
No association of genetic polymorphisms in CYP1B1 with primary
open-angle glaucoma: a meta- and gene-based analysis

Shuqian Dong,1 Jingyun Yang,2 Weihong Yu,3 Pravina Kota,4 Xiaobo Xia,1 Huizhuo Xu1

1Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China; 2Methodology Center,
Pennsylvania State University, State College, PA; 3Department of Ophthalmology, Peking Union Medical College Hospital, Chinese
Academy of Medical Science, Beijing, China; 4Department of Biostatistics and Epidemiology, University of Oklahoma Health
Sciences Center, Oklahoma City, OK

Purpose: To examine the effects of genetic polymorphisms in cytochrome P450, subfamily 1, polypeptide 1 (C1P1B1)
on primary open-angle glaucoma (POAG).
Methods: A systematic literature search was performed, and random-effects meta-analyses were used to evaluate genetic
polymorphisms in CYP1B1 with POAG. A gene-based analysis was conducted to investigate the cumulative effects of
genetic polymorphisms in CYP1B1.
Results: A total of six studies from published papers were included in our analysis. Random-effects meta-analyses failed
to detect any significant association of POAG with genetic polymorphisms in CYP1B1, including rs180040, rs1056836,
rs10012, rs1056827, rs1056837, and rs2567206. The gene-based analysis indicated that the cumulative effect of genetic
polymorphisms in CYP1B1 is not associated with POAG (p>0.50).
Conclusions: We did not find any evidence of strong association of POAG with CYP1B1 genetic polymorphisms and
their cumulative effect.

Glaucoma is defined as a group of heterogeneous,
complex disorders characterized by a progressive loss of
retinal ganglion cells; it is a major cause of irreversible
blindness [1,2]. Primary open-angle glaucoma (POAG) is the
most common form of glaucoma, leading to an estimated 3.3
million cases of bilateral blindness worldwide [3]. POAG is
defined by an open, normal appearing anterior chamber angle
and raised intraocular pressure (IOP), with no other
underlying disease. The onset of the disease is not obvious to
the patient until there is appreciable and irreversible loss of
the field of vision.

POAG is a complex disease caused by multiple genetic
and environmental factors, as well as their interactions [4-8].
A previous study estimated that 72% of all POAG cases
exhibited an inherited or familial form of the disease, which
does not show a clear pattern of Mendelian inheritance [9].
Mutations, polymorphisms, and copy number variations
(CNVs) could contribute to the pathogenesis of POAG. To
date, more than 20 genetic loci have been implicated in its
development [10]. Linkage analysis has identified two
POAG-causing genes, myocilin (MYOC) [5] and optineurin
(OPTN) [7]. More than 70 MYOC mutations have been
reported to contribute to the pathogenesis of POAG [10], and
OPTN mutations have been associated with normal tension
glaucoma (NTG) [7]. Variants in these two genes account for
about 5% of POAG in the population [7,11]. Previous studies
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also have reported the association of POAG with mutations in
WD repeat domain 36 (WDR36) [12] and neurotrophin-4
(NTF4) [13,14]; however, their roles in the pathogenesis of
POAG is controversial [15]. CNVs are defined as insertions
or deletions of large segments of DNA, from 1 kb up to several
Mb; they have been found to contribute to many complex
disorders, such as autism [16,17], schizophrenia [18], and
Crohn’s disease [19]. A recent study identified 11 validated
CNVs in patients with POAG, but not in age-matched
controls, suggesting the potential role that the CNV-
implemented genes might play in the pathogenesis of POAG.

Mutations in CYP1B1 (cytochrome P450, family 1,
subfamily B, polypeptide 1) have also been identified in
POAG patients and may be suggested as a modifier of POAG
in carriers of MYOC mutations [20,21]. Most studies on the
effect of CYP1B1 on POAG have investigated only genetic
mutations in this gene [20,22-29]. Although a few studies have
evaluated the association of single-nucleotide polymorphisms
(SNPs) of CYP1B1 with PAOG, the results are conflicting
[22,30-34].

In this study, we conducted a systematic literature search
of published studies examining the association of genetic
polymorphisms of CYP1B1 with POAG and conducted meta-
analyses of SNPs in this gene. POAG is a complex disorder,
and it is highly likely that individual SNPs may contribute
little to its onset and development. However, their cumulative
effects may be significant. Therefore, we conducted a gene-
based analysis to investigate the cumulative effects of the
genetic polymorphisms in CYP1B1 on POAG.
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METHODS
Search strategy and study selection: In October 2011, we
conducted an extensive literature search of MEDLINE,
Cochrane Library, Web of Science, and Google Scholar.
Search terms included “primary open angle glaucoma,”
“CYP1B1,” “SNP,” “polymorphism,” and “POAG.” The
following inclusion criteria were used in the search: 1) studies
on human subjects; 2) studies on POAG; 3) reported
association (or have data available to calculate the association)
of genetic polymorphism of individual SNPs in CYP1B1 with
POAG; and 4) provided odds ratios and their variance (or data
to calculate the variance) or genotype frequency among
participants with and without POAG. All potentially relevant
publications were retrieved and evaluated for inclusion. We
also hand-searched references of all relevant publications for
additional studies missed by the database search. Our search
was restricted to studies published in the English language.
Two authors (S.D. and J.Y.) performed the search
independently. Disagreement over eligibility of a study was
resolved by the evaluation of a third reviewer (W.Y.) and
discussion until a consensus was reached.
Statistical analysis: We used odds ratio (OR) as a measure of
the association of the genetic polymorphisms in CYP1B1 with
POAG. ORs were used as provided in the papers or were
calculated from genotype frequency data, and they were
logarithmically transformed to improve normality. Standard

errors were derived from the confidence intervals (CI)
reported in each study. Random-effects models were used to
calculate ORs and their corresponding 95% CIs. The z-test
was used to calculate the p-value of the overall effect, and a
forest plot was used to present the calculated pooled ORs and
their 95% CIs. In the forest plot, each study was represented
by a square whose area was proportional to the weight of the
study. The weight of each study was determined by taking the
inverse of the variance of each study. The overall effect from
meta-analysis is represented by a diamond in the forest plot;
the width of the diamond represents the 95% CI for the
estimated OR. We used Q statistics to assess between-study
heterogeneity. Because Q statistics are underpowered, we
considered studies to be homogeneous if p>0.1. Publication
bias was assessed visually using a funnel plot and tested with
Egger’s regression test.

To assess the overall association of CYP1B1 with POAG,
we conducted a gene-based analysis, using the reported p-
values of the association of genetic polymorphisms in
CYP1B1 with POAG and the p-values from our meta-analysis.
This association was assessed using four popular p-value
combination methods: Fisher’s method, the Simes method,
the modified inverse normal method, and the truncated
product method (TPM). A detailed description of the four
methods has been published elsewhere [35]. We conducted
100,000 simulations to estimate the p-value using TPM,

Figure 1. Flow diagram of studies
included in the systematic review. Note:
Please see the Methods section for
additional details.
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because the p-values of the association of individual SNPs
within CYP1B1 with POAG are most likely to be dependent.

Meta-analysis was performed using Stata 11.2 (StataCorp
LP, College Station, TX). All other analyses were performed
using Matlab 7.10.0.499 (The MathWorks, Inc., Natick, MA).

RESULTS
Literature search and eligible studies: A flow diagram
showing the selection process of studies included in our
analysis is shown in Figure 1. Our initial search, using our pre-
defined search strategy, identified a total of 31 potential
studies. After reviewing each abstract, three studies were
excluded, because they either were irrelevant or were not
conducted on human subjects. The remaining 28 studies were
retrieved for more detailed review. An additional 23 studies
were excluded because the outcome of interest was not
POAG, the study examined mutations instead of genetic
polymorphisms, the study was a review, or there was
insufficient data. A review of references for the remaining five
studies identified one more relevant study. A total of six
studies from published papers met the eligibility criteria and
were included in our analyses [22,30-34].

All qualified studies were published after 2005, and they
had sample sizes ranging from 271 to 1,758 participants. The
reported prevalence of POAG ranged from 47% to 83% (Table
1). Of these six studies, five reported association results for
rs180040 and rs1056836, three for rs10012, and two for
rs1056827, rs1056837, and rs2567206. These studies were
included in the corresponding meta-analysis for each of the
six SNPs. The combined study population included 3,294
participants in the meta-analysis of rs180040 and rs1056836,
930 in rs10012, and 571 in rs1056827, rs1056837, and
rs2567206. In addition to these six SNPs, the association
between POAG and 14 other SNPs in CYP1B1 was reported
in single individual studies [22,30,32]. The results from
individual studies and our meta-analysis were used to conduct
our gene-based analysis.
Assessment of publication bias: Funnel plots and Egger’s test
were used to assess publication bias (Figure 2A-C). No

publication bias was detected for the meta-analyses of
rs180040 (t=0.22, 95% CI: −7.66–8.79; p=0.84), rs1856836
(t=-1.02, 95% CI: −13.26–6.83; p=0.38), or rs10012 (t=3.84,
95% CI: −8.89–16.60; p=0.16). Due to the limited number of
studies, publication bias could not be assessed for the meta-
analyses of rs1056827, rs1056837, and rs2567206.
Association of individual SNPs with POAG: Five studies
provided results on the association of rs180040 with POAG.
Random-effects meta-analysis provided an estimated odds
ratio of 1.18 (95% CI: 0.60–2.32; p=0.63), indicating no
significant association of the SNP with POAG (Figure 3A,
Table 2A). There was significant between-study
heterogeneity (Q=37.85, p<0.001).

Five studies provided results on the association of
rs1056836 with POAG. Random-effects meta-analysis
provided an estimated odds ratio of 0.67 (95% CI: 0.37–1.11;
p=0.19), indicating no significant association with POAG
(Figure 3B, Table 2B). There was significant between-study
heterogeneity (Q=58.63, p<0.001).

Three studies provided results on the association of
rs10012 with POAG. Random-effects meta-analysis provided
an estimated odds ratio of 1.00 (95% CI: 0.78–1.28; p=0.99),
indicating no significant association with POAG (Figure 3C,
Table 2C). There was no between-study heterogeneity
(Q=1.66, p=0.44).

Two studies provided results on the association of
rs1056827 with POAG. Random-effects meta-analysis
provided an estimated odds ratio of 1.18 (95% CI: 0.83–1.70;
p=0.36), indicating no significant association with POAG
(Table 2D). There was no between-study heterogeneity
(Q=0.01, p=0.92).

Two studies provided results on the association of
rs1056837 with POAG. Random-effects meta-analysis
provided an estimated odds ratio of 0.83 (95% CI: 0.60–1.16;
p=0.28), indicating no significant association with POAG
(Table 2E). There was no between-study heterogeneity
(Q=0.17, p=0.68).

Two studies provided results on the association of
rs2567206 with POAG. Random-effects meta-analysis

TABLE 1. BASIC CHARACTERISTICS OF ALL STUDIES.

Study Year of publication Study population Age Prevalence of POAG
[30] 2006 200 POAG patients and 100 controls in

India
mean age 52.4±19.3 67%

[31] 2008 264 POAG patients and 95 controls in
India

mean age 55.7±16.8 74%

[32] 2010 860 POAG patients and 898 controls in
Australia

mean age 70.7 49%

[33] 2010 405 POAG patients and 201 controls in
Hong Kong

mean age 57.8 and 69.8 for POAG patients
and controls, respectively

67%

[34] 2005 224 POAG patients and 47 controls in
France

- 83%

[22] 2010 339 POAG patients and 376 controls in
Germany

mean age 66.9±13.4 and 73.9±6.4 for POAG
patients and controls, respectively

47%
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Figure 2. Begg’s funnel plots of random effects meta-analysis of the association of genetic polymorphisms in CYP1B1 with primary open-
angle glaucoma (POAG). The horizontal line in the figure represents the overall estimated log-transformed odds ratio. The two diagonal lines
represent the pseudo 95% confidence limits of the effect estimate. A: Funnel plot for random effects meta-analysis of rs180040 with POAG.
B: Funnel plot for random effects meta-analysis of rs1056836 with POAG. C: Funnel plot for random effects meta-analysis of rs10012 with
POAG.
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Figure 3. Forest plots of estimates of odds ratios of the association of genetic polymorphisms in CYP1B1 with primary open-angle glaucoma
(POAG). Each study was represented by a square whose area was proportional to the weight of the study. The overall effect from meta-analysis
is represented by a diamond whose width represents the 95% CI for the estimated OR. A: Estimates of odds ratio of rs180040 in CYP1B1
with POAG. B: Estimates of odds ratio of rs1056836 in CYP1B1 with POAG. C: Estimates of odds ratio of rs10012 in CYP1B1 with POAG.
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provided an estimated odds ratio of 1.12 (95% CI: 0.74–1.69;
p=0.60), indicating no significant association with POAG
(Table 2F). There was no between-study heterogeneity
(Q=1.83, p=0.18).

In addition to these six SNPs, the association of POAG
with 14 other SNPs in C1P1B1 was reported in individual
studies. The results from these studies, together with the meta-
analysis results obtained from this study, are summarized in
Table 3.

Gene-based analysis: Using the p-values obtained from
association of individual SNPs with POAG, we performed a

gene-based association study to examine the cumulative effect
of these genetic polymorphisms on POAG. None of the four
methods indicated an association of CYP1B1 with POAG (all
p>0.5, Table 4).

DISCUSSION
In this paper, we conducted a systematic search and conducted
meta- and gene-based analyses of the genetic polymorphisms
in CYP1B1 with POAG. Our meta-analyses did not detect any
statistically significant associations between polymorphisms
of CYPIB1 and POAG. The gene-based analysis indicated that
there is no significant association of PAOG with the

TABLE 2. META-ANALYSIS OF THE ASSOCIATION OF SNPS WITH POAG.

Study Weights OR (95% CI) p-value
A. rs180040

[30] 21.26 0.82 (0.42–1.62) 0.57
[31] 23.20 0.81 (0.48–1.38) 0.43
[32] 26.60 0.96 (0.81–1.14) 0.62
[33] 4.16 0.39 (0.02–8.22) 0.55
[34] 24.78 3.48 (2.34–5.15) 5.89×10-10

Total - 1.18 (0.60–2.32) 0.63
B.
rs1056836

[30] 19.20 0.81 (0.49–1.32) 0.39
[31] 19.61 0.17 (0.11–0.26) 4.31×10-15

[32] 21.74 1.00 (0.88–1.15) 0.98
[33] 19.86 1.10 (0.72–1.68) 0.66
[34] 19.59 0.86 (0.55–1.36) 0.53
Total - 0.67 (0.37–1.22) 0.19

C. rs10012
[30] 26.13 1.20 (0.74–1.97) 0.46
[31] 51.61 0.85 (0.60–1.21) 0.37
[34] 22.26 1.16 (0.68–1.97) 0.59
Total - 1.00 (0.78–1.28) 0.99

D.
rs1056827

[30] 54.00 1.20 (0.74–1.97) 0.71
[34] 46.00 1.16 (0.68–1.97) 0.79
Total - 1.18 (0.83–1.70) 0.36

E.
rs1056837

[30] 45.88 0.77 (0.47–1.26) 0.30
[34] 54.12 0.89 (0.57–1.40) 0.61
Total - 0.83 (0.60–1.16) 0.28

F.
rs2567206

[30] 37.52 0.85 (0.50–1.46) 0.56
[34] 62.48 1.32 (0.94–1.83) 0.10
Total - 1.12 (0.74–1.69) 0.60
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cumulative effects of the genetic polymorphisms in
CYP1B1. To the best of our knowledge, this is the first study
on the association of polymorphisms in CYP1B1 with POAG
through a meta- and gene-based approach.

Genetic factors play a critical role in predisposition to
POAG. However, the genetic pathophysiology of glaucoma
remains largely unknown, with mutations in known genes
accounting for less than 15% of the disease [29]. Two genes
(MYOC and OPTN) have been reported to show a causative
relationship with POAG [5,7]. Mutations of myocilin protein
could obstruct the outflow of the aqueous humor through the
trabecular meshwork, leading to a markedly elevated IOP.
Mice with myocilin mutations in Tyr437His have shown
POAG symptoms, such as elevated IOP, RGC death, and
axonal degeneration in the optic nerve [36-38]. Optineurin
protein might play a role in the protection of the optic nerve
from tumor necrosis factor-mediated apoptosis, and mutations
in optineurin could lead to loss of function of this protein,
which could decrease the threshold for ganglion cell apoptosis
in patients with glaucoma [7].

Mutations in CYP1B1 also have been reported to be
implicated in POAG. CYP1B1 (OMIM 601771) is located on
chromosome 2p21 at the GLC3A locus. Being a member of
the cytochrome p450 gene superfamily of monooxygenase, it
recently became known for its role in eye development during
embryogenesis [39]. Studies have shown that the frequency
of CYP1B1 mutations varies in patients across countries–5.0%
in Canada [40], 4.6% in France [41], 10.9% in Spain [21],
4.5% in Eastern India [30], and 10.8% in Southern India
[42]. Previous studies have indicated a minor involvement of
the mutations in CYP1B1 in the pathogenesis of juvenile open-
angle glaucoma (JOAG) and POAG [20,24,26,28,29]. In
addition, CYP1B1 mutations have been suggested to be
associated with clinical features like optic disc cupping and
visual field loss [34]. One study showed that CYP1B1−/− mice
exhibited structural abnormalities in the ocular drainage
structures, similar to human primary congenital glaucoma
(PCG) [43,44]. However, the exact mechanism by which
CYP1B1 contributes to glaucoma remains unknown.

TABLE 3. ASSOCIATION OF INDIVIDUAL SNPS IN CYP1B1 WITH POAG.

SNP OR (95% CI) p
C1328G>C 1.06 (0.07–17.03) 0.97
C1394T>C 0.35 (0.01–8.69) 0.53
C1557G>C 0.66 (0.03–16.39) 0.80
C1572T>C 0.40 (0.02–8.31) 0.55
C1925T>C 1.29 (0.68–2.47) 0.43
C2016C>G 0.18 (0.01–3.23) 0.24
C503G>A 0.35 (0.01–8.69) 0.53
C685G>A 1.34 (0.52–3.42) 0.55

rs10175368 0.94 (0.81–1.09) 0.42
rs10916 1.13 (0.96–1.33) 0.14

rs162549 0.96 (0.82–1.13) 0.64
rs162556 1.13 (0.99–1.29) 0.07
rs162562 1.14 (0.97–1.34) 0.11

rs2617266 0.94 (0.53–1.68) 0.84
rs180040 1.18 (0.60–2.32) 0.63

rs1056836 0.67 (0.37–1.22) 0.19
rs10012 1.00 (0.78–1.28) 0.99

rs1056827 1.18 (0.83–1.70) 0.36
rs1056837 0.83 (0.60–1.16) 0.28
rs2567206 1.12 (0.74–1.69) 0.60

          Based on our meta-analyses and results reported in individual studies.

TABLE 4. GENE-BASED ANALYSIS OF GENETIC POLYMORPHISMS IN CYP1B1 WITH POAG.

Gene Fisher Simes Inverse TPM
CYP1B1 0.63 0.80 0.54 0.73
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There are a few studies on the effects of genetic
polymorphisms in CYP1B1 on POAG, with conflicting results
being reported [22,30-34]. One study revealed a significant
association of a common SNP, L432V (rs1056836), in
CYP1B1 with POAG in the Indian population (OR=6.03, 95%
CI 3.86–9.40; p<0.001) [31]. Other studies failed to detect a
significant association [30,32-34]. Similarly, the study by
Melki et al. [34] reported a significant association of another
common SNP, N453S (rs180040), with POAG in French
patients (OR=3.48, 95% CI=2.34–5.15; p<0.001), but no
significant association was found in other studies [30-33]. It
is unclear what factors contribute to the conflicting results
reported in these studies. We found significant heterogeneity
for the meta-analyses of the two SNPs (both p<0.001) and
speculate that different genetic structures among the different
populations might be an important factor accounting for the
disparate results. For example, the minor allele (G) frequency
of rs180040 in Caucasians is about 19% (Hapmap database),
while in the Chinese population it is reported to be 0.5% in
POAG patients and 0 in controls [33] (0.4% in Hapmap
database). Of course, other factors, such as environment and
diet, might play roles in these differences as well.

There are certain limitations to this study. First, due to the
limited availability of published results, the number of studies
included in each meta-analysis is relatively small. We could
only perform meta-analysis for six SNPs in CYP1B1. The
association of the remaining 14 SNPs was based on the results
from single studies. We expect that as more studies become
available, a more accurate estimation of the relationship of
CYP1B1 with POAG will be obtained. Second, definition of
POAG was not consistent across the six studies for the meta-
and gene-based analyses (Appendix 1). Third, although
efforts have been made, there are some studies that used
different genetic models. One of our assumptions for the meta-
and gene-based analyses is that different genetic models
should provide similar associations, which might not hold in
reality.

In summary, we conducted a meta- and gene-based
analysis of the association of POAG with genetic
polymorphisms in CYP1B1. We did not detect any SNP
showing significant association with POAG, and the gene-
based analysis indicated that, based on current evidence from
published studies, the cumulative effect of polymorphisms in
CYP1B1 is not significantly associated with POAG.
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Appendix 1. Definition of POAG used by the six studies.

POAG: primary open-angle glaucoma; NTG: normal-
tension glaucoma; JOAG: juvenile open-angle glaucoma. To
access the data, click or select the words “Appendix 1.” This

will initiate the download of a compressed (pdf) archive that
contains the file.
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