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A pneumonia of unknown causes, which was detected in Wuhan, China, and spread rapidly throughout
the world, was declared as Coronavirus disease 2019 (COVID-19). Thousands of people have lost their
lives to this disease. Its negative effects on public health are ongoing. In this study, an intelligence
computer-aided model that can automatically detect positive COVID-19 cases is proposed to support
daily clinical applications. The proposed model is based on the convolution neural network (CNN)
architecture and can automatically reveal discriminative features on chest X-ray images through its
convolution with rich filter families, abstraction, and weight-sharing characteristics. Contrary to the
generally used transfer learning approach, the proposed deep CNN model was trained from scratch.
Instead of the pre-trained CNNs, a novel serial network consisting of five convolution layers was
designed. This CNN model was utilized as a deep feature extractor. The extracted deep discriminative
features were used to feed the machine learning algorithms, which were k-nearest neighbor, support
vector machine (SVM), and decision tree. The hyperparameters of the machine learning models were
optimized using the Bayesian optimization algorithm. The experiments were conducted on a public
COVID-19 radiology database. The database was divided into two parts as training and test sets with
70% and 30% rates, respectively. As a result, the most efficient results were ensured by the SVM
classifier with an accuracy of 98.97%, a sensitivity of 89.39%, a specificity of 99.75%, and an F-score
of 96.72%. Consequently, a cheap, fast, and reliable intelligence tool has been provided for COVID-
19 infection detection. The developed model can be used to assist field specialists, physicians, and
radiologists in the decision-making process. Thanks to the proposed tool, the misdiagnosis rates can
be reduced, and the proposed model can be used as a retrospective evaluation tool to validate positive
COVID-19 infection cases.

Keywords:

COVID-19

Medical decision support system
Deep learning

Deep feature extraction
Machine learning

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

COVID-19, a new type of Coronavirus, has created a very
critical chaotic situation, negatively affecting a large number of
deaths and people’s lives worldwide. It first appeared in Wuhan,
China, in December 2019. It has spread to approximately 200
countries worldwide. In many countries, rulers and governments
have taken new measures and created new lifestyles to com-
bat COVID-19. Today’s science and technology have made an
extremely valuable contribution to the implementation of these
new policies of states in this unknown and unpredictable process.
As an example of technological developments, robots, and drones
have been used to transport food and medicines to hospitals [1,2].

* Correspondence to: Bolu Abant Izzet Baysal University, Faculty of
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E-mail addresses: mnour@kau.edu.sa (M. Nour), zcomert@samsun.edu.tr
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While many researchers in the medical field develop vaccines
to prevent the virus, many medicines and medical practices are
being developed to heal infected patients and prevent them from
passing on to others [3].

On the other hand, artificial intelligence and computer sci-
entists have proposed and implemented real-life hybrid systems
based on X-ray images and computed tomography (CT) to detect
COVID-19. This artificial intelligence (Al) applications have been
successfully applied in many areas [4]. The studies carried out in
the literature and the studies carried out to give a more detailed
description are given in the form of a table.

Some studies and diagnostic methods regarding COVID-19 in
the literature are briefly summarized below. In Y. Pathak et al.
study [5], they used Chest Computed Tomography (CT) images
and Deep Transfer Learning (DTL) method to detect COVID-19
and obtained a high diagnostic accuracy. Mesut Togacar et al.
proposed a novel hybrid method called the Fuzzy Color technique
+ deep learning models (MobileNetV2, SqueezeNet) with a Social
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Table 1

The conducted works regarding the COVID-19 detection and diagnosis in the literature.
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The authors and year of the
conducted work in the literature

The used method

The used dataset and images

Y. Pathak et al. (2020) [5]
Mesut Togagar et al. (2020) [6]

Ali Abbasian Ardakani et al.
(2020) [7]

Ferhat Ucar et al. (2020) [8]

Deep Transfer Learning (DTL)

Fuzzy Color technique + deep learning models
(MobileNetV2, SqueezeNet) with Social Mimic
optimization method

Deep learning models including AlexNet, VGG-16,

VGG-19, SqueezeNet, GoogleNet, MobileNet-V2,
ResNet-18, ResNet-50, ResNet-101, and Xception

Deep Bayes-SqueezeNet based COVIDiagnosis-Net

Chest Computed Tomography (CT) images

Chest X-ray images

Chest Computed Tomography (CT) images

Chest X-ray images

Tulin Ozturk et al. (2020) [9] DarkCovidNet model
Shreshth Tuli et al. (2020) [10]

Turker Tuncer et al. (2020) [11]

Machine Learning and Cloud Computing

Automated Residual Exemplar Local Binary

Chest X-ray images
The outbreak dataset of COVID-19 Coronavirus

Lung X-ray images

Pattern and iterative ReliefF based corona

detection method

H. Kang et al. (2020) [12]
Learning

X. Wang et al. (2020) [13]

Yujin Oh et al. (2020) [14]
Sets

Abdul Waheed et al. (2020) [15]

Structured Latent Multi-View Representation

Weakly supervised deep learning framework

Deep learning model with Limited Training Data

Auxiliary Classifier Generative Adversarial

Chest computed tomography (CT) images

Chest computed tomography (CT) images

Chest X-ray images

Chest X-ray images

Network (ACGAN) based model called CovidGAN

Mimic optimization method to classify the COVID-19 cases and
achieved high success rate in their work [6]. In the Ali Abbasian
Ardakani et al. work [7], they used the deep learning mod-
els including AlexNet, VGG-16, VGG-19, SqueezeNet, GoogLeNet,
MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception
to diagnose the COVID-19 and compared them with each other
with respect to the obtained classification accuracy. Ferhat Ucar
et al. proposed a novel method called Deep Bayes-SqueezeNet
based COVIDiagnosis-Net to classify the COVID-19 cases as the
COVID-19 or normal (healthy) [8]. As for other work of Tulin Oz-
turk et al. [9], they suggested a new method called the DarkCovid-
Net model for diagnosing the COVID-19 cases. Table 1 presents
the conducted works regarding COVID-19 detection and diagnosis
in the literature.

In this study, we propose an intelligence diagnosis COVID-
19 infection diagnosis model based on the convolutional neural
networks (CNNs) and machine learning techniques. The proposed
model ensures an end-to-end learning schema that can directly
learn discriminative features from the input chest CT X-ray im-
ages and eliminate handcrafted feature engine. Contributions of
the proposed model can be listed as follows:

(1) CNNs with rich filter family, convolution, abstraction, and
weight sharing have ensured an effective deep feature ex-
traction engine.

(2) The deep features extracted from deep layers of CNNs have
been applied as the input to machine learning models to
further improve COVID-19 infection detection.

(3) As a result, a cheap, fast, and reliable intelligence tool has
been provided for COVID-19 infection detection.

(4) The developed model can be used to assist the field spe-
cialists, physicians, and radiologists in the decision-making
process.

(5) Thanks to this study, the misdiagnosis rates can be reduced,
and the proposed model can be used as a retrospective
evaluation tool.

The rest of this study is organized as follows: the dataset and
the related methods are presented in Section 2. The results are
reported in Section 3. A discussion is presented in Section 4, and
lastly, concluding remarks are given in Section 5.

Table 2
The distribution of the samples between the classes.
Class # of samples
COVID-19 219
Normal 1341
Viral Pneumonia 1345
Total 2905

2. Material and methods
2.1. COVID-19 radiology database

Not only the structures of the samples in a database but
also the distribution of the recordings among the classes have a
great impact on the model to be developed. The morphological
features, color, shape, and texture-based features directly affect
the achievements of the intelligence computer-aided models [ 16].
Besides, it is important to ensure an equal number of samples,
which cover all situations or cases for each class to produce a
consistent and robust model.

Recently, many studies have pointed out that chest CT images
can be a vital evaluation means for diagnosing COVID-19 infec-
tion [6-9]. Several specific patterns, including bilateral, peripheral
and basal predominant ground-glass opacity (GGO), multifocal
patchy consolidation, crazy-paving pattern with a peripheral dis-
tribution observed on chest CT images have been adopted as
the findings of COVID-19 infection [17-19]. A subsample of the
recordings belonging to COVID-19, normal and viral Pneumonia
classes is shown in Fig. 1.

An open-access database that covers the posterior-to-anterior
chest X-ray images was used in this study [20]. In fact, the COVID-
19 Radiology database was generated by collecting the samples
from four different resources. In other words, the samples col-
lected from the Italian Society of Medical and Interventional
Radiology (SIRM) COVID-19 Database [21], Novel Corona Virus
2019 Dataset [22], COVID-19 positive chest X-ray images from
different articles and lastly chest X-ray [23] pneumonia images
were combined. Totally 2905 images are presented with three
classes in this database, as shown in Table 2.
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Fig. 1. The samples correspond to the COVID-19, normal and viral pneumonia from the COVID-19 radiology database.

2.2. Proposed CNN model and training algorithm

2.2.1. CNN layers

CNNs are architectures consisting of a large number of se-
quenced layers. Layers that perform different functions are used
in these architectures to reveal the distinctive features of the data
applied as input [24]. In general, the tasks of these layers can be
summarized as follows:

(1) Convelution layer: This layer is the main building block
of CNN architectures, and it is used to reveal the discrim-
inative features of the input data. This layer applies some
filter families to the data so as to reveal low and high-level
features in the data [25]. After the convolution process,
the size of the input data changes. These charges vary
depending on the stride and padding. The outputs of the
convolution layers are called activation maps and defined

as follows:
XP=f| Y X ki + b (1)
ieMj

system a non-linearity feature and called the activation
layer. Since the neural network acts as a single perceptron,
the outputs of the neural network can be calculated using
linear combinations, so activation maps are used [26]. To
this aim, the most commonly used activation function is
Rectifier (ReLU), and it is defined as follows:

f (x) = max(0, x) (2)

(3) Pooling (Down-sampling) layer: This layer is often added

between consecutive convolutional layers to reduce the
number of the computational nodes. Average pooling, max-
imum pooling, and L2-norm pooling are used frequently.

(4) Flatting layer: This layer collects the data in a single vector

and prepares the data for the neural network.

(5) Fully-connected layers: This layer is used to transfer the

activations that are obtained by passing the data through-
out the network for the next unit. Fully connected layers
are located at the end of the architecture to ensure the con-
nections between all activations and computational nodes
in these layers [27-30]. These layers are exploited when
the CNNs are used as the feature extractors.

The convolution process is defined as in Eq. (1). Herein, the
previous layers are shown with XiH, the learnable kernels
are ki; and the bias term is b. M; matches the input map
section.

(2) Non-linearity layer: The convolution layer is ordinarily

followed by the nonlinearity layer. This layer gives the

In this study, a new CNN model that consists of five basic
blocks is proposed for COVID-19 infection detection, as shown
in Fig. 2. In each block, convolution, ReLU, normalization, and
pooling layers are used. At the end of the proposed model, three
fully connected layers and the softmax layer are also used. The
details of the proposed model are given in Table 3.
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Fig. 2. The block diagram of the proposed CNN model.

Table 3
The details of the proposed CNN model.
Name Type Activations Learnables
1 ChestXrayCT Image Input 227 x 227 x 3 -
2 convl Convolution 74 x 74 x 128 Weights 9 x 9 x 3 x 128Bias 1 x 1x128
3 relul ReLU 74 x 74 x 128 -
4 norm1 Cross channel normalization 74 x 74 x 128 -
5 pooll Max Pooling 37 x 37 x 128 -
6 conv2 Convolution 19 x 19 x 256 Weights 3 x 3 x 128 x 256Bias 1 x 1 x 256
7 relu2 ReLU 19 x 19 x 256 -
8 norm2 Cross channel normalization 19 x 19 x 256 -
9 pool2 Max Pooling 10 x 10 x 256 -
10 conv3 Convolution 5 x5 x 256 Weights 3 x 3 x 256 x 256Bias 1 x 1 x 256
11 relu3 ReLU 5 x 5 x 256 -
12 norm3 Cross channel normalization 5 x5 x 256 -
13 pool3 Max Pooling 3 x 3 x 256 -
14 conv4 Convolution 2 x 2 x 512 Weights 3 x 3 x 256 x 512Bias 1 x 1 x 512
15 relu4 ReLU 2 x 2 x 512 -
16 norm4 Cross channel normalization 2 x 2 x 512 -
17 pool4 Max Pooling 1x1x512 -
18 convs Convolution 1x1x512 Weights 3 x 3 x 512 x 512Bias 1 x 1 x 512
19 relu5 ReLU 1x1x512 -
20 norm5 Cross channel normalization 1x1x512 -
21 pool5 Max Pooling 1x1x512 -
22 fc1 Fully connected 1 x 1 x 1024 Weights 1024 x 512Bias 1024 x 1
23 drop1 Dropout 1 x1x 1024 -
24 fc2 Fully connected 1 x 1 x 1024 Weights 1024 x 1024Bias 3 x 1
25 relu6 ReLU 1 x 1 x 1024 -
26 drop2 Dropout 1 x1x 1024 -
27 fc3 Fully connected 1x1x3 Weights 3 x 1024Bias 3 x 1
28 Softmax Softmax 1x1x3 -
29 classoutput Classification output - -

2.2.2. Training of the proposed CNN model

Once the model design has been carried out, the developed
COVID-19 infection diagnosis model needs to be trained. In this
step, hyperparameters such as initial learning rate, mini-batch

size, the maximum number of iterations, the number of images to
be processed in each iteration should be determined. In addition,
an optimization algorithm must be selected for backpropagation
and updating of model weights. For the proposed model training,
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Table 4
The distribution of the samples between the classes after the data augmentation
approach in the training set.

Class Training set Test set
Before augmentation After augmentation (Frozen)
# of samples # of samples # of samples
COVID-19 153° 918 66
Normal 939 939 402
Viral pneumonia 941 941 404
Total 2033 2798 872

2The data augmentation approach was applied to only COVID-19 class in the
training set.

the steps described in Algorithm 1 are followed, and the proposed
CNN model is trained from scratch.

Herein, the training and test sets are shown with §1 and §2,
respectively. The learning rate that is one of the most important
hyperparameters and determines how rapidly a modal adopts to
the problem is shown with w. The total number of iterations is
denoted with €. As for B, it points to the number of samples
processed in each iteration. The values of u, €, and 8 hyperpa-
rameters were determined by trial and error in the experiments
[31].

ADAM optimization algorithm was used as a solver. The epoch
was set to 64. The number of recordings per epoch was 21,
and the maximum iteration was 1344. The initial learning was
adjusted to 0.0001. By the way, the learning rate was reduced
gradually by 0.1 for every 16 epochs.

2.2.3. Data augmentation approach

Offline or online data augmentation techniques can be used
to realize a more efficient training for the computational mod-
els [24]. However, it is essential to be aware that the data aug-
mentation techniques should not be used on the test set because
of the overfitting problem.

In the experiment, the whole data set was divided into two
parts as the training and test sets with 70% and 30% rates, re-
spectively. The distribution of the samples over the classes is
imbalanced. To overcome this issue, the data augmentation ap-
proach has been used. To this aim, we focused on only the
COVID-19 class since the number of samples in this class was
lower compared to other classes, as shown in Table 4.

Each original sample was represented with five additional
samples derived from the original sample, as shown in Fig. 3.
The rotate and flip data augmentation approaches were used in
this process. As a result, each sample in the training set was
represented with a total of six images. The number of COVID-19
samples in the training set was increased from 153 to 918 after
the data augmentation process. In this manner, the distribution
of the samples for each class was almost equal.

The overall block diagram of the proposed model is given in
Fig. 4. The whole dataset is divided into two sets as training and
test sets with 70% and 30% rates, respectively. Only the number
of samples in the COVID-19 class is increased by using the offline
data augmentation approach, and then the proposed CNN model
is trained and tested. Then, the deep features extracted from
the proposed CNN model is considered. A combination of deep
feature extraction and machine learning techniques are utilized
to achieve a consistent and robust diagnosis model for COVID-19
infection diagnosis.

2.3. Machine learning techniques

Three different classification algorithms have been used to
detect COVID-19 infection detection in this study. These clas-
sification algorithms are different in structure and have high
performance. Each classifier algorithm was trained and tested
using the 70%-30% training and testing data partition. The used
classifier algorithms were explained in the following subsections.

Applied Soft Computing Journal 97 (2020) 106580

2.3.1. Support vector machine

Support vector machines (SVM) is a consulting machine learn-
ing algorithm that can be used to solve both classification and
regression problems. Although, it is most often used in the solu-
tion of classification problems. In the SVM algorithm, each pair of
data can be represented as a point in n-dimensional space with
each property value in a special coordinate plane. Then, to solve
a two-class classification problem, a hyper-plane is found, and
the classification is performed. In the SVM classifier, it is easy
to have a linear hyper-plane between the two classes. The gap
between linear equations and classes on the hyper-plane needs
to be optimized.

In our SVM model, the RBF (Radial Basis Function) kernel func-
tion has been used in the classification of the datasets. The Radial
basis function kernel called the RBF kernel, or Gaussian kernel is
a kernel that is in the form of a radial basis function. We chose
the RBF kernel because it gives the highest performance with
respect to the classification performance. The parameters in the
RBF kernel function have been optimized by using the Bayesian
optimization method in our study. The used kernel function is
given in Eq. (3) as follows:

2
K (x,x') =exp (HXZ_J);H) (3)

Where Hx — x/”2 is the distance between data points of x and x'.
For more information about the multi-class-SVM classifier, the
readers can refer to [32-34].

2.3.2. Decision tree

The decision tree classifier is used to solve simple and mostly
classification problems. Applies the correct way to solve the clas-
sification problem. The decision tree classifier has a structure
consisting of roots, leaves, and branches descending from top to
bottom. The most used decision tree classification algorithms are
ID3, C4.5, and C5. In our applications, we have used the C4.5
decision tree classifier. For more information about the decision
tree classifier, the readers can refer to [35-40].

2.3.3. k-nearest neighbor

The k-NN (k-nearest neighbor) algorithm is one of the simplest
and most widely used classification algorithms. kNN is a non-
parametric, lazy learning algorithm. Unlike eager learning, if we
try to understand the concept of lazy, lazy learning does not
have a training phase. It does not learn the training data; instead,
it “memorizes” the training data set. When we want to make
an estimate, it looks for the nearest neighbors in the whole
dataset [41].

In the study of the algorithm, a k value is determined. The
meaning of this k value is the number of elements to be looked at.
When a value arrives, the distance between the incoming value is
calculated by taking the nearest k element. The Euclidean func-
tion is generally used in distance calculation. As an alternative
to the Euclidean function, City Block, Minkowski, and Chebyshev
functions can also be used [42]. After the distance is calculated, it
is sorted, and the incoming value is assigned to the appropriate
class. The parameters in the kNN classifier have been optimized
by using the Bayesian optimization method in our study.

2.4. Model evaluation

To evaluate the proposed model, we have used the confu-
sion matrix, and some commonly used performance metrics such
as accuracy (Acc), specificity (Sp), sensitivity (Se), and F-score
derived from this matrix. It consists of four indices that are
true positive (TP), true negative (TN), false positive (FP) and
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Algorithm 1: The training algorithm of the proposed model

Input

COVID-19 Chest X-Ray images Training set 61, Test set 62

pu — the CNN initial learning rate

§ > iteration step € «0(1+x)"=1+ (7;_’.()"'(

nn-1)x?
) -

€ » the CNN maximum number of iteration

B — the number of images covered in one iteration

Output *, CNN weights
Start

1. 1Initialize the CNN parameters: We€,B

2. Light preprocessing the images with 227x227x3 resolution

3. Train the CNN and computing the weights

for =1 to € do

4. Select a mini-batch from 61 with the B size

Forward propagation and compute the loss using pu

5
6. If ¢ $ 16 == 0 then update the learning rate (u < ux0.1)
7

Back-propagation and update w" with Adam optimization

end

Original Sample

(b) Veritically flipped

(a) Horizontally flipped

(¢) 90 degrees rotated

(d) 180 degress rotated

(e) 270 degrees rotated

Fig. 3. An original and augmented sample from the training set.

false-negative (FN) and the mentioned performance metrics are
calculated using these indices as described follows:

TP + TN
Acc = (4)
TP + FP + FN + TN
TP
Se = ——— (5)
TP 4+ FN
Sp— N (6)
P=INTFP
2% TP
F —score= ———— (7)

2% TP + FP + FN

Herein, TP and TN represent the number of correctly predicted
positive and negative samples, whereas FP and FP correspond
to the number of incorrectly predicted positive and negative
samples.

Besides, the area under curve (AUC) of receiving operating
characteristic (ROC) has been taken into account to evaluate the
model performance. ROC is a 2D graph that is drawn the true
positive rate (TPR) against the false-negative rate (FNR). This
curve indicates a trade-off between Se and Sp, and it is useful
to understand the overall achievement of the models [31].

3. Results

The experiments were carried out on a workstation with
Intel® Xeon® Gold 6132 CPU @2.60 GHz and NVIDIA Quadro
P6000 GPU. The simulation environment was MATLAB (2019a).

The training of the proposed CNN model was realized in 64
epoch, and the mini-batch size was 128. 21 samples were pro-
cessed per epoch, and the training of the model was completed
in a total of 1344 iteration. The time elapsed for the training of
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Fig. 4. The overall block diagram of the proposed model.

the model was 85.15 min. The initial learning rate was 0.0001. We
employed a learning rate schedule approach in the training of the
model. In this scope, the learning rate was gradually decreased.
The learning drop factor was set to 0.1, and the learning drop
period was adjusted to 16. ADAM optimization method was used
as a solver. The training and validation graphs with the loss of
the proposed CNN model are given in Fig. 5. In Fig. 5, lefty-axis
shows the training and validation accuracies of the proposed CNN
model, while the right y-axis shows loss values. As a result, the
final training accuracy and training loss were obtained as 100%
and 0, respectively.

As for a prediction, the confusion matrix is given in Fig. 6(a).
As mentioned before, the test set was separated and frozen at the
starting of the experiment. The number of samples belonging to
the COVID-19 class in the test set was 66. 59 of these samples
were identified correctly by the proposed CNN model. The rates

of the classification achievements for normal and viral pneumonia
cases were rather satisfactory. The final validation accuracy and
final validation loss were 97.25% and 0.2032, respectively. The
Se, Sp, and F-score were achieved as 94.61%, 98.29%, and 95.75%,
respectively. The ROC curves of the proposed CNN model are
also presented in Fig. 6(b). The AUCs were obtained as 0.9942,
0.9956, 0.9955 for COVID-19, normal, and viral pneumonia cases,
respectively. As a result, an efficient CNN model ensured for
diagnosis of COVID-19 infection.

In the second step of the experiment, we focused on the acti-
vation maps in the proposed CNN architecture. These activation
maps with different levels keep the discriminative features of
the input data and finally collected in the fully connected layers.
The activations may help us to understand what the model has
learned. A visual representation of the activation maps is given in
Fig. 7.
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Depending on the progress of the input data throughout the
model, the significant changes realize in the activation maps,
and the abstraction in the training process can be observed via
activations. Our main purpose in this step was to separate the
activations that have the best discrimination capacity compared
to others with relatively weak representation power. The rich
filter families are used in the convolution layers, and numerous
forms of the input data are processed in the CNNs. The basic
features such as color and edges can be learned in the first
convolution layers, while more complicated features can be re-
vealed in deeper convolution layers. Besides, the discriminative
capacity of the activations may vary depending on the structures
of the problems. For this reason, determining the most efficient
activations is a rather difficult task. To visualize this challenge,
the frequency responses on the RGB channels of the first filters
in the first three convolution layers in the proposed CNN model
are illustrated in Fig. 8.

Since all activations were collected from fully connected lay-
ers, the deep features were extracted from fc1 and fc2 layers.
These two different deep feature sets were applied individually as
the input to machine learning models. As a result, the activations
were used effectively for COVID-19 infection detection.

The hyperparameters of the machine learning models were
optimized using the Bayesian optimization algorithm. For kNN
classifier, four distance functions that were City Block, Minkowski,
Euclidean, and Chebyshev were evaluated with different k values
in the range of 10° and 10%. A result, the best points were
obtained when k was 82 and distance function was Euclidean for
fc1 deep feature set whereas k was 65 and distance function was
Euclidean for fc2 deep feature set as shown in Fig. 9(a) and (b). The
kNN produced the best results on fc2 deep feature set with 1024
deep features. The Acc, Se, Sp, F-score were obtained as 95.76%,
92.29%, 97.43%, and 93.97%, respectively. Besides, the kNN model
fed with fc1 feature was also yielded promising results with an
Acc of 95.07%, Se of 90.11%, Sp of 96.97%, and F-score of 92.61%.

As for the SVM classifier, the kernel was adjusted Radial Basis
Function (RBF). The optimum Kkernel scale and box constraint
were searched in the range of 10° and 102. As a result, the
most efficient results were observed when the box constraint
was 815.17, and the kernel scale was 999.64 for fc1 feature set,
as shown in Fig. 9(c). The Acc, Se, Sp and F-score were 98.62%,
89.39%, 99.38% and 90.77%, respectively. The model achievement
was evaluated on fc2 deep feature set, the best observed feasible
points were 0.4569 for box constraint and 635.62 for kernel scale,
as shown in Fig. 9(d). The model ensured satisfactory results with
an Acc of 98.97%, Se of 89.39%, Sp of 99.75%, and F-score of 96.72%,
respectively.

DT algorithm was optimized as in kNN and SVM classifier. To
this aim, the determination of the minimum leaf size was realized
by the Bayesian optimization algorithm and set to 6 for fc1 deep
feature, as shown in Fig. 9(e). The Acc, Se, Sp, and F-score were
93.35%, 90.55%, 96.29%, and 90.06%, respectively. In addition, the
best estimated feasible point considering the DT algorithm was
675 for fc2 deep feature set, as shown in Fig. 9(f). The Acc was
96.10%, Se was 93.81%, Sp was 97.70% and F-score was 94.56%.

All scores of the classifiers are reported in Table 5, consider-
ing the two different deep feature sets. The SVM classifier was
superior to kNN and DT machine learning algorithms. It was seen
that the SVM model ensured an improvement in the automated
COVID-19 infection detection task. Unlike it was observed that
the classification achievement was lightly decreased when the
classification task was realized by kNN and DT.
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Fig. 7. A visual representation of some activation maps in the proposed CNN models.

Table 5
The performance metrics of the machine learning models.

Classifier Feature set Acc (%) Se (%) Sp (%) F-score (%)

kNN . 95.07 90.11 96.97 92.61

SVM fe1 with 1024 deep features 98.62 89.39 99.38 90.77

DT 92.09 87.53 95.54 87.69

kNN . 95.76 92.29 97.43 93.97

SVM fe2 with 1024 features 98.97 89.39 99.75 96.72

DT 96.10 93.81 97.70 94.56

Proposed CNN - 97.14 94.61 98.29 95.75

Table 6
Comparison of the state-of-art models.

Methods Dataset # of classes Acc (%) Se (%) Sp (%)
DarkCovidNet [9] Public 3 87.02 92.18 89.96
COVIDiagnosis-Net [8] Public 3 98.26 99.13 -
The pretrained CNNs [43] Public 3 93.48 92.85 98.75
COVID-Net [44] Public 3 92.64 91.37 95.76
Deep features, ResNet-50, SVM [45] Public 2 95.38 - -
Deep CNNs [46] Public 2 90.00 100 80.00
Deep CNN, ResNet-50 [47] Public 2 98.00 - -
DRE-Net, deep CNN [48] Private dataset 2 86.00 96.00 -
Deep CNN, Inception, transfer learning [49] Private dataset 2 89.50 87.00 88.00
nCOVnet, transfer learning, deep CNN [31] Public 2 88.10 97.62 89.13
A novel CNN model, training from scratch strategy, Public 3 98.97 89.39 99.75

deep feature extraction, SVM

4. Discussion

In this section, we evaluate the superior aspects as well as
the limitations of the proposed model by taking into account
the state-of-art models. However, it is important to be aware
of a one-to-one comparison is not feasible due to differences in
datasets, methods, and various simulation environments.

There are many people affected by COVID-19 disease. How-
ever, large-scale datasets labeled by field experts are still not
available. So, computational works on automatic COVID-19 infec-
tion detection have been conducted on the combined datasets.
The samples in these datasets were collected from different re-
sources, as inferred from Table 6.
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Fig. 8. The frequency responses of the weights of the convolution layers on RGB channels.

Recently, it is seen that the scientific community has focused
on chest X-ray images in order to contribute to the clinical eval-
uation of COVID-19 cases that have increased day by day. Many
computational models based on CNN architecture have been pro-
posed. The greatest advantage of these models is that they pro-
vide an end-to-end learning scheme by isolating handcrafted
feature engine. To this aim, the transfer learning approach has
been generally adopted to train the CNNs. Some of the computa-
tional studies have been focused on the deep features provided
by the pre-trained models [45]. In this aspect, our study offers a
novel CNN model that was trained from scratch, not a transfer
learning approach. Also, instead of using pre-trained CNNs, fully-
connected layers in the proposed architecture were considered,
examined, and used for the COVID-19 infection detection task.
Our study contains the innovative components in this respect.
Besides, the proposed model works according to the end-to-end
learning principle, and a handcrafted feature extraction engine
is not applied. As a result, an efficient, fast, reliable model was
developed, and promising results were achieved.

It should not be forgotten that the proposed model is eval-
uated at the COVID-19 Radiology Database scale. Considering
the number of positive COVID-19 cases worldwide, it can be
argued that the database is not large enough. However, we think
that there is nothing to worry about this issue. Because the
performances of the CNN networks increase depending on the
scale of the number of samples used in the training process, in
such a case, it is only necessary to consider the calculation time
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and hardware resources. Another important issue is that when
the positive COVID-19 cases are detected using X-ray images,
the infection may have already significantly advanced. In other
words, X-ray images may be a very significant means to confirm
positive COVID-19 cases, but may not be clinically relevant for
early diagnosis.

5. Conclusion

General public health, global economy, and our routine life
continue with new norms with the effect of COVID-19. The num-
ber of people affected by this infection is still increasing signifi-
cantly. In this study, an automated COVID-19 diagnostic system
has been proposed to contribute to clinical trials. The proposed
model is based on the CNN architecture, and it is trained from
scratch, as opposed to the transfer learning approach. Thanks to
its convolution with rich filter families, abstraction, and weight
sharing features, it automatically provides highly efficient deep,
distinctive features. Thus, the handcrafted feature extraction en-
gine is not performed. As a result, positive COVID-19 cases can
be detected easily and with high sensitivity via the proposed tool
using chest X-ray images. As a result of this study, a cheap, fast,
and reliable diagnostic tool was obtained. The model provided
an accuracy of 98.97%, a sensitivity of 89.39%, the specificity of
99.75%, and F-score of 95.75%. When it is evaluated clinically, the
developed model can support the decision-making processes of
field specialists, physiologists, and radiologists. With this model,
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Fig. 9. Bayesian optimization results. (a) kNN fed with fc1. (b) kNN fed with fc2. (c) SVM fed with fc1. (d) SVM fed with fc2. (e) DT fed with fc1. (f) DT fed with fc2

the misdiagnosis rate can be reduced, and positive COVID-19
cases can be detected quickly without having to wait for days.
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