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SUMMARY

Aims: DJ-1 is a key redox-reactive neuroprotective protein implicated in regulation of oxi-

dative stress after stroke. However, the molecular mechanism, especially the role of mito-

chondrial function, by which DJ-1 protects neural cells in stroke remains to be elucidated.

The aim of this study was to reveal whether DJ-1 translocates into the mitochondria in

exerting neuroprotection against oxidative stress. In particular, we examined DJ-1 secretion

from primary rat neural cells (PRNCs) exposed to experimental stroke. Methods: Primary

rat neural cells were exposed to the oxygen–glucose deprivation (OGD), an established in vi-

tro stroke model, and DJ-1 translocation was measured by immunocytochemistry, and its

secretion detected by ELISA. Results: Under OGD, DJ-1 translocated into the healthy mito-

chondria, and significant levels of DJ-1 protein were detected. Treatment with anti-DJ-1

antibody reduced cell viability and mitochondrial activity, and increased glutathione level.

Interestingly, OGD reversed the ratio of astrocyte/neuron cells (6/4 to 4/6). Conclusions:

Altogether, these results revealed that DJ-1 participates in the acute endogenous neuropro-

tection after stroke via the mitochondrial pathway. That DJ-1 was detected immediately

after stroke and efficiently translocated into the mitochondria offer a new venue for devel-

oping neuroprotective and/or neurorestorative strategies against ischemic stroke.

Introduction

Despite many scientific breakthroughs, stroke remains a major

unmet clinical need. Largely due to deprivation of oxygen, glu-

cose, and other nutrients following blood flow interruption into

the brain, stroke presents with a necrotic infarcted core and an

evolving ischemic penumbra, which is amenable to therapeutic

intervention. The progression of the stroke penumbra toward

becoming part of the infarcted core has been shown to be accom-

panied by multiple secondary cell death processes. In particular,

oxidative stress has been demonstrated as a major exacerbating

secondary cell death closely associated with stroke, as well as

other neurological disorders including Alzheimer’s disease and

Parkinson’s disease (PD). A relatively new key protein implicated

in this oxidative stress cell death cascade is DJ-1. Acting as a multi-

functional redox-sensitive protein, DJ-1 can promote neuropro-

tection by dampening mitochondrial oxidative stress [1],

molecular chaperoning of PD-aggregating protein a-synuclein [2],

stimulating anti-apoptotic and antioxidative gene expression

[3,4], and facilitating the prosurvival Akt while suppressing apop-

tosis signal-regulating kinase (ASK1) pathways [5–7]. Although

primarily residing in the cytoplasm and nucleus, DJ-1 translocates

into mitochondria of many mammalian cells [1] and is secreted

into the serum under pathologic conditions, including breast can-

cer, melanoma [8,9], and, of high relevance to stroke, oxidative

stress [1]. This DJ-1 translocation into the mitochondria has been

shown to reduce aberrant formation of free radicals, that is, mito-

chondrial reactive oxygen species (ROS) [10], further highlighting

the close association of DJ-1 and stroke-relevant oxidative stress.

We hypothesized that in addition to DJ-1 harboring an intracellu-

lar defense system against oxidative stress after stroke, the protein

also functions as an extracellular signaling molecule thereby ren-

dering neuroprotection to neighboring neural cells via paracrine

and/or autocrine cues. We tested this hypothesis that DJ-1 trans-

located into the mitochondria, with subsequent DJ-1 protein

secretion into the serum, using cultured primary rat neural cells

(PRNCs; mixed astrocytes/neurons) exposed to an experimental

stroke condition.
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Materials and methods

Cell Culture and Oxygen–Glucose Deprivation
(OGD)

Primary rat neural cells were obtained from BrainBit. Accord-

ing to the protocol, cells (4 9 104 cells/well) were suspended

in 200 lL neural medium containing 2 mM L-glutamine and

10 ng/mL leukemia inhibitory factor in the absence of antibiot-

ics and grown in poly-l-lysine-coated 96-well (BD) at 37°C in

humidified atmosphere containing 5% carbon dioxide in 40%

of the neuron and 60% astrocyte cell population (determined

immunocytochemically using vesicular glutamate transporter-

1). After 5 days in culture (approximately cell confluence of

70%), PRNCs were exposed to OGD as described previously

with few modification [10]. The cells were initially exposed to

OGD medium (116 mM NaCl, 5.4 mM KCl, 0.8 mM MgSO4,

1 mM NaH2PO4, 26.2 mM NaHCO3, 0.01 mM glycine, 1.8 mM

CaCl2 pH 7.4), then placed in an anaerobic chamber (Plas Labs)

containing nitrogen (95%) and carbon dioxide (5%) for

15 min at 37°C, and finally, the chamber was sealed and incu-

bated for 90 min at 37°C (hypoxic–ischemic condition). Control

cells were incubated in same buffer containing 5 mM glucose

at 37°C in a regular CO2 (5%) incubator (normoxic condition).

OGD was terminated by adding 5 mM glucose to medium, and

cell cultures reintroduced to the regular CO2 incubator (norm-

oxic condition) at 37°C for 2 h, of which period represented a

model of “reperfusion.” To confirm that extracellular DJ-1 was

secreted by PRNCs, anti-DJ-1 antibody (ratio 1:20; Abcam,

Cambridge, MA, USA, ab76008) was added to the cell culture

medium to capture extracellular DJ-1 during the reperfusion

period. Pilot studies, using proper controls, were performed to

eliminate nonspecific IgG binding.

Measurement of Mitochondrial Activity, Cell
Viability, and Oxidative Stress

Following reperfusion, reduction of 3-(4, 5-dimethyl-2-thiazol-

yl)-2, 5-diphenyltetrazolium bromide (MTT) by cellular dehydro-

genases was used as a measure of mitochondrial activity as

previously described [10]. In addition, trypan blue (0.2%) exclu-

sion method was conducted and mean viable cell counts were

calculated in four randomly selected areas (1 mm2, n = 10) to

reveal the cell viability after hypoxic–ischemic and normoxic

condition. Briefly, within 5 min after adding trypan blue, we

digitally captured under microscope (9200) 10 pictures (approxi-

mately 100 cells/picture) for each condition, then randomly

selected five pictures, and counted the number of cells for each

individual treatment condition (normoxic, hypoxic–ischemic,

hypoxic–ischemic + DJ-1 antibody). Normalized cell viability was

calculated from the following equation: viable cells (%) = (1.00

– [Number of blue cells/Number of total cells]) 9 100. As gluta-

thione (GSH) has been validated as an antioxidant component of

oxidative defense system in the eukaryotic cell [11] and that

increased intracellular GSH level provides a measure of toxico-

logical response precluding cell death [11], we performed GSH

assay using manufacturer’s protocol for GHS-GloTM Glutathione

Assay kit (Promega, Madison, WI, USA).

Measurement of Extracellular DJ-1 Concentration

Following reperfusion, the DJ-1 concentration of cell supernatant

was measured by CircuLex DJ-1/PARK-7 ELISA Kit (MBL Inter-

national Corporation, Nagano, Japan, CY-9050) according to the

manufacturer’s instructions [12]. Absorbance from each sample

was measured using a Synergy HT plate reader (Bio-Tex Instru-

ments, INC., Winooski, VT, USA) at dual wavelengths of 450/

540 nm.

Immunocytochemical Analysis

For visualization of mitochondrial membrane potential, PRNCs

(8 9 104 cell/well) in 400 lL neural medium in poly-l-lysine 8-

chamber (BD) were incubated with 100 nM MitoTracker Red

(Invitrogen, Eugene, OR, USA, M7512) for 30 min before cell

fixation, washed with PBS [13,14], and performed immunocy-

tochemical analysis. PRNCs were fixed in 4% paraformaldehyde

for 20 min at room temperature after OGD or non-OGD treat-

ment. The cells were washed five times for 10 min in PBS con-

taining 0.1% Tween 20 (PBST) (Sigma, St. Louis, MO, USA).

Then they were blocked by 5% normal goat serum (Invitrogen,

Camarillo, CA, USA) in PBST for 60 min at room temperature.

The cells were incubated with rabbit monoclonal anti-DJ-1

(1:100; Abcam, ab76008) and mouse monoclonal anti-MAP2

(Neuronal marker, 1:500; Abcam, ab11267) with 5% normal goat

serum for overnight at 4°C to examine whether DJ-1 secreted

from the neural cells under hypoxic–ischemic condition. In addi-

tion, the cells were incubated with rabbit monoclonal anti-DJ-1

(1:100; Abcam, ab76008) and mouse monoclonal anti-ATP syn-

thase (mitochondrial) b-chain (1:200; Cell Signaling Technolo-

gies, Lake Placid, NY, USA, 05-709) with 5% normal goat serum

for overnight at 4°C to examine whether DJ-1 translocated into

the mitochondria. The cells were washed five times for 10 min in

PBST and then soaked in 5% normal goat serum in PBST con-

taining corresponding secondary antibodies, goat anti-rabbit IgG-

Alexa 488 (green, 1:1000; Invitrogen, Eugene, OR, USA), and

goat anti-mouse IgG-Alexa 594 (red, 1:1000; Invitrogen, Eugene,

OR, USA) or goat anti-mouse IgG-Alexa 405 (blue, 1:200; Invi-

trogen, Eugene, OR, USA) for 90 min. Finally, cells were washed

five times for 10 min in PBST and three times for 5 min in PBS,

then processed for Hoechst 33258 (bisBenzimideH 33258 trihy-

drochloride, Sigma) for 30 min, washed in PBS, and cover-

slipped with Fluoromount (Sigma). Immunofluorescent images

were visualized using Zeiss Axio Imager Z1. Control experiments

were performed with the omission of the primary antibodies

yielding negative results.

Measurement of OGD on the Ratio of Astrocytes
and Neurons

Briefly, we digitally captured 20 pictures of immunocytochemi-

cally stained cells under the microscope (9200) of each treatment

condition (normoxic and hypoxic–ischemic), randomly selected

10 pictures, and counted the number of MAP2-positive cells with

Hoechst, then the ratio of MAP2-positive neuronal cells was cal-

culated as follows: Neurons (%) = ([Number of MAP2-positive

cells/Number of Hoechst]) 9 100. The number of astrocytic cells
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(i.e., the other cell population in the cultured PRNCs) was calcu-

lated by subtracting% MAP2-positive neuronal cells from 100%.

As we used PRNCs (mixed astrocytes/neurons), the specific

neuronal MAP2 antibody labeled neuronal cells, while those non-

MAP2-stained cells corresponded to astrocytic cells.

Statistical Analysis

The data were evaluated using one-way analysis of variance

(ANOVA) followed by post hoc compromised t-tests. Statistical

significance was preset at P < 0.05. Data are represented as

means � SD from quintuplicates of each treatment condition.

Results

DJ-1 Protein Promotes Neuroprotection

We first confirmed whether PRNCs could secrete DJ-1 in the

hypoxic–ischemic condition. After being exposed to OGD, cell

viability (F2,9 = 80.497, P < 0.0001) (Figure 1A) and mitochon-

drial activity (F2,11 = 273.593, P < 0.0001) (Figure 1B) were

significantly decreased, on the other hand, GSH level was

increased (F2,9 = 111.248, P < 0.0001) (Figure 1C) compared

with normoxic condition. As shown in Figures 1D and 2, we

detected DJ-1 released from PRNCs (Figure 2, represented by

arrow heads). To reveal whether the therapeutic role of DJ-1

was accompanied by its extracellular secretion by PRNCs, we

showed that treating the cell culture system with DJ-1 anti-

body exacerbated the OGD-induced reduction in cell viability

and mitochondrial activity, despite further increasing GSH lev-

els (Figure 1A–C), implicating that the extracellular DJ-1,

which was sequestered by the DJ-1 antibody (F2,18 = 150.049,

P < 0.0001) (Figure 1D), was required for the observed neuro-

protection. The physiological relevance of these observations is

that the loss of DJ-1 perturbs the endogenous neuroprotection

of rat neural cells against oxidative stress.

DJ-1 Translocates into the Mitochondria under
Hypoxic–Ischemic Condition

An equally important finding here is the localization of DJ-1 in

PRNCs as determined by immunofluorescent microscopy. First,

the neuron cells were stained both with anti-DJ-1 antibody and

anti-ATP synthase b-chain antibody under a normoxic condition

(Figure 3A–C). Employing the anti-ATP synthase b-chain anti-

body, of which antigen is localized in the mitochondrial inner

membrane and linkages with mitochondrial complex I, the results

(Figure 3D–F) revealed that DJ-1 translocated into the mitochon-

drial inner membrane following the hypoxic–ischemic insult (Fig-

ure 3F), but not in normoxic condition (Figure 3A–C).

DJ-1 Selectively Translocates to the Healthy
Mitochondria

Next, following confirmation that DJ-1 translocated into the mito-

chondria of PRNCs after hypoxic–ischemic insult, we examined

whether DJ-1 selectively translocated into the healthy mitochon-

dria, damaged mitochondria, or both. Employing a chemical

reagent MitoTracker, which accumulates on healthy mitochon-

dria, DJ-1 was shown to translocate to the healthy mitochondria

(white arrows; represented electrochemical active mitochondria)

more than the damaged mitochondria (yellow arrows; which were

not capable of permeating the dye MitoTracker) (Figure 4), indi-

cating that DJ-1 translocation is closely associated with preserva-

Figure 1 Effect of OGD on PRNCs. OGD altered

PRNCs proliferation and DJ-1 secretion. PRNCs

were subjected to OGD for 90 min, followed by

a 2-h reperfusion period under normoxic

condition. Under hypoxic–ischemic condition,

cell viability tests using trypan blue exclusion

method (A) and MTT assay (B) revealed that

the number of viable PRNCs significantly

decreased, concomitant with increased GSH

production (C) and detection of secreted DJ-1

(D). For panels C and D, both assays were

normalized with cell number in each condition.

*P < 0.05, **P < 0.01, ***P < 0.0001. ND:

nondetectable by the CircuLex DJ-1/PARK ELISA

kit.
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tion of functional mitochondria. DJ-1 colocalized with active

mitochondria but not with inactive mitochondria (yellow arrows).

Effect of Hypoxic–Ischemic Condition on the
Ratio of Astrocytes/Neurons

We next counted the number of MAP2-positive neuronal cells

and extrapolated the number of astrocytic cells in the cultured

PRNCs under normoxic and hypoxic–ischemic conditions. Inter-

estingly, quantitative analyses showed that the hypoxic ischemia

significantly reversed the ratio of astrocytes/neurons (6/4) com-

pared with normoxic condition (4/6) (P < 0.01) (Figure 5).

Discussion

The present study revealed a new molecular mechanism

underlying DJ-1-mediated neuroprotection against hypoxic–

ischemic insult in a cell culture paradigm. We demonstrated

that DJ-1 translocated into the mitochondria and that DJ-1 is

subsequently secreted by hypoxic–ischemic PRNCs. Interest-

ingly, the hypoxic–ischemic condition reversed the ratio of

astrocyte/neuron cells (6/4 to 4/6), suggesting DJ-1’s preferen-

tial rescue of neurons. These observations open new avenues

of research and therapeutic development targeting DJ-1 for

treating stroke and other neurological disorders characterized

by rampant mitochondrial deficits [15–17]. This study also

provided solid mechanistic evidence that DJ-1 was secreted

extracellularly and that when the DJ-1 antibody is applied,

DJ-1 secretion was sequestered as evidenced by ELISA. This

blockade of DJ-1 resulted in reduction in mitochondrial activ-

ity and, eventually, cell viability under the OGD condition,

altogether implicating the key role of mitochondrial transloca-

tion and extracellular secretion of DJ-1 in neuroprotection

against stroke.

Figure 2 DJ-1 secreted from PRNCs under hypoxic–ischemic condition. DJ-1 (green), MAP2 (red), and Hoechst (blue). Arrow heads represent DJ-1 that

secreted from PRNCs following hypoxic–ischemic insult. Scale bars = 10 lm.

(A) (B) (C)

(D) (E) (F)

Figure 3 DJ-1 translocated into the

mitochondrial inner membrane following

hypoxic–ischemic insult. DJ-1 positive cells

(A and D), mitochondria localization in PRNCs

(B and E), and double-labeled DJ-1 and

mitochondria (C and F). A–C were normoxic

condition. D–F were hypoxic–ischemic

condition. Scale bars = 5 lm.

Figure 4 DJ-1 selectively translocates to the electrochemical active mitochondria. For visualizing the mitochondrial membrane potential, cells were

incubated with 100 nM MitoTracker (red) for 30 min before cell fixation (as described in Materials and Methods), and then cells were immunostained for

anti-DJ-1- (green) and anti-ATP synthase (mitochondrial) b-chain (blue). Arrows (yellow) indicated depolarized mitochondria (which were not capable of

permeating the dye MitoTracker). Arrows (white) represented electrochemical active mitochondria (which possessed to permeate the dye MitoTracker).

DJ-1 colocalized with electrochemical active mitochondria but not with depolarized mitochondria (yellow arrows). Scale bars = 5 lm.
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DJ-1 is Secreted under Hypoxic–Ischemic Injury

A major finding in the present study is the demonstration that

neural cells secreted DJ-1 under hypoxic–ischemic condition. This

observation parallels similar reports that breast cancer and mela-

noma release DJ-1 to the serum in vitro and in vivo [18–20]. That

significantly elevated levels of extracellular DJ-1 were detected at

the very early stage of OGD–reperfusion injury, and that antibody

sequestration of this secreted protein resulted in exacerbation of

oxidative stress and cell death, suggest an intimate involvement of

DJ-1 in the initial endogenous neuroprotective process in

response to hypoxic–ischemic injury.

Mitochondrial Dysfunction Contributes to
Increased Generation of ROS

Mitochondrial dysfunction is an important contributor to neu-

rodegeneration [21,22], including stroke [23]. Hypoxic–ische-

mic cell death events may consist of mitochondria complex I

spontaneously releasing ROS, a hallmark biochemical feature

of oxidative stress [24]. A cell death mechanism characterized

by the collapse of mitochondrial membrane potential, which

in turn triggers the aberrant disruption of the impermeability

of the inner mitochondrial membrane has been shown to

accompany oxidative stress [25,26]. Initial stroke-induced ROS

acts upon neighboring mitochondria, precipitating mitochon-

dria permeability transition pore opening, and thereafter gen-

erating additional ROS [27]. The translocation of DJ-1 into

the mitochondria due to stroke-associated oxidative stress may

correspond to a primary neuroprotective response in an effort

to halt secondary cell death progression. Because mitochon-

drial complex I critically regulates oxidative stress and controls

ATP production in eukaryotic cells, its dysfunction induces cell

death [28,29]. DJ-1 by translocating into the mitochondria

achieves an efficient endogenous neuroprotection in mitigating

mitochondrial defects. The observed DJ-1 translocation may

affect mitochondrial movement, promote cell–cell interaction,

and enhance other procell survival processes. Moreover, we

noted that the degrees of neuroprotective effects due to

sequestering DJ-1 on cell survival and MTT varied, thereby

suggesting that in addition to ROS-dependent pathways, DJ-1

may arrest the OGD-induced cell death via multipronged neu-

roprotective mechanisms.

Damaged Mitochondria can be Restored by
Fusion with Intact Mitochondria

Constant fusion and fission events, mediated by conserved cellular

machineries, can lead to the formation of a reticulated mitochon-

drial network [30–32]. Rat primary neural cells, under hypoxic–

ischemic condition, typically retract outgrowth processes with

neighboring cells and lose contact with the extracellular matrix

[33,34]. The functionality of damaged mitochondria can be

restored by fusion with neighboring, intact mitochondria, assign-

ing an important role for protein quality control to components

regulating mitochondrial dynamics [35–37]. The possibility that

DJ-1 activates a complex rearrangement of mitochondria allowing

neural survival in response to cell injury warrants additional

studies.

DJ-1 Preferential Rescue of Neurons

In the present study, we assessed astrocyte and neuron viability at

the acute time point post-OGD when endogenous repair mecha-

nisms [38] (presumably including DJ-1 neuroprotection) are

apparent, which likely contributed to the observed preferential

rescue of neurons over astrocytes. However, without any thera-

peutic intervention, following the acute phase, the astrocytic cell

death will dominate over the neuronal demise. The present

hypoxia–ischemia protocol employed a 90-min OGD followed by

a 2 h reperfusion period and cell viability assays immediately

thereafter, which corresponded to the acute phase. In contrast,

Goldberg and Choi [39] observed that while neuronal cell death

was detected within 60 min of OGD, the irreversible neuronal

damage became only consistently evident when OGD exposure

exceeds 4–6 h and with neuronal cell death assessment conducted

a day later, which is more severe and prolonged (i.e., sub-acute to

chronic phase) compared with our protocol. In addition, Goldberg

and Choi [39] used mixed neocortical cultures, containing both

neurons and glia prepared from fetal mice at 14–17 days gestation.

Altogether, our present results complement those reported by

Goldberg and Choi [39], in that an evolving OGD-induced astro-

cytic and neuronal cell death ensues over time characterized by

varying ratios of astrocyte/neuron cell death with acute phase

(accompanied by endogenous neuroprotection) showing neuro-

nal rescue while the subacute/chronic phase (without therapeutic

intervention) displaying neuronal degeneration. In the same vein,

astrocyte viability may vary depending on the OGD phase and

severity, and may mediate delayed neuronal cell death as we [38]

and Goldberg and Choi [39] previously reported.

DJ-1 is a Key Protein in the Neural Survival
Following Hypoxic–Ischemic Injury

The present data strongly support the hypothesis that DJ-1 exerts

significant control on both the dynamic cell structure and mito-

Figure 5 Effect of OGD on the ratio of astrocyte/neuron. Amount of

astrocyte- and neuron-cell was counted. *P < 0.01, **P < 0.001.
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chondria function, requiring a balance between fission and fusion

[40–42]. Our results also complement recent reports of DJ-1 tar-

geting oxidative stress and inflammatory pathways [43–45]. How-

ever, although we found increased levels of the antioxidant GSH

at acute hypoxic–ischemic period, corresponding to DJ-1 mito-

chondrial translocation, the sequestration of extracellular DJ-1

with the antibody further led to GSH upregulation, but worsened

cell viability and mitochondrial activity. We used PRNCs (mixed

astrocytes/neurons), thus GSH concentrations reflected both cell

types. However, our recent study [15] using the same DJ-1 anti-

body could selectively reduce GSH in human neural progenitor

cells (hNPCs), indicating direct DJ-1 regulation of neuronal GSH.

In the present study, DJ-1 antibody could have selectively reduced

neuronal GSH, but such a change might have been masked by its

lack of inhibitory effects in astrocytes because of the present

mixed cell culture setup. These observations highlight the impor-

tance of DJ-1, in that while increased GSH levels have been

widely shown as therapeutic against stroke, such neuroprotection

is not recognized under conditions of DJ-1 depletion. Increased

DJ-1 immunoreactivity in human stroke patients appears to

highly correlate with robust expression of the glial fibrillary acidic

protein-labeled reactive astrocytes [45], further supporting the

notion that DJ-1 expression in stroke is accompanied by an active

inflammatory component. Finally, whereas the present DJ-1

nuclear translocation is observed in cultured PRNCs, it is tempting

to speculate that in vivo DJ-1 may similarly modulate the cell pro-

liferation in neurogenic sites of lateral ventricle and hippocampal

dentate gyrus. Along this line, we posit in agreement with recent

reports [5,46–48] that DJ-1 is a major protein for neural cell sur-

vival in disease states, such as stroke and PD.

Conclusions

We demonstrated that under hypoxic–ischemic condition, DJ-1

translocated into the healthy mitochondria. Moreover, significant

levels of DJ-1 protein were secreted by hypoxic–ischemic neural

cells. DJ-1 also preserves MTT- and GSH-activity during oxidative

stress. The present results provide evidence that DJ-1 is closely

involved in the early phase of neuroprotection against ischemic

stroke via the mitochondrial pathway, suggesting that therapies

designed to enhance efficient DJ-1 translocation into the mito-

chondria may prove effective against ischemic stroke.
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