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Pathogens of the bacterial genus 

 

Borrelia

 

 differ from fellow
spirochetes, 

 

Treponema

 

 and 

 

Leptospira

 

, in their use of arthropod
vectors for transmission between warm-blooded hosts. The
agents of relapsing fever, 

 

Borrelia recurrentis

 

 and 

 

Borrelia hermsii

 

,
are transmitted by lice and fast-feeding soft ticks, respec-
tively, whereas the Lyme disease spirochete, 

 

Borrelia

 

 

 

burgdorferi

 

(

 

Bb

 

), is transmitted to human hosts via the hard-shelled
tick, 

 

Ixodes

 

 (1, 2). The evolutionary adaptation to both arthro-
pod and warm-blooded hosts involved the invention of
repertoires of outer membrane surface proteins, largely lipo-
proteins, conferring the ability to adhere, recognize, and
respond to mammalian and arthropod tissues. As described
in this issue by Yang et al., the most robust model to date
for 

 

Bb

 

 lipoprotein function are two plasmid-encoded
genes, paralog siblings 

 

OspA

 

 and 

 

OspB

 

, encoding promi-
nently expressed outer envelope lipoproteins (3), which
function during the passage of borreliae within the tick
vector midgut (4). In turn, a third gene encoding the lipo-
protein OspC is essential for egress to the tick salivary
glands (5). Here I will give a brief introduction to 

 

Borrelia

 

biology, describe the tremendous capacity and complexity
of borrelial lipoprotein repertoires, and then focus on new
studies and methodologies being brought to bear on under-
standing 

 

Bb

 

 Osp lipoprotein function during tick transmission.

 

A Brief Natural History of Ticks and Borrelia.

 

Ticks, like
all biting (hematophagous) arthropods, routinely salivate
into their food. Hematophagous arthropods possess pro-
nounced salivary glands secreting numerous bioactive mole-
cules that aid in blood pool formation and delivery, including
anticoagulants, antiplatelet factors, vasodilators, histamine
blockers, and in the case of the prolonged-feeding ticks,
attachment cement (6, 7). As a consequence, and of concern
to human and animal health, tick salivary secretion is also
the route of transmission for pathogens such as the bacteria

 

Rickettsia

 

 and 

 

Borrelia

 

, apicomplexan protozoans 

 

Theileria

 

and 

 

Babesia

 

, as well as numerous viruses. 

 

Ixodes

 

 ticks take a
blood meal, which can last several days, during each of
their larval, nymph, and adult stages. 

 

Bb

 

 transmission is typ-
ically initiated by spirochete ingestion and midgut coloni-
zation during a larval stage feed on an infected mammalian

host (such as the common 

 

Bb

 

 reservoir, the mouse 

 

Peromyscus

 

).
This is followed by a period of spirochete relative dor-
mancy through the larvae-nymph molt. During a second
nymphal feed on a new host, these borreliae proliferate, detach
from the midgut epithelium, migrate to the salivary glands,
and are transmitted to this same host. It is an infected
nymphal feed on a human—the “accidental” nonreservoir
host—that is the target for transmission-blocking vaccine
development. Via vaccination of humans using borreliae
midgut stage surface antigens it is sought to block human
infection after tick ingestion of immune sera and thereby
disruption of borreliae midgut stage development and
egress to the salivary gland (8).

Unlike arthropod-born protozoan parasites, such as 

 

Plas-
modium

 

 and 

 

Leishmania

 

, borreliae do not undergo gross cellular

 

transformations during their transit through the tick and
maintain their spiroform shape composed of two mem-
branes sandwiching periplasmic flagella. The transition from
midgut to salivary glands predominantly involves changes in
gene expression regulating the complement of surface pro-
teins, which is likely accompanied by increased motility and
capacity for tissue invasion. Expression of these genes may
be triggered globally by a variety of factors, including an
increase from ambient to warm-blooded host body temper-
ature during the blood feed, a decrease in blood meal pH,

 

tick factors secreted within the bloodmeal, CO

 

2

 

 tension,
spirochete density after proliferation within the midgut, and
other factors related to the influx of host blood. A logical
model (currently undergoing experimental scrutiny) distin-
guishes the reciprocal states “warm blood” versus “cold

 

tick” and classifies as “group I” those 

 

Bb

 

 genes up-regulated
in response to a temperature increase and pH decrease, with
the remaining genes classified as “group II” (9).

 

The Borrelial Genomes and Encoded Lipoprotein Catalogs.

 

The borrelial genome is perhaps the most structurally complex
among bacteria. The 1.5-Mb 

 

Bb

 

 genome sequence is encoded
in a single linear 0.91-Kb chromosome plus a highly dynamic
complement of 12 linear and 9 circular extrachromosomal
DNAs (10, 11). Approximately 5% of 

 

Bb

 

 chromosomal
genes and 15% of plasmid genes are devoted to a catalog of

 

�

 

130 lipoproteins (11), which is larger and more complex
than any encoded in a sequenced bacterial genome. The
diversity in the lipoprotein repertoire is further enhanced
by mechanisms of antigenic variation (in 

 

Bb

 

, the 

 

vlsE

 

 alleles)
(12, 13), plasmid recombination events mediating antigenic
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diversity among multigene families (e.g., the 

 

Erp

 

 and 

 

Mlp

 

genes) (14), and acquisition of new genetic information via
transduction of a population of phage-like plasmids (the
cp32 plasmid family) (11). With the 

 

Bb

 

 genome template
now in hand, it is important and straightforward to deter-
mine the complete genome sequences for the etiologic
agents of tick-born and louse-born relapsing fevers, 

 

Borrelia
hermsii

 

 and 

 

B. recurrentis

 

. These genome sequences will allow
comparison of the composition of the lipoprotein catalogs
between 

 

Borrelia

 

 species, providing insights into differences
in genome architecture arising from linear and circular
DNAs, and an understanding of the evolutionary advantage
of distributing lipoprotein genes between chromosomal and
extrachromosomal DNAs. Some progress has been made;
for example, it has been shown that the 

 

Bb

 

 cp32 plasmid
family shares sequence similarities with plasmids in 

 

B. hermsii

 

(15), including orthologs of two surface antigens, mlp and
Bdr. 

 

B. hermsii

 

 and 

 

Bb

 

 also have similar mechanisms of anti-
genic variation via duplicative transposition (the 

 

vmp

 

 genes
in 

 

B. hermsii

 

 and 

 

vlsE

 

 in 

 

Bb

 

) (16).

 

Bb Outer Membrane Proteins.

 

The majority of identified
putative outer membrane 

 

Bb

 

 proteins are lipoproteins, typi-
fied by an NH

 

2

 

-terminal type II signal sequence and a li-
pobox motif mediating NH

 

2

 

-terminal lipidation on a con-
served cysteine residue (10, 11). It is currently poorly
understood and of interest to identify the structural motifs
predicting localization of lipoproteins on the outer mem-
brane surface versus orientation within the periplasmic
space. The large catalog of 

 

Borrelia

 

 lipoproteins likely un-
derpins immune evasion strategies, in remarkable contrast
to the spirochete 

 

Treponema

 

, which has relatively few lipo-
proteins (17) and is thought to be relatively invisible to the
host with respect to outer surface antigens (18). The two
spirochetes may have evolved distinct strategies for evasion
of humoral immunity, with 

 

Borrelia

 

 relying on antigenic di-
versity and antigenic variation, whereas 

 

Treponema

 

 simply
avoids presentation of surface antigens. The genome se-

quence for 

 

Leptospira

 

 is now available (19), and it is of inter-
est to conduct whole genome comparisons of the three cat-
alogs of putative surface proteins in conjunction with a
meta-analysis of available protein expression and cellular lo-
calization studies in spirochetes and other bacterial genera.
However, a general theme is clear: spirochetes share few
orthologous membrane surface proteins and the majority of
the 

 

Bb

 

 molecules are lineage-specific inventions, lacking
orthologs outside of the 

 

Borrelia

 

 clade. BLAST analysis thus
far identifies few “spirochete” lipoproteins, such as BB0155
that is found only in 

 

Borrelia

 

 and 

 

Treponema

 

 (TP0646). Pro-
teins of wider phylogenetic representation in bacteria (e.g.,
TmpC, Tp92, Tpn50/OmpA, Tpn38b, and rlpA) might be
involved in conserved cellular functions, such as transport
or metabolic roles rather than interactions at the host inter-
face. An additional class of outer membrane protein candi-
dates contain domains of a wider phylogenetic representa-
tion that includes eukaryotes (20). This class includes
proteins BB0172, BB0173, and BB0325, which contain
vWA domain, a motif also represented in 

 

Treponema

 

 (e.g.,
GenBank/EMBL/DDBJ accession no. AAC65016), a pu-
tative surface membrane protein containing a PR1 domain
(BB0689), and possible secreted proteins containing TPR
repeats (e.g., LMP1, sequence data available from Gen-
Bank/EMBL/DDBJ under accession no. NP_212344).

 

Bb Outer Membrane Proteins OspA and OspB.

 

The lipo-
proteins OspA and OspB are encoded on adjacent paralo-
gous genes present on 

 

Bb

 

 linear plasmid lp54. 

 

OspA/B

 

transcriptional regulation is considered to be linked via a
single transcript, although there is preliminary evidence of
differential transcript regulation (21). OspA and OspB share
53% amino acid identity and likely have a similar antiparal-
lel “free-standing” 

 

�

 

 sheet protein structure associated with
the outer membrane surface via a lipidated NH

 

2

 

-terminal
cysteine residue (22). Neither protein is thought to be ex-
pressed in the mammalian host, although OspA expression
during persistent borreliosis has been implicated in human

Figure 1. Maturation of borreliae within
the tick midgut. Unfed infected nymphs
acquire infection from a previous feed during
the tick larval stage. Midgut borreliae are
quiescent and express group II stage lipo-
proteins, predominantly OspA and OspB.
During a nymphal stage feed on a new host
in response to changes in temperature and
pH the borreliae begin expressing OspC
and other group I stage lipoproteins (e.g.,
DbA/B, Mlp, Erp, and vslE).
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chronic Lyme arthritis (23). Recombination appears to play
little or no role in generating OspA/B antigenic diversity,
unlike plasmid-encoded multigene families such as the 

 

Erp

 

and 

 

Mlp

 

 lipoproteins. This might be expected if OspA/B
are expressed solely in the tick vector and do not encounter
immune pressure driving antigenic diversity. Thus, the 

 

Bb

 

lipoprotein catalog might be divided into two groups:
those having greater antigenic diversity at a population
level, driven by mammalian host humoral immune pres-
sure, versus proteins functioning solely in the tick and en-
countering little immune pressure.

Dominant OspA/B expression occurs during midgut col-
onization after a larval feed on an infected host, likely in re-
sponse to the ambient temperature and pH of the tick mid-
gut (24). In recent years, an attractive model has been built:
that OspA/B mediates adherence to larval midgut epithe-
lium and perhaps additionally aids in survival during the lar-
val-nymph molt and proliferation in response to a nymphal
blood meal (Fig. 1). During the nymphal blood meal, OspA
is down-regulated in proliferating borreliae in response to
the temperature increase associated with the prolonged
feeding period, freeing the spirochetes to migrate to the sal-
ivary glands. Competence to egress the midgut and invade
salivary glands is correlated with expression of a third lipo-
protein, OspC (described in the following section).

 

Targeted Gene Disruption and Complementation of OspA/B.

 

The study by Yang et al. (4) demonstrates that targeted
gene disruption of the extended 

 

OspA/B

 

 locus has no ob-
servable consequence on the ability of borreliae to establish
an infection in mice, whereas the locus is critically essential
for colonization of the tick midgut (4). In turn, comple-
mentation of either OspA or OspA/B expression restores
the ability to colonize the midgut and invasion of salivary
glands. These results greatly solidify a body of experimenta-
tion implicating OspA and OspB as midgut stage antigens
(for review see reference 25) but more importantly set the
stage for dissection of OspA/B function. Complementation
of OspA alone indicates that OspB expression is not essen-
tial for tick transmission; however, the great plasticity of the

 

Bb

 

 genome suggests that 

 

OspB

 

 evolutionary persistence is
the result of positive selection pressures, and 

 

OspB

 

 must
therefore be of intrinsic value to the organism. Therefore, it
is of interest to complement OspB alone in order to deter-
mine if OspA and OspB have compensating or redundant
functions. It is also of interest to express OspA (additionally,
OspB and OspA/B) in trans in wild-type borreliae driven
by an 

 

OspC

 

 or other group I gene promoter. If OspA is in-
deed a midgut lumen adhesion molecule then it might be
expected that after a nymphal stage feed mature midgut
stage spirochetes will express both introduced constitutive
OspA and up-regulated OspC (as is known to occur during
maturation of midgut borreliae) but be unable to release
and exit the tick midgut. If this phenotype indeed results,
then ultrastructural studies may reveal the mechanism of
midgut wall transit; for instance, the resulting spirochetes
may damage surrounding midgut epithelial tissues via secre-
tion or recruitment of proteases and lipases but fail to exit
the midgut due to their OspA-mediated adhesiveness.

 

Recently the outer membrane surface lipoprotein gene,

 

OspC

 

, was disrupted, resulting in a phenotype in which
borreliae are capable of colonizing tick midguts but do not
migrate to salivary glands (5). This phenotype correlates
well with expression profiles showing OspC up-regulation
after an infected tick nymphal feed (24). OspC shows little
structural similarity with OspA (and presumably, OspB)
and is composed of predominantly 

 

�

 

-helical globular do-
mains (26) rather than the extended antiparallel 

 

�

 

-sheet
structure of OspA (22, 27). In 

 

OspC

 

 disruptant borreliae,
the spirochetes persist in late stage feeding midguts despite
a presumed absence of both OspC and OspA/B. What are
the roles of lipoproteins as adhesive proteins or involve-
ment in tissue egress versus “surface coat” functions pro-
tecting against the potentially harsh environment of the
midgut lumen? In 

 

OspC

 

 disrupted lines, it must be con-
cluded that either a predominant coat lipoprotein is not
necessary for protection against degradation or that other
lipoproteins compensate for the lack of OspA/B/C. In re-
sponse to nymphal feeding, other group I lipoproteins are
up-regulated in addition to OspC, such as members of the
Mlp, Erp, and Db lipoprotein families. However, these
proteins apparently cannot compensate for loss of OspC
function in egress to the salivary gland. This is a quandary
to tease apart, determining the role of individual lipopro-
teins in protection from the environment, adhesion, tissue
egress and invasion, and salivary gland recognition.

 

Conclusions.

 

Many hurdles have been overcome re-
cently in the ability to disrupt 

 

Bb

 

 genes without creating
culture-mediated artifacts in phenotype, such as due to loss
of 

 

Bb

 

 plasmid DNA, and targeted gene disruptions are in-
creasingly contributing to understanding of 

 

Bb

 

 biology.
Several gene disruptant lines have been generated aimed at
determining the regulation mechanism of group I versus
group II lipoprotein gene expression, including knockout
of the response regulator Rrp2 (28) and alternative sigma
factors, RpoN and RpoS (29). The gene knockout and
complementation methodologies appear sufficiently facile
and diverse to support a range of combinatoric gene dis-
ruption, complementation, and promoter-regulated trans
expression experiments. These studies will illuminate the
roles of additional tick stage outer membrane proteins and
the panoply of lipoproteins involved in establishing and
persisting infection in the warm-blooded host.
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