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Abstract: Gold nanoparticles (GNPs) and graphene oxide flakes (GOFs) exerted significantly
(p < 0.0001) supportive roles on the phagocytosis bioactivity of the immune cells of phagocytic
nature against the Gram-positive and Gram-negative human pathogenic bacteria Staphylococcus
aureus and Escherichia coli. Under experimental conditions, upon bacterial exposure, the combined
GNPs and GOFs induced significant clearance of bacteria through phagosome maturation (p < 0.0001)
from time-points of 6 to 30 min and production of reactive oxygen species (ROS, p < 0.0001) through
the NADPH oxidase 2 (NOX2, p < 0.0001)-based feedback mechanism. The effects of the combined
presence of GNPs and GOFs on phagocytosis (p < 0.0001) suggested a synergistic action underway,
also achieved through elevated signal transduction activity in the bone-marrow-derived macrophages
(BMDM, p < 0.0001). The current study demonstrated that GNPs’ and GOFs’ bactericidal assisting
potentials could be considered an effective and alternative strategy for treating infections from both
positive and negative bacterial strains.

Keywords: gold nanoparticles; graphene oxide flakes; phagocytosis; bactericidal; NOX2; Staphylococcus
aureus; Escherichia coli; bone marrow-derived macrophages

1. Introduction

Various nanoparticles (NPs) are employed extensively in nanobiotechnology and
biomedicine fields due to their unique physicochemical features of size, shape, and
other physicochemical characteristics, including their reactivity toward biocomponents.
NPs function as antigen carriers [1], imaging reagents, molecular tags [2], therapeutic, di-
agnostic, and theranostic entities, and also as part of simultaneous delivery modules [3–5].
The multifunctional core-shell nanoplatforms made from gold nanoparticles (GNPs) and
graphene oxide flakes (GOFs) for miRNA delivery and their study on the delivery and
release profile were reported [6,7]. Notably, as NPs are foreign to the body, macrophages,
characterized by plasticity and heterogeneity [8], have to play crucial roles in in vivo sit-
uations to recognize, process, and clean-off NPs [9]. When activated, macrophages exert
M1 or pro-inflammatory and M2 as anti-inflammatory phenotypes [10], with M1 exerting
crucial effector cells during the resistance responses against intracellular pathogens and
tumour growths [11,12].
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In contrast, M2 cells are more involved in bio-reactions, such as immunosuppression,
induction of tissue remodelling, and tumour progression [13]. M1 and M2 states showed
different capacities for the uptake of nanoparticles of various types [14], and, in parallel,
NPs can join the micro-milieu stimuli and contribute to prime macrophages to polarize
into one stage or of the other [15–18]. Further, various types of NPs can affect macrophage
polarization and reprogram in different manners [19]. This interaction between nanopar-
ticles and these macrophagic cells of differential states caught the nanotoxicology and
medicinal application fields’ attention regarding the nanoparticles and other involved na-
noentities [20]. The modulation of the in vivo biological influences of the NPs and design
of therapies and therapeutic regimes that are NP-based require a deeper understanding
of the roles that these nanoscale particles play in the polarization of macrophages [21,22].
Gold NPs (GNPs) were investigated extensively in immunotherapy and vaccine develop-
ment due to their distinct characteristics and marked progress in the field. GNPs under
20 nm in size facilitate their preferential intracellular accumulation, particularly within
immune system cells, and were observed to perform their regular function of interacting
with foreign entities and encountered substances.

Nonetheless, as a result of enhanced permeability and retention, GNPs also undergo
passive accumulation into the leaky and immature vasculature, in addition to solid tu-
mours [23]. Various factors influence the immunomodulatory activities of GNPs, e.g., spe-
cific targeting of certain cells or organs, the capacity of up taking cells, higher release
kinetics, and facilitated and fast systemic clearance of nanoentities [24]. The physicochemi-
cal features of the GNPs need to be precisely controlled in shape, size, and properties to
achieve the higher capability of these nanoentities to reach targeted cells, which certainly
lead to more successful applications of these nanoparticles in benefiting immunother-
apy and vaccine development. NP tolerance and immunity are induced by dendritic
cells (DCs), as well as other antigen-presenting cells (APCs) and, exactly for this reason,
the targeting of DCs is crucial during GNP engagement to enhance the desired levels of
immunomodulatory responses.

The graphene family materials, including graphene oxide (GO), reduced/functionalized
graphene oxide (rGO), graphene quantum dots, graphene nanoribbons, 3D (three-dimensional)
graphene foam, and graphene nanopores, all are known to exert enormous effects in
various biomedical applications. These materials were tried as antibacterial [25,26], anti-
cancer [27,28], drug delivery [29–31], bio-sensing [32–34], and bio-imaging [35,36] processes
owing to their differential interactions with biosystems and biomolecules under in vivo
and in vitro conditions. This potential ascended from the characteristic physical, chemi-
cal, and mechanical properties of NPs and flakes to participate in biological processes at
subcellular, cellular, and upcellular levels and scales. The high surface-to-volume ratio,
effective larger surface area at the nanoscale dimensions, ability to surface functionalize,
and the possession of remarkable colloidal stability in the aqueous medium compared to
the characteristics and stability of the pristine mono- and multilayered graphenes [37–40]
makes the material more desirable. GO, and rGO possess different physical and chemi-
cal characteristics, including differences in solubility, dispensability, lateral dimensions,
sheet size, and the degrees and extents of their participation in redox reactions. Also,
cellular uptake and biodegradation can easily be manipulated by using different reagents
to carry out oxidation and reduction reactions [41–43]. The differences in bioactivities
levels of GO and rGO are reported in several types of bacteria, as well as in various cancer
and noncancerous cells [44–46].

The current study aimed to understand the roles of GNPs and GOFs on phagocytic
activity in dealing with the human pathogenic bacteria Staphylococcus aureus (S. aureus) and
the Escherichia coli (E. coli).
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2. Materials and Methods
2.1. Materials

The gold nanoparticle (GNPs, Cat.NO.741965-25ML) and graphene oxide flakes
(GOFs, Cat. NO. 763713-250MG) were purchased from Sigma (Milwaukee, WI, USA).
The carbon contents in GOFs were between 42% and 52% for the product according to the
specification supplied by Sigma. The GOFs were used after sonication in deionized water
to exfoliate into monolayers as an aqueous dispersion. Deionized water, a strong repulsive
media for the GOFs, ensured that aggregation did not persist, and the GOFs were available
as single-layer flakes. GNPs and GOFs were mixed at a concentration of 10 µg/mL each.
Moreover, the samples were freshly prepared and utilized immediately. GNPs and GOFs
were characterized by UV-visible spectroscopy in a quartz cuvette and Scanning Electron
Microscopy (SEM) and Transmission Electron Microscopy (TEM), respectively. The GNPs
were of 21.33 ± 4.51 nm in diameter size.

2.2. Bone Marrow-Derived Macrophages (BMDMs)

Male C57/BL6 mice (7–8 weeks old) were used as the source for isolation of primary
BMDMs, following the previously reported method [47]. All experiments using mice
were performed in accordance with the US National Institute of Health (NIH) Guide for
the Care and Use of Laboratory Animals (NIH Publication No. 86–23, revised in 1996)
and were approved by the Animal Care and Ethics Committee at Biotechnology Division,
Applied Sciences Department, University of Technology, Baghdad, Iraq.

2.3. Blood Sampling and Preparation
2.3.1. Blood Samples

Fresh samples of blood were taken from 10 healthy donors and collected in heparin-
coated tubes as described [48] based on Helsinki’s declaration and regulation of 1975 as a
statement of ethical principles. All the methods were carried out in accordance with all the
relevant guidelines and regulations for working with human origin samples. Permission
was obtained from the hospitals of the medical city, Baghdad, Iraq. The institutional
ethics committee approved all experimental protocols of the University of Technology,
Baghdad, Iraq (Ref. No. AS 20-8-01-2020). The participants were informed about the study
before the collection of any data or samples. Informed consent was obtained from the
study participants.

2.3.2. Human Neutrophils Isolation

Neutrophil isolation medium (5.0 mL) was taken into a centrifuge tube; the blood sam-
ple (5.0 mL) was carefully added, and centrifuged (2000 RPM, 10 min, 4 ◦C). The detailed
procedure was followed according to the reported protocol [49]. The cells were counted
and adjusted to 1 × 106/mL, and pretreated with GNPs and GOFs (1 h, 10 µg/mL each),
followed by infection with S. aureus (multiplicity of infection (MOI)—1:100) and incubation
(37 ◦C, 30 min). The phagocytic index was calculated using the following equation:

Phagocytic index =
a

a− b
(1)

where a refers to nonphagocytic cells and b refers to phagocytic cells.

2.4. Intracellular Bacterial Killing Assay

S. aureus and E. coli were cultured (37 ◦C) in Lysogeny Broth (LB) broth until the
mid-log phase (optical density (OD), 0.4–0.6). Following centrifugation (3500× g, 15 min,
4 ◦C), sterile Phosphate Buffered Saline (PBS) was used to wash the pellets 3 times. The con-
centration of the re-suspended bacteria was determined by measuring OD at 550 nm.
The BMDMs were used alone or pretreated with GNPs, GOFs, and combined GNPs and
GOFs mixture at 10 µg/mL each. The cells were then infected with S. aureus or E. coli at
M.O.I. 1:50 and incubated at 37 ◦C for 60 min. The BMDMs were treated with lysis buffer.
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To determine total and extracellular bacterial killings, serial dilutions (10×) of the lysates
were incubated with Luria-Bertani (LB) agar plates (37 ◦C, 24 h). Values of the total and
extracellular bacterial killings were used to derive the intracellular bacterial killing values.

2.5. Determination of pH of Phagosomes

The luminal pH of the phagosomes was measured according to the previous method [50].
Briefly, double-labelling of the heat-killed isolates of S. aureus and E. coli were performed
using 5 mg/mL carboxy-fluorescein-succinimidyl ester (SE), a fluorescent probe with
sensitivity to pH; Molecular Probes, Eugene, OR, USA, and 10 mg/mL carboxy-tetraethyl-
rhodamine-SE (a fluorescent probe with no sensitivity to pH; Molecular Probes, Eu-
gene, OR, USA). Next, a pulse process for the isolated BMDMs was conducted with
the labelled bacteria (MOI = 1:50; 30 min) and pursued at 37 ◦C for each of the mentioned
periods, the presence and absence of GNPs, and GOFs. Phagosome pH was extracted using
the ratio of fluorescein/rhodamine fluorescence using a standard curve.

2.6. Assay of Phagosome/Lysosome Fusion

The BMDMs were isolated and plated into 4-well chamber-slides at a concentration of
1 × 105 cells/mL in RPMI-1640 media. After 10 h, the BMDMs were pretreated with GNPs
and GOFs at a concentration of 10 µg/mL each for 1 h. The Lysotracker Red was used to
load the cells (25 nM, 37 ◦C, 60 min), then incubated with Fluorescein isothiocyanate (FITC)-
conjugated S. aureus (MOI—1:50, 2 h). The Lysotracker Red was added during infection
time. Sterile, cold PBS was used to wash the cells five times, followed by fixation with 4%
paraformaldehyde and nuclei staining using 4′,6-diamidino-2-phenylindole (DAPI). Sam-
ples were mounted and examined with a fluorescent microscope (Olympus, Tokyo, Japan).
Unfused phagosomes containing FITC-bacteria appeared with a green stain, whereas the
lysosomes labelled with Lysotracker appeared red. The fusion of these phagosomes and
lysosomes seemed to be yellow as a result of the fusion of the two labelled fluorochromes.

2.7. Phagocytosis of pHrodo E. coli BioParticles by BMDMs

The BMDM cells were plated in a 4-well plate. The cells were pretreated with GNPs
and GOFs at a concentration of 10 µg/mL each. pHrodo-particles were mixed in 1 × PBS
(pH 7.4), vortexed, and 20 µL of the solution was added to the cells. Phagocytosis was
allowed for 2 h, and the cells were fixed and stained with DAPI; images were captured
using a Zeiss confocal microscope at 400×. The blue colour represented the cells’ nucleus,
and the red dots showed the E. coli-pHrodo constituent in phagocytes.

2.8. NADPH Oxidase Assay

Lucigenin (bis-N-methyl acridinium nitrate; Sigma-Aldrich, USA) was used to deter-
mine the NADPH oxidase (NOX2) activity of BMDMs. Briefly, an incubation step (37 ◦C for
different periods) was performed for BMDMs with heat-killed and opsonized isolates of
S. aureus and E. coli (each separately with phagocytes/bacteria ratio = 1:50) in the presence
and absence of GNPs and GOFs at the concentration of 10 µg/mL each.

2.9. Statistical Analysis

The data ere expressed as the mean± SE. All experiments were carried out in triplicate.
Differences between groups were analyzed using one-way ANOVA for the phagocytic
index, intracellular killing, and phagocytosis of pHrodo E. coli BioParticles, while two-way
ANOVA was used for phagosomal maturation, ROS, and NOX2 followed by a posthoc
test using Tukey’s multigroup comparisons on GraphPad Prism 8.0.2, San Diego, FL, USA.
The data were considered significant if p < 0.05 [51].
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3. Results and Discussion
3.1. Characterization of the GNPs and GOFs

The GNPs and GOFs were analyzed by UV-visible (UV-VIS) spectroscopic method and
were found to exhibit the λmax absorption values at 528 nm and 230 nm for the GNPs and
GOFs, respectively (Figure 1A). The morphology of the gold nanoparticles and graphene
oxide was studied using SEM (Figure 1B) and was found to be spherical for the GNPs with
a size of 21.33 ± 4.51 nm and flakes for the GOFs. TEM results are shown in Figure 1C. The
GNPs were dispersed on the surface of GOFs. Most of the GNPs were located on the surface
of the GOFs and did not protrude from the surface, indicating very strong interactions
between GOFs and GNPs. GOFs in the aqueous media ruled out any aggregations of GOFs,
which are lipophilic. The Raman spectra confirm the difference between the single- and
multilayer GO sheets by exhibiting single peaks at ~2679 cm−1 [52–54].
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3.2. GNPs and GOFs Increase the Phagocytic Index of Human Neutrophils

GNPs and GOFs were tested for their capability to induce human neutrophils
(Figure 2A–E). The results showed an increase in phagocytic human neutrophil activ-
ity, followed by infection with S. aureus after adding the GNPs and GOFs at a concentration
of 10 µg/mL each (Figure 2F). The nanoparticles increased the phagocytic cells’ activity
known to contribute to IL-8 production [55]. An increase indicated the nanoparticles’ capac-
ity as immune-modulators by increasing the phagocytic cells’ activity to engulf the bacteria.
Phagocytic cells, such as human neutrophils, were previously shown to possess the ability
to induce cytokines, such as IL-8, after treatment with silver nanoparticles (AgNPs) [56].

The entry of the GNPs and GOFs demonstrated significantly (p < 0.0001) increased phago-
cytosis activity at the cellular scale experiment compared to the control (Figure 2F). The biologi-
cal activity details on the antibacterial action of the GOFs, as shown in
Figure 2D, did not exhibit any significant morphological changes for the GOFs. According
to reference [57], bacteria and GOF interactions are expected to reduce GOFs, resulting in
a lesser oxygen component ratio in the GOFs. However, the quantitation of the carbon
could not be estimated at the cellular level. The interaction of the bacteria and GOFs affects
the morphology and chemical contents of the GOFs. The GOFs are biocompatible for the
bacteria, and the reduced GOFs were expected to increase the antibacterial action slightly.
The sheets also work as adsorption sites for bacteria, thereby inhibiting the proliferation of
bacteria in cellular compartments.

3.3. GNPs and GOFs Increase Bacterial Intracellular Killings

The numbers of internalized S. aureus and E. coli in BMDMs were tested following
infection in the presence or absence of GNPs and GOFs to gauge the activity of the phago-
cytosis process, intracellular killings, and comparison between the two conditions of the
presence and absence of the nanoparticles. Both the GNP- and GOF-pretreated phagocytes
showed a significant increase in their intracellular killings of the ingested, live S. aureus, and
E. coli, as exhibited in Figure 3A,B, while combined GNP- and GOF-treated cells demon-
strated maximum significant increment (p < 0.0001). Thus, the GNP and GOF-pre-treated
phagocytic cells demonstrated an increased bactericidal response to Gram-positive and
Gram-negative strains.

3.4. The GNPs and GOFs in Phagosome Maturation

Following the ingestion of bacteria, acidification by phagosomes and the fusion of
phagosomes and lysosomes are two main characteristics of phagocyte maturation [58].
Our results showed a significant increase in phagosomal acidification of the GNP- and
GOF-pretreated BMDMs following the ingestion of S. aureus and E. coli, as compared
with the control BMDMs (Figure 4). Further loading of BMDMs with Lysotracker red,
which serves in labelling the late endosomes/lysosomes selectively, allowed monitoring of
the maturation events of the S. aureus-FITC ingesting phagosomes through testing their
overtime capability of co-localization with Lysotracker red. The results demonstrated the
occurrence of this co-localization at 30 min in BMDMs pretreated with GNPs and GOFs.
In parallel, most S. aureus-FITC entities showed less co-localization with the Lysotracker in
control BMDMs (Figure 5).

Moreover, following the ingestions of S. aureus, an increase in phagosomal acidification
in GNP- and GOF-pretreated BMDMs was observed. Again, the nanoparticle-pretreated
macrophages demonstrated significantly increased phago-lysosome fusions in response
to S. aureus and other bacterial challenges, such as E. coli. These results, therefore, demon-
strated that BMDMs, which were pretreated with GNPs and GOFs, possessed improved
phagosome maturation following the ingestion of S. aureus and E. coli.
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Figure 2. GNPs and GOFs increase the phagocytic index of human neutrophils. (A) Control unin-
fected cells. (B) Infected cells with Staphylococcus aureus. (C) GNP-pretreated cells at a concentration
of 10 µg/mL infected with Staphylococcus aureus. (D) GOF-pretreated cells at a concentration of
10 µg/mL infected with Staphylococcus aureus. (E) GNP- and GOF-pretreated cells at a concentra-
tion of 10 µg/mL each infected with Staphylococcus aureus. The images were visualized at 100×.
(F) Phagocytic index percentage. Data are represented as mean ± SE. Statistical significance by
one-way ANOVA (p < 0.0001) followed by posthoc testing using Tukey’s multi group comparison:
* p = 0.01, ** p = 0.001, **** p < 0.0001 indicate statistically different from the control.
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Figure 4. GNPs and GOFs induce phagosome maturation in BMDMs. Phagosomal pH was measured
in control, untreated BMDMs, pretreated with GNPs and GOFs as indicated, after being chased with
fluorescent probe-coupled Staphylococcus aureus or Escherichia coli. Data are represented as mean± SE.
Statistical significance by two-way ANOVA (p < 0.0001) followed by posthoc testing using Tukey’s
multi group comparison with control cells: * p = 0.03, *** p = 0.002, **** p < 0.0001 indicate statistically
different for (A) S. aureus while * p = 0.03, ** p < 0.01, *** p = 0.002, **** p < 0.0001 indicate statistically
different for (B) E. coli.
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proved phagosome maturation following the ingestion of S. aureus and E. coli. 

  

Figure 5. GNPs and GOFs enhanced co-localization between Lysotraker and Fluorescein isothio-
cyanate (FITC)-conjugated Staphylococcus aureus. Co-localization appeared in yellow, lysosomes
labelled with Lysotracker appeared red, cell nuclei were stained with 4′,6-diamidino-2-phenylindole
(DAPI) appeared in blue, scale bar, 10 µm. The scale bar is identical for all, as the magnifications are
the same for the images.

3.5. GNPs and GOFs Increase Phagocytosis of pHrodo E. coli Bioparticles by BMDMs

The phagocytic activity of BMDMs was determined by monitoring the uptake of
tagged E. coli that showed a fluorescent signal only upon their trafficking into an acidic
compartment of the lysosome (Figure 6A–E). A comparison of phagocytosis of pHrodo E.
coli BioParticles followed by pretreatment of BMDMs with GNPs and GOFs was carried out.
The results showed that the control BMDMs cells had less phagocytosis potential than the
BMDMs cells, which were pretreated with GNPs and GOFs, Figure 6F.
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Figure 6. GNPs and GOFs enhanced phagocytosis of pHrodo E. coli BioParticles. (A) Control, untreated
BMDMs cells stained with DAPI (blue). (B) Cells treated with pHrodo E. coli BioParticles (red) alone.
(C) GNP-pretreated cells at a concentration of 10 µg/mL then treated with pHrodo E. coli BioParticles.
(D) GOF-pretreated cells at a concentration of 10 µg/mL then treated with pHrodo E. coli BioParticles.
(E) GNP- and GOF-pretreated cells at a 10 µg/mL concentration each then treated with pHrodo
E. coli BioParticles. (F) The graph represents the number of engulfed of pHrodo E. coli BioParticles.
Cells were quantified in 10 fields using Image J software version 1.43 (U.S. National Institutes of
Health, Bethesda, MD, USA). Data are represented as mean ± SE. Statistical significance by one-way
ANOVA (p < 0.0001) followed by posthoc testing using Tukey’s multi group comparison with control
cells: ** p < 0.01, **** p < 0.0001 indicate statistically different from control BMDMs.

3.6. GNPs and GOFs Induce NOX2 Function in BMDMs

The phagocytes were able to kill the ingested bacteria through the crucial mecha-
nism of the activation of the NOX2 enzyme complex, leading to ROS production (reactive
oxygen species), i.e., superoxide anions. In the membranes of the phagosomes, these bacte-
rial anions are produced by the activity of the NADPH oxidase complex NOX2, thereby
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leading the phagocytes to undergo more active killing of the ingested bacteria [59,60].
To test the NOX2 and ROS activities in the phagocytes, superoxide anion production
by murine BMDMs was assayed. Compared with control BMDMs, the GNP- and GOF-
pretreated BMDMs showed increased ROS and NOX2 activities, supposedly with the
substantial release of superoxide anions in response to either S. aureus or E. coli presence
(Figures 7 and 8). Thus, the pretreatment of BMDMs with GNPs and GOFs was associ-
ated with increased NOX2 activity in response to improved ROS production, which is
possibly one of the principal mechanisms leading to enhanced killing clearance of bacte-
ria [61]. However, other mechanisms cannot be ruled out, since cell wall damage [62] and
DNA/RNA destruction [63] was not monitored. In most probability, bacteria trappings in
the aggregated GOFs and cell wall damage by the sharp edges of the GOFs pieces cannot
be ruled out [64,65]. The DNA/RNA damage needs further work to estimate the damage
to the nucleic acid component.
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Figure 7. GNPs and GOFs increase reactive oxygen species (ROS) responses to bacterial strains in
BMDMs. BMDMs were pre-treated with GNPs, and GOFs were then infected with Staphylococcus
aureus or Escherichia coli. ROS was measured using Ampliflu. Kinetic readings of representative data
are shown as mean± SE at the indicated time. Statistical significance by two-way ANOVA (p < 0.0001)
followed by posthoc testing using Tukey’s multi group comparison with control cells: *** p = 0.001,
**** p < 0.0001 indicate statistically different for (A) S. aureus while ** p = 0.002, *** p = 0.0003,
**** p < 0.0001 indicate statistically different for (B) E. coli.
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Figure 8. GNPs and GOFs improved NADPH oxidase 2 (NOX2) activity in BMDMs infected with
Staphylococcus aureus or Escherichia coli in the presence and absence of GNPs and GOFs. NOX2 activity
in BMDMs was assessed kinetically with lucigenin. Data are shown as mean ± SE at the indicated
time. Statistical significance by two-way ANOVA (p < 0.0001) followed by posthoc testing using
Tukey’s multi group comparison with control cells: *** p = 0.0001, **** p < 0.0001 indicate statistically
different for (A) S. aureus while ** p = 0.002, *** p = 0.0004, **** p < 0.0001 indicate statistically different
for (B) E. coli.

4. Conclusions

A significant increase in phagocytic cell activity was observed after introducing GNPs
and GOFs in the experimental set-up studying cellular behaviour. The incremental phago-
cytosis activity was linked to the ROS and NOX2 pathway feedback. Presumably, the
presence of immune-modulator entities to the involvement of increased levels of phago-
cytic cells, together with the presence of GNPs and GOFs leading to maturation of the
phagocytic cells and involvement of the NOX2 pathway is a plausible explanation of
the increased immune response and phagocytosis activity, which has the potential to be
utilized for better antibacterial designs and preparation. The study also indicated that
GNPs and GOFs could contain chemical components that act as immune-enhancers to
increase phagocytic cell activity to engulf bacteria and other xenobiotics. However, the
nanoparticles’ exact chemical roles need to be ascertained in further detail, and the chemical
aspect of the interaction needs exploration. Taken together, the data demonstrated that
GNPs and GOFs contribute to the two main bactericidal processes represented by the
maturation of phagosomes and the production of ROS derived from NOX2 activation in
this scenario. It can be concluded that the GNPs and GOFs are important contributors to
the amplification of antibacterial responses initiated by the host’s innate immune system.
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