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1. Summary
Many cells are able to orient themselves in a non-uniform environment by

responding to localized cues. This leads to a polarized cellular response,

where the cell can either grow or move towards the cue source. Fungal haploid

cells secrete pheromones to signal mating, and respond by growing a mating

projection towards a potential mate. Upon contact of the two partner cells,

these fuse to form a diploid zygote. In this review, we present our current

knowledge on the processes of mating signalling, pheromone-dependent polar-

ized growth and cell fusion in Saccharomyces cerevisiae and Schizosaccharomyces
pombe, two highly divergent ascomycete yeast models. While the global archi-

tecture of the mating response is very similar between these two species, they

differ significantly both in their mating physiologies and in the molecular con-

nections between pheromone perception and downstream responses. The use of

both yeast models helps enlighten both conserved solutions and species-specific

adaptations to a general biological problem.
2. Introduction
Cell polarization induced by external signals is a fundamental cellular property

that relies on cytoskeletal and membrane re-organization in response to specific

cues. Many cell types exhibit chemotaxis or chemotropism in response to exter-

nal signals, which are essential for functions as diverse as neuronal pathfinding,

wound healing or pathogenesis. Unicellular yeast models are potent systems to

understand the molecular interactions that generate cell polarity induced by

external inputs. Indeed, yeast cells exhibit chemotropism in response to phero-

mones produced by partner cells during the mating process. Pheromones are

recognized by specific receptors expressed on the surface of cells of the opposite

mating type and this binding stimulates the activation of receptor-associated

heterotrimeric G-proteins, which in turn promote the activation of a conserved

mitogen-activated protein kinase (MAPK) module. By ultimately activating a

specific transcription factor, MAPK cascade components modulate the expression

of mating-specific genes, thus promoting cell cycle arrest, polarized morphogen-

esis in the direction of the partner cell (a process known as shmooing), cell–cell

fusion and karyogamy to produce a diploid zygote (figure 1).

The aim of this review is to give an overview of the mating process of the

two distantly related ascomycete ‘cousins’, the yeast models Schizosaccharomyces
pombe and Saccharomyces cerevisiae. It should be highlighted here that these

two yeasts are in fact highly divergent, with an evolutionary distance estimated

at close to 1 Gyr [1,2]. We will focus on the spatial reorganization of the cell

for zygote formation, showing how yeast cells re-orient their growth in the

direction of a pheromone source and describing the connections between

pheromone signalling and cell polarization. We will also survey the complex

mechanisms that allow cells to fuse. By describing the mating process of the

two yeast models, we will direct our attention to what it is already known,
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Figure 1. Sequential steps during mating in Schizosaccharomyces pombe and Saccharomyces cerevisiae. (a) In fission yeast, the mating process is triggered by
nitrogen starvation when compatible partners are present. (b) Budding yeast cells of opposite mating type can instead mate spontaneously on rich medium
to form stable diploids that undergo sporulation upon starvation. In both organisms after pheromone exchange, cells grow in a polarized manner in the direction
of their partner and undergo fusion, karyogamy and sporulation. See text for details.
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but also speculate about open questions that would be useful

to address in the future. For sake of clarity, proteins will as

much as possible be described by their generic function.

Their organism-specific names are listed in table 1. Finally,

we will look at the implications that the study of yeast

mating could have for the understanding of analogous

fundamental biological processes in higher eukaryotes.
3. Mating signalling and polarization
At first glance the overall process of mating appears quite

similar in the two yeast models. Indeed, in both cases peptide

pheromones are recognized by G-protein coupled receptors

expressed on the cell surface. The receptors have a conserved

structure with seven transmembrane domains, a cytoplasmic

C-terminal tail mediating desensitization and pheromone-

induced internalization, and an intracellular loop involved

in G-protein binding. Moreover, in both cases the signal is

transmitted by MAPKs to a transcription factor that activates

the expression of mating-specific genes. However, a more

detailed analysis reveals many differences between the two

species, which is perhaps not surprising given their long

evolutionary distance.

3.1. Activation of mating signalling in
Saccharomyces cerevisiae

The mating process has been extensively studied in S. cerevisae
over the last 30 years. At the physiological level, budding

yeast cells mate spontaneously on rich medium when in

the presence of cells of the opposite mating type, forming

stable diploids, which sporulate upon starvation (figure 1b).

Pheromones (called a- and alpha-factor) are captured by the

receptors Ste3 and Ste2 (for a- and alpha-factor, respectively),

which activate the same Gabg heterotrimeric G-protein.

Pheromone binding stimulates GDP to GTP exchange on

the Ga subunit (Gpa1), which allows the released Gbg (Ste4

and Ste18) heterodimer to activate mating signalling [3]

(figure 2a). In particular, Gb directly interacts with key

effectors: in the presence of pheromones, Gb binds to the

p21-activated kinase (PAK)-like kinase Ste20 [4], the MAPK
scaffold protein Ste5 [5], the Cdc42-guanine-nucleotide

exchange factor (GEF) Cdc24 [6–8] and the scaffold protein

Far1 [9] (figure 2a).

The central hub for mating signalling is Ste5. This scaffold

protein serves to link the Gb with the PAK kinase Ste20

and the MAPK module, and has an essential role in promot-

ing MAPK cascade activation [10,11]. The PAK kinase is the

upstream component of the MAPK cascade, and activates

the downstream kinases Ste11 (MAPKKK), Ste7 (MAPKK)

and Fus3 or Kss1 (MAPK) [12] (figure 2a). After pheromone

stimulus, the Ste5 scaffold is rapidly translocated to the

plasma membrane by Gbg [13,14], where it initiates and

amplifies mating signalling [15]. Ste5 membrane binding

additionally depends on two membrane-binding regions,

an N-terminal amphipathic helix and a PH domain [16,17].

Ste5 also binds the Cdc42 GEF Cdc24, which may contribute

to its re-localization to the cell cortex [7]. At the cortex, Ste5

simultaneously binds all the components of the MAPK

module through distinct domains [18] and acts as a cofactor

by increasing the low MAPKK Ste7 intrinsic phosphorylation

activity on MAPK Fus3 [19]. Membrane binding also relieves

an auto-inhibitory interaction in Ste5 to promote Fus3

activation [20]. Finally, Ste5, by binding to the phosphatase

Ptc1, also promotes a switch-like activation of Fus3 [21].

Once activated, Fus3 dissociates from Ste5 and serves to acti-

vate the transcription factor Ste12 [22,23]. Active Fus3

phosphorylates three additional targets: the cyclin inhibitor

Far1 [24,25] and the cyclin-dependent kinase Cdk1 (Cdc28)

[26] to promote cell cycle arrest in G1 phase [27], and the

formin Bni1 to regulate actin polarization and cell fusion [28].
3.2. Polarizing growth towards the partner cell in
Saccharomyces cerevisiae

Budding yeast cells are exquisitely able to project a shmoo

towards the source of a pheromone gradient, allowing them

to grow towards a potential mating partner. Early important

experiments showed that, in mating mixtures of MATa

cells containing the same number of pheromone-producing

and non-pheromone-producing MATa partners, MATa cells

are able to discriminate between the two categories, and



Table 1. Mating and fusion pathway components in budding and fission yeast. Despite confusing nomenclature, most proteins involved in mating signalling
and shmoo formation are conserved between S. cerevisiae and S. pombe. However, fission yeast cells notably lack homologues of the scaffold proteins Ste5 and
Far1, and a Gg subunit has not yet been identified. A more distantly related Ras-like protein, Rsr1/Bud1, also plays important roles during vegetative cell
polarization in budding yeast. Some components of the fusion process are also conserved. However, despite the essential role of the formin Fus1 in pombe
cell – cell fusion, the possible roles of the cerevisiae formins Bnr1 and Bni1 in fusion are unclear. Conversely, the two budding yeast FUS genes do not have
orthologues in fission yeast. See text for details.

generic name/function S. cerevisiae S. pombe

SIGNALLING

pheromones a-factor, a-factor P-factor, M-factor

G-protein coupled receptors Ste3, Ste2 Mam2, Map3

G-protein a subunit Gpa1 Gpa1

G-protein b subunit Ste4 Gnr1 ( putative)

G-protein g subunit Ste18 unknown

PAK kinase Ste20 Shk1

MAPK scaffold Ste5 no homologue

other MAPK scaffold Ste50 Ste4 ( putative)

MAPKKK Ste11 Byr2

MAPKK Ste7 Byr1

MAPK Fus3, Kss1 Spk1

transcription factor Ste12 Ste11

scaffold for shmoo orientation Far1 no homologue

Cdc42 GTPase Cdc42 Cdc42

Cdc42-GEF Cdc24 Scd1

Cdc42-scaffold Bem1 Scd2

Ras GTPasea Ras1

Formin Bni1, Bnr1 For3?

FUSION

Prm1 (4-pass transmembrane protein) Prm1 Prm1

other 4-pass transmembrane proteins Fig1 Dni1

transmembrane protein Fus1 no homologue

Rho-GEF Fus2 no homologue

Formin Bni1, Bnr1? Fus1

type V myosin Myo2 Myo51, Myo52?

tropomyosin Tpm1 Cdc8
aRas1 has an essential role in mating in fission yeast, whereas its budding yeast counterparts, Ras1 and Ras2, are implicated in a distinct, cAMP signalling
pathway.
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mate almost exclusively with pheromone-producing partners

[29]. Nevertheless, when pheromone receptors are saturated

through high isotropic concentrations of pheromone, cells

get confused and mate randomly with either pheromone-

producing and non-producing partners, through the so-called

‘default pathway’ [30], where the presumptive bud site

becomes the shmoo site [31]. In addition to producing phero-

mones, yeast cells also produce proteases that cleave and

inactivate pheromones, thus actively remodelling the phero-

mone landscape in their environment. In particular, the

alpha-factor protease Bar1, which is released by MATa cells,

helps these cells avoid each other [32,33]. Simplified setups,

such as release of pheromone through micropipette or micro-

fluidic devices, have been used to show that MATa cells

orient growth towards the source of an artificial pheromone
gradient [34–37]. Yeast cells generally initiate shmoo

growth towards the gradient source, but are also able to

adjust their shmoo trajectory during polarized growth

[36,37]. This directional correction is probably due to polari-

zation factors undergoing a random walk at the plasma

membrane biased by receptor-activated Gbg association [38].

The main regulator of cell polarization is the small

GTPase Cdc42. Its role in symmetry breaking to define the

site of bud emergence during mitotic growth has been exten-

sively studied [39–41]. Cdc42 is activated by a single GEF

Cdc24, which is positively regulated by the scaffold protein

Bem1 [42]. In the absence of other cues in vegetative growing

cells, Bem1, which binds Cdc42, its GEF and a PAK kinase,

functions in a positive feedback loop to break symmetry by

enforcing the formation of a single cluster of active Cdc42
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Figure 2. Mating signalling in budding and fission yeast. Pheromone binding
to its G-protein coupled receptor leads to Ga activation (Ga-GTP) and dis-
sociation from the Gbg heterodimer, and activation of a conserved MAPK
cascade that leads to the transcription of mating-specific genes, cell polariz-
ation in the direction of partner cells and subsequent fusion of mating pairs.
(a) In budding yeast, the signal is transmitted by the Gbg dimer, through
Gb interactions with several effectors. Notably Gb regulates the activity of
two distinct scaffold proteins to activate the conserved MAPK (through
Ste5) and Cdc42 (through Far1) modules. (b) In fission yeast, the transcription
factor Ste11 is activated upon nitrogen starvation and regulates the
expression of essential signalling genes, such as the Ras1-GEF Ste6. Ga is
responsible for signal transmission in this organism and appears to activate
the MAPK cascade (directly or indirectly) cooperatively with Ras1 and the
scaffold Ste4. Dashed arrows indicate hypothetical interactions; question
marks indicate components not yet identified ( pombe Gg) or interactions
not specifically demonstrated during mating (Ras1 – Scd1). See text for details.

rsob.royalsocietypublishing.org
Open

Biol3:130008

4

[43–45] (figure 2a). During mating, Cdc42 regulates the PAK

kinase Ste20 localization to the plasma membrane and its

activation; indeed active Cdc42 (Cdc42-GTP) binds Ste20

and stimulates its kinase activity [46]. Consistently, mutations

impairing Cdc42 activity or its GEF affect pheromone-

induced MAPK signalling in budding yeast [8,47]. Like the

PAK kinase, the Cdc42 GEF Cdc24 interacts with Gb [6,8].

However, in vivo this interaction depends on the adaptor

protein Far1 [9,48] and is required for the localized activation

of Cdc42.

Far1, a scaffold structurally similar to Ste5 [17,49,50], has

a fundamental role in determining the site of cell polariza-

tion during mating [51]. In vegetative growing cells, Far1

sequesters Cdc24 in the nucleus during mitosis, and Far1

degradation is required for Cdc24 release and recruitment

to the incipient bud site in late G1 phase [52]. Nevertheless,
during mating a Far1–Cdc24 complex can translocate from

the nucleus to the cell cortex, where it interacts with Gbg

and recruits Cdc42 and Bem1 away from the bud site, thus

providing the switch from bud growth to shmoo growth

[6,9,50,53]. The disruption of far1 does not affect the ability

of cells to shmoo per se, but impairs the displacement of

polarity factors from the site of bud emergence, thus leading

to the formation of a mislocalized shmoo at the bud site.

Consistently, mutations that prevent the formation of a

Cdc24–Far1–Gbg complex prevent the correct orientation

of shmoos towards a pheromone source [6,9,48]. In addition

to Far1, the scaffold protein Bem1 can also bind the PAK

kinase Ste20 and the MAPK scaffold Ste5 [54], to recruit com-

ponents of the MAPK pathway to the shmoo site. Through

these interactions, Bem1 potentiates the MAPK cascade, lead-

ing to a local amplification of the signal [55]. Active Cdc42

then promotes actin assembly, resulting in polarized growth.

The Cdc24–Far1–Gbg complex is not the only molecular

connection between pheromone receptors and the polariza-

tion machinery. Ga also has a positive role in promoting

chemotropism in budding yeast. Indeed, Ga directly interacts

with active (phosphorylated) Fus3 MAPK, thus promoting

its recruitment to the shmoo site [56]. Ga also promotes Fus3

recruitment in an indirect way: Ga binds the RNA-binding

protein Scp160 [57], which, upon pheromone treatment, inter-

acts with polarity and mating-specific mRNA, including

fus3 mRNA, thus ensuring its subsequent translation and

enrichment at the shmoo site [58]. This results in a gradient

of active Fus3 from the shmoo tip, which was proposed to be

important to maintain a local pool of activity [59]. Consistently,

active Fus3 at the shmoo site phosphorylates and stably loca-

lizes the formin Bni1 [28] and also phosphorylates Gb, thus

stabilizing the Far1–Gbg complex [56]. In turn, the formin

Bni1, by assembling actin cables, contributes to the polarized

recruitment of the MAPK scaffold Ste5, the Cdc42 GEF

Cdc24 and Fus3 itself for efficient Fus3 activation [60], as well

as to the delivery of vesicles that promote wandering of the

polarization patch for shmoo re-orientation [38]. In sum,

during budding yeast mating, several mechanisms cooperate

to link pheromone signalling with cell polarization, and the

molecular components required for shmoo orientation are

well defined. However, the mechanisms by which Cdc42

becomes initially asymmetrically localized in response to a

pheromone gradient remain unclear.

3.3. Physiological and molecular differences for
mating in Saccharomyces cerevisiae and
Schizosaccharomyces pombe

Despite superficial similarities between the mating processes

of S. cerevisiae and S. pombe, which we will describe below,

these organisms exhibit major differences. The first lies

in their distinct physiologies for sexual differentiation: while

S. cerevisiae mates spontaneously and forms stable diploids,

sexual differentiation in S. pombe is triggered by starvation,

and the diploid cells formed are unstable, ensuring a strict

coupling between mating and sporulation (figure 1). Second,

whereas signalling downstream of the pheromone receptors

is principally transmitted through Gbg released from Ga inhi-

bition in S. cerevisiae, it is transmitted through activated Ga in

S. pombe [61]. Finally, S. pombe cells lack homologous genes to

either Ste5 or Far1 scaffolds [49], but rely on the function of a
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Ras GTPase for both signalling and cell polarization [62], indi-

cating that the molecular connections between pheromone

sensing, signalling and polarization are distinct in the two

species (figure 2).
alsocietypublishing.org
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3.4. Activation of mating signalling in
Schizosaccharomyces pombe

In fission yeast, sexual differentiation is triggered by star-

vation when compatible mating partners are present. This

leads to arrest in G1 phase of the cell cycle, mating-type-

specific pheromones and pheromone receptor production,

polarized growth in the direction of pheromone source,

fusion of mating partners, karyogamy, meiosis and formation

of resistant spores [63] (figure 1a). Upon nitrogen starvation,

the transcription factor Ste11 (not to be confused with its

S. cerevisiae homonym) is activated in three different ways

[64]. First, lack of nitrogen leads to the inactivation of

TORC1 and cAMP pathways, both of which repress ste11
expression during vegetative growth [64,65]; second, nutrient

starvation promotes the activation of the stress-responsive

MAPK pathway, which enhances ste11 expression [66]; and

finally the mating-pheromone responsive MAPK pathway

also induces Ste11 when pheromone binds to its receptor [67].

Ste11 acts as a developmental switch. Indeed, the expression

of its targets induces physiological and morphological chan-

ges that lead to sexual differentiation, and its constitutive

expression causes starvation-independent sexual differentiation

[68]. Notably, Ste11 activates pheromone signalling, by directly

stimulating pheromone production and pheromone receptor

expression [63]. As Ste11 both activates pheromone signalling

and is induced by it, it provides a positive feedback for the

mating response, where pheromone signalling components

cooperate with Ste11 itself, to enhance their own expression

and to promote the transcription of other Ste11-dependent

genes [67,69].

Pheromones (P- and M-factors, produced by hþ and h–

cells, respectively) are bound by the receptors Mam2 and

Map3 (for P- and M-factor, respectively), which are presum-

ably coupled to the same components of a still incomplete

heterotrimeric G-protein. Here, the Ga protein Gpa1 is

responsible for the activation of the MAPK pathway [61]

(figure 2b). It is, however, unknown whether there exists a

Gbg dimer that negatively regulates Ga: a putative Gb sub-

unit, Gnr1, interacts with Gpa1 in a two-hybrid assay and

may inhibit Ga-mediated signalling [70], but whether it acts

as a monomer or coupled to an unidentified Gg remains

unclear. Notably, in S. cerevisiae, ‘kelch repeat’ proteins

were shown to mimic Gb subunits and to inhibit the Ga

protein Gpa2, which regulates invasive growth response

and filamentous differentiation in the absence of Gg [71];

and in Kluyveromyces lactis Gb subunit alone is able to posi-

tively activate the mating pathway in the absence of Gg

[72]. Once activated, Ga signals to the MAPK cascade,

which consists of the MAPKKK Byr2, the MAPKK Byr1 and

the MAPK Spk1 [73,74] (figure 2b). Spk1 was shown to direc-

tly target the transcription factor Ste11, thus promoting its

activation [75].

So far no data indicate a direct interaction between the Ga

and the MAPKKK Byr2, and it is also possible that unknown

scaffold or linker proteins mediate Byr2 activation, although

there exists no Ste5 homologue. One promising candidate is
the mating-specific protein Ste4, essential for sexual differen-

tiation [76], which interacts with Byr2 and promotes its

activation [77–79]. Ste4 (not to be confused with its S. cerevi-
siae homonym) shows homology to budding yeast Ste50 [77],

a protein involved in the activation of the MAPKKK Ste11 in

S. cerevisiae [80]. Interestingly, a Ste50 homologue binds both

MAPKKK and the Ga protein in K. lactis, an ascomycete clo-

sely related to S. cerevisiae [81], and is necessary for mating

signalling in Cryptococcus neoformans, a basidiomycere species

that lacks a Ste5 homologue [49,82], thus supporting the idea

that Ste4 may link Ga with the MAPKKK Byr2.

The small GTPase Ras1, the only homologue of human

Ras in fission yeast, is another regulator of the MAPK cascade

[62,74,83,84]. Differently, its budding yeast homologues do

not participate in mating: indeed, Ras1 and Ras2 are impli-

cated in cell proliferation by regulating adenylate cyclase

activity [85], whereas a second Ras-related small GTPase,

Rsr1/Bud1, is critical for bud-site selection and polarity

establishment through interaction with Cdc42 and its GEF

Cdc24 [86]. During mating in fission yeast, Ras1 is activated

at the cell cortex by the GEF Ste6, which promotes GDP to

GTP exchange, and inactivated by the GTPase-activating

protein (GAP) Gap1 [87]. ste6 is not expressed during vegeta-

tive growth, because its transcription is regulated by Ste11

[88] (figure 2b). Both Ste6 and Ras1 are essential for sexual

differentiation [83,84,89]. For MAPK activation, Ras1 was

proposed to regulate the localization of Byr2 MAPKKK to

the plasma membrane [90,91]. Because both Ras1 and Ste4

are essential for mating and bind Byr2 through distinct

domains [77–79], both proteins may synergize for Byr2

activation. Finally, Cdc42 signalling may also contribute to

MAPK activation, as one Cdc42 effector, the essential PAK

kinase Shk1, promotes the transition of the MAPKKK Byr2

to an activated state [78] (figure 2b). Surprisingly, however,

the Cdc42 GEF Scd1 and the scaffold protein Scd2 (Bem1 hom-

ologue), which promote Cdc42 activation during mating and

are essential for the mating process, are not required for

MAPK activation [62]. One possibility is that residual Cdc42

activity (through the action of a second GEF, Gef1) may be suf-

ficient for activation of Shk1, but not for polarized cell growth,

resulting in sterility. In sum, several components were found to

promote Byr2 MAPKKK activation, some of which are induced

by MAPK signalling and provide a positive feedback that

reinforces pheromone signal, but the molecular links with the

Ga remain unknown.
3.5. Polarizing growth towards the partner cell in
Schizosaccharomyces pombe

As in budding yeast, Cdc42 is the major cell polarity regula-

tor. Bendezú and Martin [92] have recently shown that

during mating an active Cdc42 complex samples the cell per-

iphery before specifying and stably localizing at the shmoo

tip. Cdc42, Scd1 and Scd2 form dynamic zones, which

explore the cell periphery in early stages of mating in

response to low-level pheromone signalling. During dynamic

exploration, cell wall synthases Bgs1 and Bgs4, which are

required for growth, are retained in endomembranes and

co-localize with Cdc42 only upon partner cell choice. This

dynamic exploration is required for orientation of the

mating projection, as mutants that constitutively activate

pheromone signalling prevent this dynamic exploration and
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lead to the default choice of a cell pole for growth. Conversely

to wild-type strains, these mutants preferentially mate with

sister cells, suggesting that Cdc42 exploration is important

for partner selection [92]. This phenotype is reminiscent of

that of far1 mutants in S. cerevisiae, which shmoo from bud

site landmarks by default in the absence of orientation infor-

mation [9,48,51], but whether far1 mutations increase the

relative choice for sister cells has not been studied yet. How-

ever, no Far1 homologue exists in S. pombe, such that the

mechanisms that promote the recruitment of active Cdc42

to pheromone-bound receptors are unknown.

In addition to its role in MAPKKK activation, Ras1 was

also proposed to promote Cdc42 by activating the Scd1

GEF [93]. Indeed, ras1D cells are almost round-shaped, even

during vegetative growth [83]. For this function, Ras1 is acti-

vated by a second, constitutively expressed Ras1-GEF, Efc25,

which in contrast to the Ste6 GEF is required for cell mor-

phology but not for mating [94]. Strikingly, Ras1 was

shown to localize to both plasma and endomembranes,

with manipulations restricting localization to a single mem-

brane leading to either sterility or morphology defects

during mitotic growth [95]. Together with the study of Ras1

GEFs, these data were collectively interpreted as two

Ras1 pools insulated from each other by virtue of their distinct

localization, one on endomembranes activated by the Efc25

GEF and regulating the Cdc42 GEF Scd1, the other at the

plasma membrane activated by the Ste6 GEF and regulating

the Byr2 MAPKKK [94,95]. However, the observations that

(i) deletion of efc25 has no effect on mating [94], while deletion

of scd1 causes sterility [62], and (ii) a plasma membrane-

restricted Ras1 allele, which displayed abnormal morphology

during vegetative growth [95], was nevertheless fertile and

thus must have successfully activated Scd1 for mating, suggest

distinct interpretations: either Scd1 is activated in a Ras1-

independent manner during mating, or distinct pools of

Ras1 control Scd1 in vegetative and mating cells. In support

of this second hypothesis, Ras proteins are directly involved

in chemotaxis in the social amoeba Dictyostelium discoideum.

Indeed, in this organism, active Ras proteins localize at the

leading edge of migrating cells upon stimulation and drive

cell motility [96], suggesting that S. pombe Ras1 could mediate

Cdc42-dependent cell polarization also during fission yeast

mating. Whether Ras1 may play a role in linking the polariz-

ation machinery to pheromone sensing is an interesting

possibility that remains to be explored.

One interesting question is why the Schizosaccharomyces
lineage lost Ste5 and Far1 scaffolds: at least one scaffold is

present in basidiomycetes and ascomycetes, except for the

Schizosaccharomyces lineage [49]. While future dissection of

the molecular connections between pheromone sensing,

signalling and polarization may provide answers to this

question, a possible interpretation may lie in the distinct

physiologies of the two yeasts. One important function of

the Ste5 scaffold in S. cerevisiae is to insulate the mating-

specific MAPK cascade from other MAPK cascades, in par-

ticular the one activated upon starvation, which shares

identical components [20,97]. As starvation and mating are

tightly coupled in the fission yeast, and no component of

the mating MAPK cascade is shared with other pathways,

such insulation may have become dispensable. Similar

reasoning may be applied to Far1. Besides its role in mating

projection orientation, Far1 is an essential cyclin inhibitor,

keeping cells in G1 phase [24]. Starvation may promote G1
arrest through alternative mechanisms in fission yeast,

which may have rendered Far1 dispensable. It is, however,

noteworthy that pheromones also promote cell cycle arrest

in pka1D mutant cells unable to sense nutrients, although

through unknown mechanisms [92,98,99].
4. Fusion of the mating partners
The purpose of the mating process is to permit the fusion of

the two haploid partner cells in order to produce a diploid

zygote. Cell fusion requires two main steps: first, the cell

walls at the contact site are remodelled to form a continuous

structure joining the two cells together and called the pre-

zygote, which is then degraded to permit plasma membrane

contact. Second, one or several fusion pores are likely to form

and expand to fuse the adjoining plasma membranes

together (figure 3). Owing to high internal turgor pressure,

these two steps need to be carefully coordinated to prevent

cell lysis. Upon cell membrane fusion, the nuclei come in

contact and undergo karyogamy, in the case of S. pombe
immediately followed by meiosis and sporulation, which

for space issues we will not cover in this review.

4.1. Cell – cell fusion in Saccharomyces cerevisiae
Compared with the signalling and polarization mechanisms

described above, the process of cell fusion is much less under-

stood. This may be due to two main reasons: first, cell fusion

can be studied only in mating pairs, and thus all the pro-

cesses described above must occur normally to eventually

reach this stage. This may preclude the identification of fac-

tors that function at several steps of the mating process,

because their disruption would block the cell at an early

stage. Second, almost all mutants identified to date exhibit

only partial defects in cell fusion, typically blocking fusion

in only 20–70% of all mating pairs, and this only if both

mating partners are mutant, with a few exceptions. This

suggests several pathways may redundantly mediate cell

fusion, or the key components have not yet been identified.

Nevertheless, genetic analysis has, over the years, identified

a significant number of important players at both steps—

cell wall digestion and plasma membrane fusion—of the

fusion process.

Having come into contact by extending a projection

towards each other, the two partner cells must engage in

the fusion process. The timing of this engagement is probably

critical and must be regulated: too early, the two cells would

suffer from osmotic shock and lyse. How timing is sensed is

unknown, but it has been proposed that cell fusion requires

particularly high local levels of pheromone [100]. A role for

pheromone signalling can also be inferred from the obser-

vation that the MAPK Fus3 is required for cell fusion [101].

In addition, it has been suggested that cells activate a protec-

tive pathway involving Pkc1 at early stages of mating prior to

cell–cell contact, to antagonize cell wall reorganization until

a mechanical signal owing to turgor pressure inactivates it

to promote fusion [102].

A localized fusion machinery is essential for successful

fusion, and so a large part of the polarization machinery is

re-used for fusion. For instance, specific alleles of Cdc42

and its GEF Cdc24 have been identified that block cell

fusion, but not earlier events [103–105], indicating the main
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polarization machinery also controls cell fusion. The actin

cytoskeleton, which is essential for polarized growth and ves-

icle transport, probably also plays a specific role in cell fusion,

although a direct role has not been demonstrated. Actin struc-

tures are reorganized during the mating process with the

presence of actin dots at shmoo tips [106]. However, endo-

cytosis, which in vegetative cells occurs in actin patches,

does not appear essential for the mating process [107]. By

contrast, actin cables and vesicle transport are required for

fusion: tropomyosin tpm1 mutants, in which actin cables

are destabilized, increase the number of secretory vesicles at

the shmoo site with apparent defects in cell shmooing and

fusion [108]; similarly, deletion of the formin Bni1, which

assembles actin cables, or of members of the polarisome

that regulate its localization and/or activity, such as Spa2,

led to fusion defects [109,110]; finally, the type V myosin

Myo2 transports cell wall remodelling enzymes such as

chitin synthase 3 as well as the MAPK scaffold Ste5 to the

shmoo tips [60,111–113]. Mutants in the secretory pathway

also strongly block cell fusion, even when inactivated in
pre-zygotes and mated with wild-type partners [114],

suggesting exocytosis is critical for cell fusion.

One important function of the polarization and actin appar-

atus is to promote the localization of fusion-specific factors

critical for cell wall remodelling (figure 3a). In particular,

Fus1, an O-glycosylated 1-pass plasma membrane protein

[115–117], depends on Cdc42, its GEF Cdc24, and a late

Golgi trafficking protein, Chs5, for localization at the shmoo

tip and fusion site [103,104,111]. Fus1 specifically affects the

fusion, as upon fus1 deletion both partners are still able

to sense, attract and grow mating projections towards each

other, and is required for vesicle positioning and clustering at

the fusion site [110]. In turn, Fus1 promotes the anchoring of

a second fusion-specific factor, Fus2 [118]. However, Fus2

and Fus1 play additive functions, as complete fusion block is

only achieved in double mutants, which arrest at a pre-

zygote stage with cell wall material separating the two partner

cells [110,116]. Fus2 is probably transported to the fusion site

along actin cables, as its localization depends on the polarisome

and the type-V myosin Myo2 [112,118]. It functions late during
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fusion, blocking pairs with vesicles tightly clustered at the zone

of fusion [110]. Similar phenotype is observed for a specific

cdc42 allele, which displays defects only in cell fusion [105].

Fus2, which contains a putative Rho-GEF domain, in fact

binds GTP-Cdc42 directly, suggesting it acts as a Cdc42 effector

for fusion [105]. Fus2 also requires Rvs161, a BAR-domain

protein best characterized for its function in endocytosis, but

which functions here in an endocytosis-independent manner

[107,118]. Remarkably, at the fusion site, Fus2 localizes as an

expanding ring, and is proposed to remove cell wall remnants

as fusion proceeds [118] (figure 3a).

Cell wall remodelling allows plasma membrane contact for

fusion. Plasma membrane composition and dedicated trans-

membrane proteins are both critical for this latter process.

Bioinformatic screens for transmembrane proteins, whose

expression is induced by pheromone, revealed Prm1, which

localizes at the fusion site [119,120] (figure 3a). Prm1 mutants

degrade the cell wall between both partners as observed by elec-

tron microscopy, but cannot efficiently fuse their plasma

membranes. Prm1 is a 4-pass plasma membrane protein, with

two extracellular loops that, in the endoplasmic reticulum,

assemble dimers stabilized by disulfide bonds [121,122].

Three observations suggest Prm1 is not the elusive cell–cell

fusogen, but regulates the fusion process through distinct mech-

anisms: first, Prm1 conformation is distinct from known 1-pass

transmembrane fusogens, such as SNARE proteins or viral

fusogens: second, defective plasma membrane fusion in

prm1D cells can cause cell lysis, which cannot be prevented by

osmotic stabilization [123]; third, only 60 per cent of prm1D
mating pairs are unable to fuse [119]. It has been proposed

that Prm1 may promote the formation of a fusion pore through

the insertion into the plasma membrane of the partner cell of a

hydrophobic region present in its first extracellular loop, upon

disulfide bond reduction [122]. Alternatively, Prm1 may form

a molecular fence around the fusion pore to protect from mem-

brane damage [124], a function that can in part be compensated

by addition of Ca2þ in the medium, to promote repair mechan-

isms. Three other proteins are proposed to act for plasma

membrane fusion: Fig1, a 4-pass transmembrane Ca2þ influx

regulator, and Kex2, a Golgi-resident protease necessary for

the proteolytic processing of alpha-factor, both act additively

to Prm1 for membrane fusion [124,125] (figure 3a). Fus1,

described above for its role in cell wall remodelling, has been

implicated in membrane pore opening and expansion during

cell fusion, although its specific function is unknown [126].

Finally, the pheromone receptors probably contribute to the

fusion process, as they form heterotypic interactions able to

bring membranes in close juxtaposition. However, specific

mutations preventing this interaction block cell fusion with

cell wall remaining at the cell–cell junction [127].

Plasma membrane fusion also depends on its compo-

sition. In pheromone-treated cells, the lipid bilayer at the

shmoo tip is more condensed than the rest of the plasma

membrane, an organization that depends on sphingolipids

[128]. In particular, phosphatidylinositol 4,5-bisphosphate

(PIP2) and ergosterols are enriched at the shmoo tip, and

are required for Ste5 scaffold recruitment and MAPK acti-

vation [128,129]. Ergosterols are further enriched at the

fusion site and deletion of enzymes involved in the late

steps of ergosterol biosynthesis causes membrane fusion

delays and defects [130,131], suggesting ergosterols may act

as cofactors to concentrate some unknown component of the

cell-fusion machinery. In summary, the process of cell–cell
fusion depends on many protein and lipid factors acting

at distinct steps, but the critical fusogen mediating plasma

membrane fusion remains undiscovered.

4.2. Cell – cell fusion in Schizosaccharomyces pombe
The process of cell fusion has not received much attention

in fission yeast. However, as for mating signalling and

polarization, several observations suggest that considerable

knowledge would be gained from studying cell fusion in this

organism. In particular, the role of the actin cytoskeleton in

cell fusion is more evident in S. pombe, as these cells express a

specific pheromone-dependent actin nucleator, the formin

Fus1 (entirely distinct from its S. cerevisiae homonym Fus1),

essential for cell fusion. In addition, fus1D cells are fully

fusion-deficient, suggesting the fusion machinery may be less

redundant in S. pombe than S. cerevisiae [132].

Fus1 is targeted to the shmoo tip by its N-terminus and

requires its actin nucleation activity to promote cell fusion

[133,134]. Deletion of fus1 disrupts actin localization at the

shmoo tip and blocks mating pairs at the pre-zygote stage

with an intact cell wall [133]. Tropomyosin and type-V

myosin are also important for fusion: tropomyosin (Cdc8)

localizes as a small dot at the fusion site, and has been

suggested to organize a small F-actin organelle at the cell con-

tact site [135]. Myo51, one of the two type-V myosins of

fission yeast, also localizes in a dot-like structure at the

fusion site [136] (figure 3b). As these are also involved in

cell fusion in S. cerevisiae, it suggests the actin cytoskeleton

is used similarly by both organisms, but in absence of a

dedicated formin in S. cerevisiae.

Schizosaccharomyces pombe does not encode orthologues of

either S. cerevisiae Fus1 or Fus2. There is also very little known

on plasma membrane fusion: a single study described a role

for Dni1, a close relative of Fig1, whose localization to the

shmoo tip depends on formin Fus1 and lipid domains, to

be implicated in a Ca2þ-independent manner in plasma

membrane and cell wall remodelling during fusion [137].

Prm1 is highly conserved in S. pombe, and appears essential

for cell–cell fusion (figure 3b; O. Dudin & S. G. Martin

2012, unpublished data). The question of cell–cell fusion

would merit more attention in fission yeast.
5. Beyond yeast
The main proteins involved in the mating pathways of these

two simple yeast models are conserved and participate in

important processes in response to external signal in other

organisms. In higher eukaryotes, for instance, Cdc42 is

involved both in axon specification and in dendrite deve-

lopment in response to growth factors in neurons [138],

and promotes chemokine-induced T-cell polarity to allow

migration of T cells [139]. The mechanisms controlling Ras acti-

vation have also been conserved during evolution. Indeed, in

most eukaryotic cells, Ras proteins participate in signal trans-

duction pathways that modulate gene expression in response

to external signals and are mediated by the activation of

MAPK cascades. In mammalian cells, Ras hyper-activation is

often associated with tumour development, although onco-

genic mechanisms are only partially understood. However,

similarly to pombe Ras1, human Ras activates a conserved

Raf–MAPK cascade to promote gene expression and induces



rsob.royalsocietypublishing.org
Open

Biol3:130008

9
cytoskeleton reorganization, which requires Rho family

GTPases Cdc42 and Rac [140]. Finally, G-protein-coupled

receptors regulate diverse biological processes in all eukaryotes

and are the most targeted proteins in pharmacological design

[141]. Thus, a deeper analysis of the downstream effectors of

these transmembrane proteins in simple organisms can be

helpful to understand more complex pathways in higher

eukaryotes and to discover new therapeutic drugs.

The process of cell fusion also underlies several important

developmental events, including fertilization, muscle fibre

formation, placenta development and osteoclast formation.

In very few cases have the bona fide fusogens been identified

[142]. It is thus currently unclear whether mechanisms of

cell–cell fusion will rely on conserved molecular machineries,

similar to those underlying vesicle fusion. Nevertheless, yeast

cell fusion bears similarities for instance to myoblast fusion,

best studied in Drosophila. Here, a fusion-competent myoblast

(FCM) migrates towards a founder cell. Upon contact and

adhesion, a prominent actin structure, in this case dependent

on Arp2/3 nucleation, forms in the FCM and recruits other

factors for cell fusion [143]. The presence of a dedicated

actin structure, one of the most conserved features of myo-

blast fusion, suggests a parallel with yeast. In addition,

Cdc42 and its orthologue Rac1 have been implicated in cell

fusion not only in yeast, but also in mouse and Drosophila
myoblasts [144,145]. However, in contrast to yeast, the

system is inherently asymmetric, with the actin structure

forming only in the FCM and cell–cell interaction relying

on heterotypic interactions. Except for the heterotypic inter-

action of the pheromone receptors reported in S. cerevisiae
[127], yeast cell mating appears largely symmetric [146],

with both mating types assembling a fusion machinery,
although it has been suggested that S. pombe M cells ‘take

the initiative’ for mating [147]. Future work may reveal the

extent of the analogies between diverse types of cell fusions.

As we hope will be clear from this review, we now under-

stand in great detail some of the molecular connections

underlying the response to pheromones. However, many

molecular questions remain wide open: what are the molecu-

lar connections between pheromone sensing and signalling in

fission yeast? How did such divergent connections evolve in

the ascomycete lineage and beyond? What are the initial steps

that allow the orientation of the polarization apparatus in

response to pheromones? What is the molecular nature of

the apparatus mediating cell–cell fusion? Beyond the single

cell response, how groups of cells interact at a system level

also raises many questions: how is a pheromone landscape

shaped in a cell population? How do cells make a ‘choice’

for one partner when presented with many options? How

is this choice sustained during polarized growth? How are

other potential partners for a mating pair ‘discouraged’? Con-

tinued investigation using these two highly divergent yeast

species will undoubtedly reveal novel insights into these

and other fascinating questions.
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