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a b s t r a c t

Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease, charac-
terized by apoptosis of dopaminergic neurons in substansia nigra pars compacta (SNpc) caused by
⍺-synuclein aggregation. The use of secretomes released by medicinal signaling cells (MSCs) is one the
promising preventive approaches that target several mechanisms in the neuropathology of PD. Its
components target the lack of neurotrophin factors, proteasome dysfunction, oxidative stress, mito-
chondrial dysfunction, and at last neuroinflammation via several pathways. The complex and obscure
pathology of PD induce the difficulty of the search of potential preventive approach for this disease. We
described the potential of secretome of MSC as the novel preventive approach for PD, especially by
targeting the said major pathogenesis of PD.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Parkinson’s disease (PD) is the second most common progres-
sive neurodegenerative disease, characterized by tremors, rigidity,
akinesia/bradykinesia, and postural instability. Patients with PD
ing by Elsevier B.V. This is an open access article under the CC BY license (http://crea
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have a family history of disease in 15%, with 5e10% having mono-
genic Mendelian inheritance [1]. Neuropathology of PD is charac-
terized by the apoptosis of neurons in the substantia nigra pars
compacta (SNpc) and other areas via several pathways caused by
⍺-synuclein aggregation in the form of Lewy body cytoplasmic in-
clusions, contributing to the symptoms of Parkinson’s Disease [2].
PD is asymptomatic in the early neuronal death of the SNpc, mainly
due to compensation of the striatum [3].

Although several mechanisms have been described, the com-
plex pathogenesis of PD remains to be elucidated [2e4]. Some
primary mechanisms involving the apoptosis of the dopaminergic
(DA) neurons in PD are: the lack of neurotrophic factor [5], pro-
teasome dysfunction [4] oxidative stress [6], mitochondrial dys-
functions [7], and neuroinflammation [8]. The pathology of PD is
attributable to the combined influence of hereditary and environ-
mental factors [3]. Therapy to target neuropathology in PD remains
to be explored. One of the promising preventive advances is the use
of secretomes released bymedicinal signaling cells (MSCs) to target
several mechanisms in the neuropathology of PD.

The secretome is a secretion of bioactive molecules produced by
MSCs that have several effects on cells and tissues [9,10]. Soluble
factors of MSCs can modulate most of the neuropathology in PD,
such as the immune system, inflammation, apoptosis, and anti-
oxidant activities; moreover, it can also induce cell proliferation
[10]. Therefore, the neuropathology of PD, such as neurotrophic
factor, proteasome dysfunction, oxidative stress, and neuro-
inflammation, will be discussed further in this review, along with
MSC secretome as a potential preventive approach to the debili-
tating disease.

2. Neuropathology of Parkinson’s disease

2.1. Neurotrophic factor

Neurotrophins (also known as neurotrophic factors) are proteins
secreted by neurons and neuron-supporting cells that regulate the
growth and differentiation of the nervous system [5]. The presence
or absence of neurotrophic factors determines whether neurons
survive or die. [5] Several neurotrophins have been discovered,
such as nerve growth factor (NGF), brain-derived neurotrophic
factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and
others [5]. All neurotrophins have binding specificity to the tyrosine
receptor kinase (Trk) family and pan-75 neurotrophin receptors
(p75NTR), and all have specificities to different Trk receptor sub-
types [5]. For example, NGF binds to TrkA, BDNF, and NT-4 binds to
TrkB, while NT-3 binds to TrkC [5].

After neurotrophins bind to their Trk receptors, they activate
and trigger the Ras/ERK and PI3K pro-survival pathway [5]. The
p75NTR binds to all neurotrophins equally and can increase the
affinity of TrkA for NGF, increase intracellular ceramide levels, and
activate the NFkb pro-survival gene and JNK kinase pro-apoptotic
gene transcription [5]. The p75NTR can bind to pro-neurotrophins
and lead to apoptosis [5].

NGF is important in the survival and function of cholinergic
neurons of the basal forebrain complex [11]. NGF is derived from
proNGF, the product of Ngf gene expression [11]. NGF and its re-
ceptors are present in melanin-positive neurons of the SNpc. Thus
the activation of proNGF-p75NTR activates the pro-apoptosis
pathway, and NGF-TrkA activates the pro-survival pathway [12].
Cellular survival and apoptosis depend on relative amounts of
proNGF and NGF in nerve tissues and receptors [12].

BDNF can modulate synaptic plasticity and promote neuronal
survival when it binds to the TrkB receptor, but it causes apoptosis
of DA neurons when downregulated [13]. BDNF is a potential
biomarker to support diagnosis and monitor therapy efficacy in
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brain disorders [14]. Overexpression of BDNF leads to neurogenesis
[13], and it is widely expressed in central motor structures, such as
basal ganglia, cerebellum, and brainstem [15]. Reduced BDNF, on
the other hand, compromises the survival of neurons and the
environment, causing susceptibility to the insult and other harmful
effects on the nigrostriatal DA nervous system [16]. BDNF/TrkB
signaling can inhibit nigrostriatal apoptosis [15], primarily via pro-
survival Ras/ERK and PI3K/Akt pathways [5]. Peripheral BDNF
levels are reduced in PD patients, and levodopa therapy can stim-
ulate BDNF levels [17]. BDNF level in peripheral blood lymphocytes
was associated with disease duration, the severity of impairment,
and levodopa therapy [18]. Circulating BDNF is thought to be of
central nervous system (CNS) origin to proxy its expression in the
CNS [19].

In patients with advanced PD, the level of BDNF is paradoxical,
and its cause is still unclear [18]. Two emerging theories explain the
paradoxes: dopamine replacement therapy and compensatory
mechanism theories. In dopamine replacement therapy theory,
prolonged use effect of levodopa (dopamine agonist) medication
can stimulate BDNF secretion, causing an increase of BDNF in
advanced PD as advanced PD patients are primarily on levodopa
medication. In dopamine replacement therapy theory, prolonged
use effect of levodopa (dopamine agonist) medication can stimu-
late BDNF secretion, resulting in an increase in BDNF in advanced
PD patients who are primarily on levodopa medication [19]. In
advanced PD, a compensatory mechanism in response to the pro-
gressive loss of DA neurons in the SNpc is reflected in the greater
BDNF later [20].

a-synuclein aggregates can block the BDNF activity by down-
regulating expression and causing competitive inhibition at the
receptor level [19]. It can interact with the TrkB receptor, thus
inhibiting the internalization and the distribution of TrkB, causing
the signaling from BDNF to be blocked and promoting apoptosis
[21]. The a-synuclein causes endoplasmic reticulum stress, in-
creases unfolded protein response, and increases more neurotoxins
inside the cell, thereby inducing apoptosis via activation of
glycogen synthase kinase 3b (GSK3b), suppression of cyclin D1, and
inactivation of AKT [21].

Changes in synthesis transport or signaling can occur as a result
of local injury, aging, mutation, or polymorphisms and are corre-
lated with neurodegeneration [5]. Increased neurotrophin expres-
sion induces neuroprotection against oxidative stress,
excitotoxicity, and apoptosis, while decreased DA areas could
induce Parkinson's Disease (PD) [15]. While patients with PD have
decreased pro-neurotrophic factors, PD severity correlates posi-
tively with pro-neurotrophic factors [22].

2.2. Proteasome dysfunction

The ubiquitin-proteasome system (UPS) and the autophagy-
lysosome pathway (ALP) are two significant cellular quality con-
trol mechanisms of proteasomal function associated with PD. In the
UPS, short-lived soluble proteins are tagged by ubiquitin and then
degraded by proteasomes, and in the ALP, long-lived macromole-
cules, cytosolic components, and dysfunctional organelles are
degraded. Thus its failure causes the accumulation of aggregated a-
synucleins that interferewith proper cellular function leading to PD
pathogenesis [4]. Another minor system that affects a-synuclein
turnover and metabolism is chaperone-mediated autophagy
(CMA).

A study by McKinnon et al. found functional impairment of the
UPS in early-onset PD. It preceded neuron losses and motor
dysfunction of PD pathogenesis [23]. Proteasome impairment in-
terferes with a-synuclein degradation, causing accumulation and
aggregation of a-synuclein [24]. While the overexpression of a-



C. Ardianto, R. Shen, J.F.A. Barus et al. Regenerative Therapy 21 (2022) 288e293
synuclein itself has been associated with inhibition of proteasome
activity in several models [23]. a-synuclein inhibits UPS function-
ality depending on the species of a-synuclein and the cellular
environment by specific inhibition through direct binding to 19S
and 20 S proteasomes [25] of chymotrypsin-like proteasome
function; however, it is not a general mechanism [26]. Proteasome
activity is impaired gradually due to aging, leading to aberrant
protein aggregates [27]. The nexus of proteasome impairment and
a-synuclein accumulation contributes further to PD pathogenesis.
Maintaining proteasome function is essential for the degradation of
proteins and slowing down neurodegeneration [27].
2.3. Oxidative stress

Oxidative stress happens when reactive oxygen species (ROS)
production exceeds the clearance by anti-oxidant enzymes and
cytosolic chaperones. Accumulation of ROS causes oxidative damage
to lipids, proteins, DNA, and RNA depending on the location of ROS
production, compromising neuronal function and structural integ-
rity [6]. The brain is rich in fatty acids, and thus is prone to peroxi-
dation, leading to increased radical formation [28]. Higher iron levels
in the central nervous system (CNS) are attributable to elevated
mitochondrial enzymes, which produce more reactive oxygen spe-
cies (ROS), increasing susceptibility to oxidative stress [29]. Uncon-
trolled ROS generation is one of the causative factors in neuronal
apoptosis, further causing progressive neurodegeneration [6].

High oxidative stress causes vulnerability to oxidative insult in
SNpc DA neurons, further deteriorating oxidative balance [6].
Intracellular RONS levels are regulated by SOD and glutathione
(GSH) [30]. In patients with PD, disruption of RONS balance causes
oxidative stress, thus damaging the mitochondria and causing
mitochondrial dysfunction, and excessive ROS causes lipid peroxi-
dation, DNA damage, and protein oxidation [28]. Increased oxida-
tive stress response and concentration are potential targets for
therapeutic strategies [31].

Mitochondrial complex inhibition can cause an increase in ROS
production, potentially leading to a DA loss in PD [29]. Rotenone, a
selective SN complex I mitochondria inhibitor, supports the
involvement of complex mitochondrial inhibition in PD patho-
genesis [29]. Inhibition of the mitochondrial complex increases
intracellular ROS generation, leading to further damage in mito-
chondria and, with more substantial inhibition, magnifies ROS
production in a vicious cycle [29].

Mitophagy and biogenesis balance the healthy mitochondrial
pool and bioenergetic functions to promote homeostasis; conse-
quently, disruption can contribute to mitochondrial dysfunction
and PD [32]. A post-mortem investigation revealed mitochondrial
complex I and complex II impairment in the substantia nigra
neurons of patients with PD [7]. This respiratory chain complex
dysfunction is related to the increased generation of ROS when
electrons prematurely escape from the electron transport chain
[33].

The mutation in mitochondrial DNA (mtDNA) also has a role in
the pathogenesis of PD as multiple mtDNA deletions were seen in
SNpc DA neurons of patients with PD, especially in mitochondrial
transcription factor A (TFAM) [28]. Mitochondrial DNA is prone to
ROS attack due to its proximity to ETC complexes and its lack of
histone protein protection [29].

Mitochondria are essential organelles for Ca2þ storage and
regulation of cellular function [34]. Maintenance of the Ca2þ

gradient depends on the transmembrane potential integrity across
the inner mitochondrial membrane; thus, increases in mitochon-
drial Ca2þ are associated with an accumulation of ROS, especially in
DA neurons with frequent exposure to calcium influx [29]. ETC
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damage and oxidative stress are exacerbated by the destructive
loop of Ca2þ excess and ROS generation.

Facilitation of mitochondrial permeability transition pore
(mPTP) increases the permeability of Bcl-2-associated X protein
(Bax) and Bcl-2 homologous killer (Bak) into mitochondria and
disrupting transmembrane potential, thus inhibiting ATP produc-
tion and further increasing ROS [29]. mPTP opening also facilitates
the release of mitochondrial apoptogenic proteins, such as cyto-
chrome c, into the cytosol [29]. a-synuclein accumulation in DA
neuron mitochondria reduces complex I activity and increases ROS
generation before dopamine loss [35].

2.4. Neuroinflammation

Neuroinflammation has a significant role in neurodegenerative
disease pathogenesis, including PD. In a neuroinflammatory state,
glial cells release pro-inflammatory and neurotoxic substances,
which contribute to neuronal damage and, eventually, neuro-
degeneration [36]. Activation of microglia changes its morphology
from ramified microglia to amoeboid microglia, which can scav-
enge like macrophages. M1-type microglia are stimulated by
interferon (IFN)-g and lipopolysaccharide (LPS) in pro-
inflammatory states. In contrast, M2-type microglia contributes to
cell and tissue repair, regeneration, and remodeling, as also the
regulation of immune responses [37]. Microglial activation via IL1B
and Mif is regulated by microglial autophagy via the PDE10A
pathway [38]. Autophagy inhibition enhances PDE10A levels,
eliminating the inhibition of NLRP3 inflammasomes due to the
inhibition of cyclic AMP (cAMP), and causes microglia to release
IL1B and MIF neuroinflammatory cytokines [38]. The neuro-
inflammatory state also activates astrocytes A1 and induces pro-
inflammatory cytokines via M1-microglia, damaging DA neurons
and instigating neurodegeneration. Conversely, A2 astrocytes pro-
tect neurons by upregulating neurotrophic factors [37].

The activation of microglia by LPS causes selective degeneration
of DA neurons, sparing the g-aminobutyric-acid-ergic (GABAergic)
and serotonergic neurons [39]. Infiltration of T lymphocytes and
activation of microglia causes increased production of pro-
inflammatory cytokines and chemokines, resulting in degenera-
tion of DA neurons due to accumulation of a-synuclein [8].
Although evidence from several studies suggests a destructive ef-
fect of the immune response mechanism in PD, its translation to
therapeutic interventions to halt disease progression needs further
research and clinical trials [40].

3. Medicinal signaling cells (MSCs) and its secretome

3.1. Medicinal signaling cells

MSCs can originate from some tissues, such as bone marrow,
adipose tissue, birth-derived tissues such as umbilical cord and
Wharton’s jelly, amniotic fluid and placenta, dental pulp, peripheral
blood, synovium, endometrium, skin, and muscle [41]. MSCs (both
autologous or allogeneic) can be further divided into two types
based on their source: adult MSCs (bone marrow, adipose tissue,
peripheral blood, dental pulp), and neonatal tissue-derived MSCs
(placenta, amnion, and umbilical cord) [42]. Hypothetically, MSCs
may be acquired from virtually any tissue in the human body; yet,
limitations exist due to the procurement method's complexity and
invasiveness, as well as various donor factors. The vast possibilities
of cell therapy have raised expectations for this therapeutic mo-
dality. However, the current understanding of its mechanisms and
studies on its application is still under investigation. MSCs
accomplish their desired effects through multipotentiality, immu-
nomodulatory, pro-regenerative signaling, anti-inflammatory, anti-
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apoptosis, and pro-angiogenesis processes [43]. MSCs can provide a
beneficial milieu and protect and restore injured DA neurons [44]. It
has been found that local or systemic MSC delivery with autologous
or allogeneic bone marrowMSCs can improve cardiac function and
functional capacity, thus improving the patient’s clinical condition
and quality of life [44]. MSCs also play a role in cell replenishment,
anti-inflammation, and immunomodulation in patients with PD
and other neurodegenerative diseases [45]. More specifically, bone
marrow MSCs secrete cytokines and trophic factors to protect and
stimulate the regeneration of DA neurons and the differentiation
and migration of resident cells in the substantia nigra and sub-
ventricular zone. The study by Abdelwahab et al. [46] found that
the MSC secretome is superior in neuroprotection and prevention
of a-synuclein aggregation neuroprotection.

However, the multipotentiality of MSCs can be a double-edged
sword as in the case of colorectal carcinoma; it secretes cytokines
(IL-6 and Angiopoietin-1) which induces cancer cells to secrete
endothelin-1, activating AKT and ERK pathways, leading to mobi-
lization and tumor formation. Furthermore, MSCs can support
vasculogenic mimicry in patients with melanoma, thereby rein-
forcing tumor vasculature. In hepatocellular carcinoma, MSCs can
promote the epithelialemesenchymal transition by promoting the
metastasis and dissemination of cancer [47].

3.2. Secretome

MSCs’ secretome supports the trafficking, adhesion, and endo-
crine signaling of molecules. Composed of a lipid bilayer with
proteins enveloping bioactive molecules such as enzymes, genetic
materials (DNA, RNA, and microRNA), signal transduction proteins,
immunomodulatory signaling, and growth factors, they are divided
by diameter into apoptotic bodies (>1000 nm), microvesicles
(100e1000 nm), and exosomes or multivesicular bodies
(30e200 nm) [48]. Among the secretome, exosomes have gained
Fig. 1. Secretome as neuropathology-target
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the most attention. They are akin to a complicated cargo of bioac-
tive chemicals, including RNAs (miRNA, rRNA, and lncRNA), lipids
like prostaglandins, and protein enzymes. On another note, exo-
somes can rapidly (within 30min) be distributedwithin the spleen,
liver, and lungs and be excreted by renal and hepatic processes in
one to 6 h [48].

4. Discussion: medicinal signaling cell (MSC) secretome as a
potential preventive approach

Secretome is the secretion of bioactive molecules and extracel-
lular vesicles (ECV) by MSCs, such as cytokines, chemokines,
growth factors, and anti-inflammatory factors, that produce
numerous paracrine effects on cells and tissues [9,10]. Soluble
factors of MSCs can modulate the immune system, inflammation,
and autophagy [10]. The factors also have anti-apoptotic, pro-
angiogenic, anti-microbial, and anti-oxidant activities, while also
inducing cell proliferation [10]. Despite the complex mechanisms
underlying PD neuropathology, MSC secretome has the potential to
target neuropathology in patients with PD via many pathways as a
cell-free therapy (Fig. 1). The advantage of utilizing secretome over
stem-cell-based therapies are; immune compatibility, reduced
tumorigenicity, decreased risk of emboli formation, and minimized
transmission of infections [49].

Secretome anti-inflammatory effects are mediated by soluble
immunoregulatory molecules, such as interleukin (IL)-13 and IL1
receptor antagonist (IL1RA), but they also contain pro-
inflammatory cytokines such as IL1b [49]. The balance between
these cytokines determines the final effect of the secretome. The
human umbilical cord embryonic stem cell (hUCESC) secretome
reduces the expression of pro-inflammatory cytokines (IL-6, IL-8,
and TNFa) while increasing the expression of anti-inflammatory
cytokines (IL-10) [50]. Secretome from human umbilical cord MSC
has a role in autophagy regulation. A study by Chen et al. found that
ed intervention of Parkinson’s disease.
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the secretome induces autophagy, thus providing cytoprotective
effects after PD induction by 6-OHDA [43]. hUCESC secretome also
has an anti-apoptotic effect in normal cells by producing inhibitor
proteins of apoptosis (Bcl-2) and reducing the expression of pro-
apoptotic proteins (Bax) [49].

Neurotrophic factors present in the MSC secretome generate
antioxidative [51], neuroprotective, and neurotrophic effects. A
previous study found that the human bone marrow MSC (hBMSC)
secretome normalizes the defective process (proteostasis and
altered gene transcription) in PD, resulting in neuroprotective ef-
fects in an animal model due to secretion of molecules related to
UPS and histone systems [53].

Mendes-Pinheiro et al. [53] found that the 6-OHDA rat model
treated with hBMSC secretome showed a better success rate of
eaten pellets in the staircase test, which assessed forelimb and
skilled motor function compared to those treated with the staircase
test in the untreated group, but the same was not seen in the ani-
mals receiving hBMSC transplant. The hBMSC secretome was
further characterized using a non-biased proteomic analysis using
combined mass spectrometry (MS), and it was discovered that
Parkinson's disease-related proteins were among the most abun-
dant in terms of signaling pathways, suggesting a beneficial effect
for the PD model with elements of the proteasome as one of the
most represented protein complexes. This study showed the
disease-modifying effect of secretome by modulating the patho-
physiology of PD.

Another study by Teixeira et al. [51] found that the trans-
plantation of the hMSCs secretome resulted in the survival of DA
neurons in the 6-OHDA PD model. The secretome in this study was
further characterized, and it was found to contain essential neu-
rotrophic factors (e.g., BDNF, IL-6) and Cystatin C and galectin-1,
which is essential for migration, differentiation, neuroprotection,
and anti-apoptotic agents [54]. Mendes-Pinhiero et al. [55] also
found similar results by using human neural progenitor cells
(hNPCs) secretome transplantation of 6-OHDA rat model that pre-
sented better motor performance with higher TH expression level
in the secretome of hNPCs compared with the hNPCs itself. The
secretome of this study was characterized further and found that it
consisted of galectin-1, and cystatin C, which was linked to the
NFekB signaling cascade, which induces expression of BDNF, a
protein crucial for neuronal protection and survival. A similar result
was also demonstrated in the study by Chen et al., which found that
the secretome of stem cells from human exfoliated deciduous teeth
(SHED) can significantly improve the phenotype of PD and also
improves motor deficiency, and also restore DA neuron loss by
rotenone via anti-inflammatory effects and upregulation of neu-
rodevelopment and nerve regeneration [56].

Despite the beneficial effects of the secretome in targeting the
neuropathology of PD, most of the mechanisms by which secre-
tome modulates disease progression have not been described in
detail. The exact optimal dose of secretome required has yet to be
determined. More research is needed to establish the precise
mechanism by which these molecules affect and target the neu-
ropathogenesis of PD, as well as the appropriate dose. Secretome
dosage and mechanism of action should be the focus of future
research.

5. Conclusion

The obscure and complex pathogenesis of PD has yet to be
unraveled, but the need for a novel preventive approach must be
addressed promptly. Some of the most crucial neuropathology of
PD are related to neurotrophins, proteasome dysfunctions, oxida-
tive stress, and ultimately neuroinflammation. MSC secretome is
one of the most promising preventive approaches as it contains
292
numerous bioactive components that target prominent neuropa-
thologies of PD. More research is needed to further elaborate on the
effect of MSC secretome as a cell-free therapy and disease-
modifying agent for PD.
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