyroid dysfunction group data from Wakayama Medical University and a control group data from Hidaka Hospital, and Inst. comb. 3 represents thyroid

dysfunction group data from Gunma University and a control group data from Hidaka Hospital. Feature set 1is the full set of features available in the four hospitals, and Feature set 2 is limited to five routine tests that are mandatory for Japanese national special health check-

ups. Four typical machine-learning algorithms for structured data, gradient boosting decision trees, support vector machines and neural networks used in related studies, as well as logistic regression, were examined.

Among the four machine-learning algorithms used in this
study, including the GBDT, the SVM, logistic regression, and the
ANN, the highest performance was obtained when the GBDT
method was applied, as shown in Nos. I, V, VI, and VII of
Table 3. After comparing the performance of different feature
sets, as shown in Nos. I and VIII of Table 3, when Feature set 2
was applied, the accuracy of the hyperthyroidism classification
model was reduced, with an AUROC of 85.5%, and the
performance of the hypothyroidism classification model was
reduced, with an AUROC of 82.5%. Compared to Feature set 1,
which is composed of the full set of features available in the four
hospitals, the performance of the model constructed on Feature
set 2 limited to most basic routine tests had lower accuracy, but
the accuracies for hyperthyroidism (AUROC =85.5%) and
hypothyroidism (AUROC = 82.5%) were considered sufficient
for rapid screening of overlooked patients.

The model of No. I in Table 3 was evaluated using the external
dataset from Kuma Hospital, as shown in No. IX of Table 3. High
classification performance was achieved using the external data:
AUROC = 97.2%, sensitivity = 90.0%, and specificity = 93.7% for
the hyperthyroidism classification model and AUROC = 94.0%,
sensitivity = 91.6%, and specificity = 88.5% for the hypothyroid-
ism classification model.

Feature importance. The feature importance of each model was
examined using Feature set 1. The blue line of Fig. 1(a) shows the
feature importance of the hyperthyroidism classification model,
while the red line shows that of the hypothyroidism classification
model. The five most important features in the hyperthyroidism
model were S-Cr, MCV, total cholesterol, ALP, and albumin. The
five most important features in the hypothyroidism model were
S-Cr, LDH, total cholesterol, MCHC, and TP.

Figure 1(b) shows the feature importance when applying
Feature set 2. Among the five laboratory tests used as features,
total cholesterol exhibited the highest feature importance in both
the hyperthyroidism and hypothyroidism models. The second
and third most important features were ALT and sex in the
hyperthyroidism model, while those in the hypothyroidism model
were AST and ALT.

Negative label setting. Unlike the present study, previous studies
have had a drawback in that they did not consider crosstalk in the
data labeling process. For hyperthyroidism classification in this
study, the hyperthyroidism group was used as a positive label, and
both the control and hypothyroidism groups were negatively
labeled. For the hypothyroidism classification in this study, the
hypothyroidism group was used as a positive label, whereas both
the control and hyperthyroidism groups were negatively labeled
(referred to as “crosstalk account”). On the other hand, related
studies!®17 performed classification by setting thyroid dysfunction
patients (with hyperthyroidism or hypothyroidism) as a positive
label and only the control group as a negative label (referred to as
“crosstalk nonaccount”). Therefore, we evaluated the performance
of the models with similar settings as these studies. When only the
control group was labeled negative in both the training set and the
validation set, a high classification performance, with AUROCs of
98.0% and 95.7%, was achieved in the classification of overt
hyperthyroidism and overt hypothyroidism, respectively, as shown
in Column A-1 of Table 4. However, as shown in Column A-2 of
Table 4, when both the control group and the hypothyroidism
group were labeled negative in the validation set of overt hyper-
thyroidism and when both the control group and the hyperthyr-
oidism group were labeled negative in the validation set of overt
hypothyroidism, the classification performance was reduced, with
AUROCs of 91.3% and 81.4%, respectively. The classification
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Fig. 1 Comparison of feature importance between hyperthyroidism and hypothyroidism classification models. The blue line shows the feature
importance of the hyperthyroidism classification model, while the red line shows that of the hypothyroidism classification model. a The five most important
features in the hyperthyroidism model using Feature set 1 were S-Cr, MCV, total cholesterol, ALP, and albumin. The five most important features in the
hypothyroidism model using Feature set 1 were S-Cr, LDH, total cholesterol, MCHC, and TP. b Among the five laboratory tests used as features, total
cholesterol exhibited the highest feature importance in both the hyperthyroidism and hypothyroidism models. The second and third most important
features were ALT and sex in the hyperthyroidism model, while those in the hypothyroidism model were AST and ALT. AST denotes aminotransferase,
ALT: alanine aminotransferase, y-GTP: gamma-glutamyl transpeptidase, RBC: red blood cell count, S-Cr: serum creatinine, ALP: alkaline phosphatase, UA:
uric acid, LDH: lactic acid dehydr.ogenase, TP: total protein, BUN: blood urea nitrogen, A/G: albumin/globulin ratio, TB: total bilirubin, WBC: white blood
count, Hb: hemoglobin, MCV: mean corpuscular volume, MCH: mean corpuscular hemoglobin, and MCHC: mean corpuscular hemoglobin concentration.

Table 4 Evaluation results obtained without considering crosstalk.

No. A-1 A-2
Training Positive label criterion Thyroid function test criterion

Negative label setting Crosstalk nonaccount
Validation Positive label criterion Thyroid function test criterion

Negative label setting Crosstalk nonaccount Crosstalk account
Hyperthyroidism AUROC 98.0+2.2% 91.3+2.3%
Hypothyroidism AUROC 95.7+£31% 81.4+£4.4%

The mean and standard deviation for the tenfold cross-validation are shown for the AUROC scores. “Crosstalk account” represents the negative label setting, where both the control group and the
hypothyroidism group were labeled negative in the hyperthyroidism group and both the control group and the hyperthyroidism group were labeled negative in the hypothyroidism group. “Crosstalk
nonaccount” represents the negative label setting where only the control group was labeled negative.

performance dropped greatly in the models in which crosstalk was
not considered during the negative labeling process.

Discussion

In this study, we aimed to develop a machine-learning method for
rapid screening of overlooked patients with hyperthyroidism and
hypothyroidism who would greatly benefit from prompt medical
treatment. We evaluated the diagnostic performances of machine-
learning methods with routine laboratory tests as the input
variables to detect the presence of thyroid dysfunction, including
hyperthyroidism and hypothyroidism. High accuracy was
achieved in the discrimination of evident hyperthyroidism and
hypothyroidism.

Feature importance. The correlation of routine laboratory test
parameters such as S-Cr and ALP measurements with thyroid
dysfunction has been noted in many previous studies. According
to studies on the relationship between thyroid dysfunction and
liver function®>29, a correlation was confirmed between increased
ALP and hyperthyroidism, as the ALP value was higher when
bone metabolism increased in Graves’ disease, which is a typical
disorder of hyperthyroidism. Sénmez et al.>” examined data from
433 patients and reported that S-Cr in the hyperthyroidism group
was lower than that in the euthyroid group. TSH and S-Cr were

also reported to have a negative correlation with overt
hypothyroidism23. Dorgalaleh et al2° suggested that thyroid
dysfunction directly affects most blood values, and health pro-
fessionals must pay attention to such effects. The correlation
between hypothyroidism and hyperuricemia has also been con-
firmed by multiple studies3%-31.

Comparison with related studies. Several previous studies
revealed promising results of the use of machine-learning
approaches for predicting thyroid dysfunction!®17,

Similar to the present study, Aoki et all” used pattern
recognition methods such as neural networks to predict the
likelihood of thyroid dysfunction from a set of routine test
parameters such as ALP, S-Cr, and total cholesterol. Their results
suggested that most patients with overt thyroid dysfunction could
be screened by using a set of routine clinical data without
measuring thyroid hormone levels. An accuracy rate of 91.3% was
reported in the hyperthyroidism classification model, and an
accuracy rate of 90.0% was reported in the hypothyroidism
classification model. Their results suggested that there is a high
correlation between a set of routine laboratory tests and thyroid
dysfunction. However, the model verification of these studies
used the leave-one-out method instead of cross-validation and
used the correct rate as the indicator instead of the AUROC.
Thus, the model evaluation was considered insufficient.
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Institution combination. The combination of institutions,
Wakayama Medical University Hospital, Gunma University
Hospital, and Kuma Hospital, was conducted to achieve better
generalization for the machine-learning model. It was confirmed
that the classification accuracy was improved by combining the
dataset of two institutions (Wakayama and Gunma). Addition-
ally, by combining datasets from different institutions, we
examined whether there was bias among these institutions.
According to the results from the dataset of Kuma Hospital,
which was conducted as external validation in this study, no bias
was observed between the institutions.

Kuma Hospital specializes in thyroid diseases; hence, its dataset
is considered to have less noise than those of other general
hospitals, such as Wakayama Hospital and Gunma Hospital, for
which the dataset required more data cleaning.

Regarding comparison with physician performance. When
developing machine-learning-based diagnosis systems, it is usual
to compare the developed systems to physician performance as a
baseline. First, we confirm that the aim of this study is to screen
overlooked patients with thyroid dysfunction. For this purpose,
only routine laboratory tests were used to predict thyroid dys-
function diseases. On the other hand, according to the diagnostic
guidelines of thyroid dysfunction, physicians start with interviews
and make a definitive diagnosis by measuring TSH and FT4. In
addition, there are no guidelines for diagnosing hypothyroidism
from routine laboratory tests, which means that no physicians are
trained to diagnose hypothyroidism from routine laboratory tests.
Therefore, a diagnostic accuracy comparison with physician
performance was not conducted in this study.

On the other hand, further validation such as clinical trials is
required prior to the use of our method in clinical practice. We
need to conduct a clinical evaluation of our method by
prospectively identifying individuals suspected to have thyroid
dysfunction disease and those without thyroid dysfunction, and
comparing the performance of machine-learning methods with
the performance of physicians who use conventional diagnostic
techniques at diagnosing thyroid disorders.

Findings on hypothyroidism classification. In the current study,
the hypothyroidism classification models exhibited lower per-
formance than the hyperthyroidism classification models. This
result is attributed to differences in the respective serum hor-
mones and underlying molecular mechanisms32. The various
nonspecific symptoms of hypothyroidism may not manifest
simultaneously, resulting in a subclinical rate higher than that of
hyperthyroidism. In addition, patients with hypothyroidism, such
as those with Hashimoto’s thyroiditis, are dependent upon long-
term levothyroxine treatment, which may affect the manifesta-
tions of routine laboratory findings.

Training data labeling criteria. Two labeling criteria, thyroid
function test criteria and prescription criteria, were designed and
compared in the present study. In the results of this study, the
models trained with the thyroid function test criteria exhibited
better performance. However, the model may benefit from a
larger dataset that combines two different labeling criteria.
Therefore, we further trained the new model on the dataset col-
lected using both criteria and evaluated the classification perfor-
mance. As a result, the model trained on both datasets exhibited
an AUROC of 94.3% for hyperthyroidism and 92.2% for hypo-
thyroidism. This result indicates that a combination of both
thyroid function test criteria and prescription criteria may be
effective in enhancing the classification ability of the model.

Conclusion

This study evaluated a screening method to discriminate hyper-
thyroidism and hypothyroidism from EMRs or routine laboratory
finding data from health checkups using a machine-learning
method with the aim of preventing missed diagnosis of thyroid
dysfunction. This is a versatile new screening method that was
successfully developed from a machine-learning model method to
discriminate patients with hyperthyroidism and those with
hypothyroidism using 23 features. High accuracy was achieved in
the discrimination of evident hyperthyroidism or hypothyroid-
ism, and these features can be useful for individuals who are not
thyroid disease specialists.

If thyroid dysfunction is screened using our method in health
care facilities, including hospitals and health checkup facilities,
prompt and accurate diagnostic support can be provided with the
requirement of only routine laboratory tests. A future work is to
conduct clinical trials that is required prior to the use of our
method in clinical practice.

Data availability

Each institution owns the data of its own institution, and restrictions apply to the
availability of these data, which were used under license for the current study and
therefore are not publicly available. Data are, however, available from the authors upon
reasonable request and with permission from each institute. Source data for Fig. 1 is
available as the excel file “Figurel xlsx” at our GitHub site: https://github.com/
CosmicAITS/AITSI.

Code availability

The code developed in this project, a simulation dataset, and instructions (README file)
on how to use the program are available at our GitHub site: https://github.com/
CosmicAITS/AITS1, and archived in Zenodo33.
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