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Homeostasis as a proportional–integral control system
Lennaert van Veen 1, Jacob Morra2, Adam Palanica 2✉ and Yan Fossat 2

According to medical guidelines, the distinction between “healthy” and “unhealthy” patients is commonly based on single, discrete
values taken at an isolated point in time (e.g., blood pressure or core temperature). Perhaps a more robust and insightful diagnosis
can be obtained by studying the functional interdependence of such indicators and the homeostasis that controls them. This
requires quasi-continuous measurements and a procedure to map the data onto a parsimonious control model with a degree of
universality. The current research illustrates this approach using glucose homeostasis as a target. Data were obtained from 41
healthy subjects wearing over-the-counter glucose monitors, and projected onto a simple proportional–integral (PI) controller,
widely used in engineering applications. The indicators quantifying the control function are clustered for the great majority of
subjects, while a few outliers exhibit less responsive homeostasis. Practical implications for healthcare and education are further
discussed.
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INTRODUCTION
How does one measure and assess health? “Measurement”may be
referred to as quantifying attributes or characteristics belonging to
a patient, whereas “assessment” may be referred to as drawing
qualitative conclusions from the data that were measured1.
Traditionally, guidelines in the field of medicine have defined
the traits that contribute to health as single, discrete values, or set
ranges, often taken at a single time point2. This is true for many
physiological functions, such as glycemia, core temperature, body
mass index, bone density, cholesterol, and blood pressure.
Although physicians may take into account various other factors
of individual patients, the predetermined guidelines for medical
diagnoses are confined to scoring heuristics. These values are
measured and assessed using simple scoring gradients where any
patient whose value falls into a particular range may be defined as
“healthy”, and all others defined as “unhealthy”.
Although using simple heuristics to measure and assess health

may be efficient and unambiguous, this approach does not
explain the fundamental control mechanisms and physiological
systems that lead to healthy values. Single values only measure
the “what” of health and miss the “how”. For example, a blood
pressure of 120/80 mmHg may indicate a “healthy” value, but it is
only taken at one time point in the patient’s day. This value gives
no indication of how effective the body is at controlling blood
pressure when handling physical or mental stress. In other words,
the discrete, single time point values of physiological biometrics
are merely manifestations of a deeper, more complex health
control system.
Health may be better measured and assessed by studying the

body’s ability to maintain homeostasis, i.e., the maintenance of
specific variables within an optimal range, regardless of external
stimuli3. Many of today’s most prevalent chronic illnesses, such as
hypertension, diabetes, obesity, and depression, can be consid-
ered failures of the body’s ability to maintain homeostasis or keep
physiological signals within a normal working range. Therefore,
knowing the functional model of healthy homeostasis may yield a
better understanding of the overall well-being of the patient, and
could become a fundamental step toward a more refined
assessment of health and an early warning signal for illness.

To advance this idea, it is critical to examine a patient’s
individual homeostatic function and compare it to a base
reference model to identify quantitative and qualitative deviations
from healthy functioning. However, two challenges currently
render this approach impractical:

● existing models of homeostatic systems are complex;
● the assessment of an individual’s homeostasis function lacks a

simple scoring system.

As a solution, we propose to describe the homeostatic function as
a control system wholly independent of the underlying physiology.
Control systems are widely used in engineering, economics, and
cybernetics, and provide a strategy for maintaining the state of a
system within a safe range without reference to its detailed
mechanics. In particular, we consider a control strategy based on
the system’s current state and on its recent history. A scoring
system can then be derived from the relative influence of these
two factors for a given patient.
One process that can be considered a control system is that of

glucose homeostasis. A dysfunction of glucose homeostasis is
associated with diabetes. It is estimated that more than 422
million people worldwide have diabetes4, while more than 352
million others have prediabetes5. Diabetes is also associated with
more than US$ 827 billion direct medical costs to the world every
year4. Thus, an evaluation method to understand a patient’s
glycemic homeostatic function may be a key first step in reducing
the economic and social burden of diabetes.
The standard methodology of measuring glycemic dysfunction

includes HbA1c measurements, fasting blood glucose tests, and
oral glucose tolerance tests6. All three tests use simple heuristics
to distinguish healthy patients from those with prediabetes or
diabetes. Perhaps a better evaluation method to understand the
nuanced structure of the glycemic system may be obtained by
modeling its dynamic function. Although models of normal
glycemic control currently exist, they tend to be fairly complicated.
These models use a large number of variables and parameters,
and describe a multitude of biophysical processes, rather than the
resulting control strategy itself. For instance, the model recently
proposed by Masroor et al.7 comprises 5 dynamical equations and
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over 25 parameters. The use of such models is limited by the
“curse of dimensionality”, i.e., the catastrophic growth of the
number combinations of parameter values to explore when
attempting to reproduce measured data. We demonstrate that a
simple model based on a feedback control can robustly reproduce
suitably pre-processed data. From the model parameters resulting
from the fitting procedure, we extracted dimensionless indicators
that quantify the homeostatic control function.
The procedure of fitting the model parameters relies on the

availability of a quasi-continuous stream of data over a period
much greater than the time scales typical for glucose production
and consumption. Recently, off-the-shelf continuous glucose
monitoring (CGM) technology has become available to provide a
convenient and cost-effective way to accurately measure con-
tinuous glycemia from subjects pursuing their regular daily
activities. The present study utilized the FreeStyle Libre glucose
monitor (Abbott Diabetes Care) on participants not diagnosed
with any medical condition to gather glucose level data every
15 minutes for 2 weeks. From these data, we extracted a sequence
of glucose levels representative of the subject’s feedback control,
and then iteratively optimized the model parameters to
reproduce it.
The objectives of the current research were threefold:

● to extract a personalized, functional description of a subject’s
glucose homeostasis from easily obtained, quasi-continuous
measurements;

● to confirm the universality across subjects of the homeostatic
feedback system model;

● to extract medically actionable indicators from this functional
description.

Overall, this research was intended to identify an objective
indicator of glucose homeostasis that can be derived from time
series data with no requirement to model the physiological details
of the underlying system. The final algorithm was not intended to
offer any control of glucose, but rather as a descriptive tool used
to potentially assess the homeostasis health of participants. The
ultimate goal of this research was to provide a different form of
health assessment that could be used to identify potential risk
factors in glucose tolerance impairment.

RESULTS
A simple control model
Feedback control is a strategy to minimize the deviation of a
process variable, in our case the glucose level, from a set value. A
simple strategy, refered to as proportional–integral (PI) control, is
based on a response proportional to this deviation and on an
integral over its history. The application of PI control goes back at
least as far as 1922, when N. Minorsky proposed to use it for the
automatic steering of ships. Since then, it has been used to control
processes as diverse as the pasteurization of milk at a constant
temperature, and the balancing of flying drones8,9. We conjecture
that the PI controller can effectively describe the homeostatic

control system resulting from various physiological pathways
independently from the details of any of these pathways. Our
assumptions are the following:

● There is an instantaneous response in proportion to the
deviation of the glucose level from the set point, for instance
through the release of insulin or glucagon into the blood
stream.

● There is memory in the system due to the finite time it takes
the body to excrete or metabolize the hormones involved. It is
reasonable to assume that the rate at which this happens is
proportional to the hormone concentration, so that the
memory fades exponentially in time.

The PI controller is coupled to a rudimentary model of blood
glucose kinetics. It comprises only the effects of the base
metabolic rate, food intake, and the control feedback. The
feedback term takes the form of mass action kinetics. That is, it
corresponds to the rate of a hypothetical chemical reaction
between two substances with concentrations u, the control rate,
and (e+ esp), the total glucose concentration, in a well-mixed
reaction vessel under the assumption that the reaction takes place
with constant probability every time different molecules collide.
This form of the control term coincides with that proposed by
Bergman et al.10, who tested several models of insulin-glucose
interactions. In that study, a measured quantity of insulin was
injected directly into the blood stream, and the insulin and
glucose concentrations were measured at regular intervals after-
ward. The interaction term proportional to both the insulin and
the glucose concentration was shown to best model the study.
If e denotes the deviation from the set point glucose

concentration, esp, the equations are

u ¼ A1eþ A2

Z 1

t0¼�1
wðt � t0; λÞeðt0Þ dt0; (1)

de
dt

¼ �A3 þ FðtÞ � u ðeþ espÞ; (2)

wðτ; λÞ ¼ 0 if τ < 0

λ expð�λτÞ if τ > 0

�
(3)

Here, F(t) models the release of glucose into the blood stream and w
models the sensitivity of the control variable to past glucose
concentrations. We measure e and esp in units of mmol/L, while u
has units of 1/Δ, where Δ= 15mins is the interval of measurements
taken by the monitoring system described in the Apparatus section.
We assigned a constant value of A3 ¼ 0:005 mmol=ðΔ ´ literÞ, which
corresponds to a base metabolic rate of about 1300–1950 kcal/
24 hours and a blood volume of about 4.5–6.4 L. The parameters of
the model are summarized in Table 1.
Our model has some properties in common with that of Steil

et al.11, who considered a proportional–integral–derivative (PID)
control as a model for the secretion of insulin by β-cells. Like in our
case, the controller is coupled to a simple model of glucose
dynamics based on mass action kinetics. However, the coupling is
not direct, but is effected through a first-order differential

Table 1. Parameters of the glucose homeostasis model with their definition, typical range across test subjects, mean, and standard deviation across
subjects after the fitting procedure described in the Results.

Parameter Definition Range Mean Standard Deviation Units

A1 Proportional control term −0.1–0.7 0.19 0.18 liter/(Δ ×mmol)

A2 Integral control term 0.09–0.75 0.34 0.24 liter/(Δ ×mmol)

A3 Basic metabolic rate N/A 0.005 N/A mmol/(Δ × liter)

λ Decay rate of the Integral term 0.1–0.7 0.42 0.13 1/Δ

Here, Δ= 15 minutes is the interval between two measurements of the FreeStyle Libre flash glucose monitor.
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equation for the blood insulin concentration that, in turn, drives
another first-order equation for the rate of glucose clearance. In
contrast to our model, their control variable has a clear
interpretation as the rate of insulin secretion. As a disadvantage,
their model has two more variables and two more time scales as
compared to ours. In a relatively small study (n = 7), they
estimated the model parameters from data taken during a
hyperglycemic clamp experiment. Validation of the PID-based
approach under more realistic circumstances fell outside the
scope of their work, and it was the topic of our current study.

Reproducing measured data with the model
For each subject, the parameter values of the PI model’s equations
(1–3) are chosen to minimize the difference between the model

output and measured glucose data. We did not fit the measured
raw data as it may be variable due to noise. Instead, we selected a
number of peaks of glucose and used their average as the
representative peak for the subject. Averaging over too few data
segments yields a representative peak with too much noise, while
averaging over too many obfuscates the structure of the data. We
found that three to five sample peaks were sufficient. In selecting
the data segments by visual inspection, we found no pronounced
dependence on the time of day at which the glucose excursion
was triggered. While insulin sensitivity is known to have a
circadian rhythm, this did not seem to affect our functional
description of glucose homeostasis over the time scales con-
sidered here. Figure 1 shows raw data for one test subject. Three
peaks in glucose, indicated by shading, have been selected to
form the representative peak, e, shown on the right of Fig. 1; the
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Fig. 1 Construction of the representative peak for one subject. a Three days of raw data. The shaded time segments were averaged to find a
representative peak. The dashed line corresponds to the set point glucose level esp. b The three selected peaks (gray) and the representative
peak (black). The set point is taken to be the minimum over the representative peak. Two data points at the set point are added to the
representative peak at the end. The fit for this representative peak is shown in the rightmost inlay in Fig. 2.
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Fig. 2 Scatter plot of the optimal model parameters for all subjects. Shown are A1 and A2, nondimensionalized by the standard deviation of
each subject's time series of the glucose level, σe, and the corresponding maximum of the control variable, um. Three illustrative results of the
fitting procedure are shown in inlays. In these, the black lines correspond to the representative peaks and the red lines to the output e(t) of the
control model (1–3). The normalized input function, F(t)/λ, and the normalized control variable, σeu(t)/λ, are shown in green and blue,
respectively.
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set point glucose level, esp, corresponds to the minimum over the
representative peak and is indicated by a dashed line.
Once the representative peak has been distilled from the raw

data of a given subject, we tune the model parameters to
reproduce it as accurately as possible. The accuracy of a fit is
measured by the function

E ¼
Pnpeak

i¼1 eðtiÞ � eðtiÞð Þ2Pnpeak
i¼1 e tið Þ2 ; (5)

where npeak is the number of points in the representative peak,
Δ= 15 (mins) apart. This least-squares fit is computed by a
steepest descent algorithm, the details of which are explained in
the Supplementary Methods.

Main findings
We computed the best fit for each of the 41 subjects, reaching a
residual mismatch of E < 0.06 for all; for 90% of the subjects, the
mismatch was less than 0.02. A scatter plot of the results is shown
in Fig. 2. On the axes are the dimensionless parameters σeA1/um
and σeA2/um, where σe is the standard deviation of all glucose
measurements for a given subject and um is the maximum
attained by the control variable in the optimal fit. The mean values
of A1 and A2 were 0.19 and 0.34, respectively, and their standard
deviations were 0.18 and 0.24, respectively. The data for most
participants were within one standard deviation from the mean
for A1 (68%) and A2 (76%). There were two notable outliers,
specifically for A2, in the top-left corner of Fig. 2, with parameters
greater than 2.5 standard deviations away from the mean; no
outliers were found for A1. Three inlays have been included to
illustrate the qualitative difference between the fitted curves. Inlay
a shows the data point close to the mean value for both
parameters. The width of the model output peak e(t) was about
50min and the control variable has a smooth peak, delayed by
about 15 (mins), and decays back to zero about 1 hour after the
glucose peak. If we take the control variable u to be a proxy for the
insulin concentration, these numbers agree well with data for

healthy subjects undergoing a meal glucose tolerance test
presented by Caumo et al.12.
Inlay b shows a faster response to approximately the same input.

While the amplitude of the input function is close to that in inlay a,
the peak glucose level is almost two times lower. The width of this
peak is only about 30min and the control variable assumes its
resting value within 30min from the glucose peak value.
On the other end of the scale, Inlay c shows a relatively slow

response. The measured data exhibit a plateau at a level of over
2 mmol/L in excess of the set point glucose level. While the model
accurately captures the rapid rise over the first 30 min, the
measured and modeled data diverge somewhat over this plateau.
The control variable reaches a level that is about four times higher
than that in inlays a and b and remains high after the measured
and modeled glucose concentrations return to the set point.
These qualitative differences can be understood from the

structure of the model. If A1, A2 > 0 and A1 > A2, the controller (1) is
mostly determined by an instantaneous, proportional response.
For a rapidly fluctuating glucose level, this may lead to
fluctuations of the control feedback that cannot be sustained by
any physiological mechanism, but for a peak generated by a
regular meal, it leads to a quick reset. On the other side of the
diagram, if A1 < 0 and A2 > 0, the integral and proportional terms
of the control model have an opposite effect. This is the only way
for our model to produce a sustained excess glucose level. In
the first phase, when the representative peak is rapidly rising, the
proportional term is dominant and gives rise to a positive
feedback. This increases the model glucose level rapidly. In the
second phase, the integral term increases until it balances
the proportional term. For a period in the order of 1/λ, the
glucose level remains elevated. Finally, the integral term becomes
dominant and induces the system back down to the target level.
There was a strong negative correlation between the two model

parameters (A1 and A2) in Fig. 2 (Pearson correlation, r =−0.81,
p < 0.001). With this observation in mind, we devised a single
indicator, R = σe(A2 − A1)/um, which indicates the responsiveness
of the glycemic control systems. The R value of all subjects is
shown in Fig. 3, with the values displayed as dots on the

Fig. 3 Distribution of the indicator R= σe(A2− A1)/um over test subjects. The number of subjects per bin is on the vertical axis, while
individual data are indicated with dots on the horixontal axis. The dashed lines labeled a, b, and c correspond to the inlays in Fig. 2.
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horizontal axis, and the distribution displayed as a histogram.
Although more data are needed to establish the shape of this
distribution, it appears to have a clear modal value of around R=
0, and a positive skew towards higher values. We speculate that
this indicator may be used as an actionable diagnostic tool,
extracted from quasi-continuous glucose measurements in real-
time. However, future research would need to examine this
question in more detail.
We also analyzed the correlations of the A1 and A2 variables to

all demographic factors and found no significant associations with
age, gender, or BMI across individuals (all p > 0.28). Thus, we can
infer that our model is not greatly influenced by other variables
within the participants.

DISCUSSION
The goal of this research was to propose an alternative technique
of health measurement and assessment by examining homeo-
static control systems rather than discrete, single values. For
example, the gold standard methodologies of screening for type 2
diabetes or prediabetes include glycated hemoglobin (HbA1c)
measurements, fasting plasma glucose (FPG), and plasma glucose
during an oral glucose tolerance test (OGTT). All of these tests are
evaluated against predetermined guidelines set by the medical
community6. However, these different tests may reveal discrepant
results across different patients of different backgrounds, and may
be unreliable when trying to evaluate how glucose changes over
time. Thus, our intent for this research was to provide a more
insightful way of assessing and evaluating glucose levels by
showing a larger window of data for the individual, and
demonstrating the rate of change for those data, rather than a
single point in time.
We also wanted to improve existing models of homeostatic

systems by developing uncomplicated algorithms for extracting
medically relevant insights and actions. In this case, our aim was to
formulate a model of glucose homeostasis that emphasizes
simplicity and universality over physiological detail. “Simple”
refers to the fact that our model has only two variables (the
control variable u and the excess glucose concentration e) and five
parameters (those that regulate the control strategy, A1, A2, and λ,
as well as the amplitude and shift of the input function).
“Universal” refers to the fact that the model can be applied to
all test subjects under differing circumstances, while no explicit
reference is made to the pathways of glucose control, or
potentially to other forms of homeostasis, like blood pressure or
core temperature.
While a significant body of research exists in modeling glucose

homeostasis13, the mathematical models that currently exist for
humans or animals include a multitude of variables and
physiological parameters. In the case of machine learning-based
models, the result is individualized to each subject14. These
features limit their use as a diagnostic tool in clinical settings
where simplicity, interpretability, and universality are paramount.
Other research in this field has examined the closed-loop

artificial pancreas and insulin pumps15–17. The main purpose of
these digital therapeutic devices has been to treat patients with
type 1 diabetes with a device that injects insulin or glucagon
subcutaneously based on continuous measurement of blood
glucose. Our research compliments and extends this previous
work by examining a PI control model in healthy individuals. The
great majority of research on homeostasis modeling has only
examined patients who have been diagnosed with a known
medical condition; virtually no research has been conducted on
healthy controls to obtain a more insightful metric of health for
enabling future prognosis of potential disease states. We believe
that our research helps support past work, and could be applied to
a greater proportion of the population for routine health
assessments in normal, non-diagnosed individuals.

Additionally, in type 1 diabetes management, feedback control
has been used primarily as a replacement of the glucose controller
(i.e., pancreas), rather than a diagnosing tool based on a functional
description of the glycemic system18,19. With an artificial pancreas,
there is usually a significant delay (15–30min) in the uptake of the
glucagon and insulin after injection18. This leads to different
models and different dynamics, precluding a direct comparison
between closed-loop control models for an artificial pancreas and
a healthy homeostatic function. Nevertheless, the successful
application of PI or PID—including the rate of change of blood
glucose—in the clinical setting attests to the universality which we
advocate.
The current research demonstrates that the technique for

processing glucose data from a portable device has low
computational complexity, and can, in principle, be done in real-
time. For example, this process would consist of a few
straightforward steps:

● From the raw data, 3–5 peaks are selected of comparable
width. The average of these is the representative peak for the
subject in question.

● The model parameters are iteratively tuned to make the
model output as similar as possible to the representative peak.

● From the optimized parameters and the output control
variable, a dimensionless indicator is extracted that encodes
the responsiveness of the control system.

The PI control strategy can provide a sophisticated model for
examining glucose homeostasis in humans. The model para-
meters that are extracted give more detailed information than
single, discrete values, like HbA1c, since they present information
about the way a subject’s glucose level is being controlled rather
than statistics on the glucose level itself.
It is worth noting that the amount of HbA1c may be described

as a form of “memory”, since it provides an average blood glucose
concentration estimate over the preceding 2 to 3 months.
However, the test itself is only taken at one time point, and the
overall value of HbA1c yields a singular, discrete number (i.e.,
average), with no indication of standard deviation or rate of
change over the past few months. In other words, this test does
not provide any graph or visualization of how the HbA1c level has
gone up or down over time in the individual.
On the other hand, mathematical modeling unveils a form of

universality that is found across applied sciences. In biophysics, for
instance, “synchronization” can be found in a variety of systems,
from firing neurons20 to signaling fireflies21. Similarly, pattern
formation near critical transitions occurs in the same way across a
range of settings, from electrical signals in cardiac tissue to density
variations in bacterial populations22. Thus, models based on PI
control could yield a parsimonious description of a variety of
homeostatic functions, regardless of their particular mechanics.
We demonstrated that the extracted model parameters fall

within a well-defined range. More precisely, for both A1 and A2
parameters, 68% and 76% of the subjects fall within one standard
deviation of these means, respectively. Only two subjects had a
parameter value that deviated more than 2.5 standard deviations
from the A2 mean, while no outliers were found for A1. For the
indicator R, the two outliers show representative peaks that show
a relatively slow decay of glucose levels. For these outliers, the
proportional and integral terms of the control strategy work
against each other. We may speculate whether this indicates a
pathological state such as prediabetes, but future research is
needed to investigate this possibility; the current research utilized
participants who were not diagnosed with any medical condition.
Nevertheless, if it is the case that this PI control model does
predict or diagnose some type of medical issue, it would give
extra credibility to its usefulness in everyday practice.
Since this pilot study was exploratory in nature, there are some

limitations which should be addressed with further research.
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Firstly, since the current data were collected from individuals not
diagnosed with any medical condition, the indicators that rate the
effectiveness of the controller may need to be refined in a sample
of patients diagnosed with prediabetes or type 2 diabetes for
comparison. Secondly, we have assumed that the input peak F(t)
always takes a Gaussian form, since this assumption agrees
reasonably well with data measured in vitro23. However, in order
to turn our data processing pipeline into a diagnostic tool, we may
need to allow for a wider class of input functions; more a priori
knowledge of the food intake, for instance, would also help to
model the release of glucose into the blood stream over time.
Lastly, this study used the FreeStyle Libre glucose monitor due to
convenience, as this study was performed in Canada, where the
device is available without any prescription; the FreeStyle Libre
measures glucose in the interstitial fluid (ISF), but not directly in
the blood. While the glucose levels in the ISF are closely inline
with blood glucose, a delay of 5–10minutes has been estimated
by various studies24. Nevertheless, this study shows that an off-
the-shelf consumer level device may be used to redefine
homeostasis measurement and assessment.
It should also be noted that although continuous glucose

monitors provide real-time data and graphics, they do not provide
a universal algorithm which can be scored and evaluated by
physicians. The devices merely provide raw data, which the
clinician must visually inspect subjectively to analyze any risk
factors; it does not provide an objective indicator of glucose
tolerance in a single snapshot, but rather across a larger window
of time through multiple peaks and valleys. Our research was
meant to take into account these multiple peaks and valleys to
provide an overview of glucose homeostasis for each person.
This study contributes to the field of digital medicine by

providing an improved method of understanding health beyond
single values, and furthering our understanding of homeostasis in
the normal population. Importantly, these techniques can be
utilized in other patient populations and disease states. We
believe that a personalized health measurement such as this one
could lead to more patient education, engagement, and
empowerment into their own personal health. Being able to
better visualize one’s own physiological mechanisms could be the
next step to better medical standards. These findings have
practical implications for healthcare and education where
enhanced translation of medical knowledge can empower both
the physician and patient.

METHODS
Participants
Data were collected from 41 participants (20 females; 21 males; age range=
19–50 years, M age= 32.4 years, SD= 6.8 years, see Supplementary Table
1). Participant race included 23 (56.1%) Caucasian, 15 (36.6%) Asian, 1
(2.4%) African American, 1 (2.4%) Hispanic, and 1 (2.4%) mixed race
(Caucasian and African American). Exclusion criteria were participants
below the age of 18, those who were diagnosed with any mental or
physical medical condition of any kind (chronic or acute), those taking any
form of prescription medication, and those who were pregnant or
breastfeeding. This sample of participants had an average body mass
index of 25.8 (SD= 5.7), an average resting blood pressure of 120/75 mm
Hg, and an average resting heart rate of 72 bpm.
The study took place at Klick Inc., which is a technology, media, and

research company in the healthcare sector based in Toronto, Canada. All of
the participants were employees of Klick Inc. The study was performed in
accordance with relevant guidelines and regulations, and all participants
signed informed consent. The study received full ethics approval from
Advarra IRB Services (www.advarra.com/services/irb-services/).

Apparatus
The FreeStyle Libre flash glucose monitoring system (Abbott Diabetes
Care) was used to measure real-time, continuous interstitial glucose levels
with a minimally invasive 5 mm flexible filament inserted into the posterior

upper arm. The sensor works based on the glucose-oxidase process by
measuring an electrical current proportional to the concentration of
glucose. The FreeStyle Libre is a factory calibrated device, designed not to
require finger prick tests during use. Previous research has shown the
FreeStyle Libre to have consistent accuracy and reliability throughout the
14 days with a mean absolute relative difference of 11.4% compared with
capillary blood glucose, and is not significantly influenced by age, sex,
body weight, BMI, or time of use (day vs. night)25–27.
The device contains a sensor which is attached to the posterior region of

the upper arm with an adhesive patch, and a handheld reader device
which downloads data from the sensor via near-field communication.
Interstitial glucose concentrations (in mmol/L) are captured by the sensor
every 15min and/or when users scan the sensor using the handheld
device. The handheld device requires users to scan the sensor at least
every 8 h, otherwise previous data are overwritten by the sensor. The
system has a lifespan that restricts sensor wear to 14 consecutive days,
after which the handheld device will no longer download data from the
sensor. In our particular sample, the glucose sensors lasted an average of
13.0 days (due to some cases of malfunction or detachment), with a range
of 7–14 days.

Data collection
At the beginning of the study period, participants completed a self-report
demographic survey, and had some physiological variables measured,
including height, weight, body mass index (BMI), resting blood pressure,
and resting heart rate. Participants were then outfitted with the FreeStyle
Libre flash glucose monitor, and instructed on its use. Participants were
instructed to scan the sensor with the handheld device at least once every
8 hours to minimize data loss. Missing data were anticipated as
participants may have slept over 8 hours, so they were encouraged to
scan the device before going to sleep and immediately upon waking.
Other than using the glucose device, no other intervention was
implemented, and participants were not asked to change their lifestyle
in any way.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
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CODE AVAILABILITY
All code for this project was written in Python, with reference to the Pandas library for
parsing raw data from the FreeStyle Libre device, NumPy for array manipulation and
SciPy.interpolate and Matplotlib for producing figures28. Apart from functions from
these libraries, the code was written from scratch. The detailed description
(Supplementary Data Set 1), raw data (Supplementary Data Set 2), and Python code
(Supplementary Data Set 3) necessary for reproducing Figs 1 and 2 are available as
supplementary material (Supplementary Data Sets 4, 5, 6).
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