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The sensitivity of simulated streamflow to
individual hydrologic processes across North
America
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Streamflow sensitivity to different hydrologic processes varies in both space and time. This

sensitivity is traditionally evaluated for the parameters specific to a given hydrologic model

simulating streamflow. In this study, we apply a novel analysis over more than 3000 basins

across North America considering a blended hydrologic model structure, which includes not

only parametric, but also structural uncertainties. This enables seamless quantification of

model process sensitivities and parameter sensitivities across a continuous set of models. It

also leads to high-level conclusions about the importance of water cycle components on

streamflow predictions, such as quickflow being the most sensitive process for streamflow

simulations across the North American continent. The results of the 3000 basins are used to

derive an approximation of sensitivities based on physiographic and climatologic data without

the need to perform expensive sensitivity analyses. Detailed spatio-temporal inputs and

results are shared through an interactive website.
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Hydrologic models are widely used in applications that are
important for society such as flood prediction1–6, drought
monitoring7–10, infrastructure design11–13, and reservoir

management14–16. This wide variety of such applications, coupled
with the diversity of climatic and physiographic regions and the
underlying complexity of hydrologic processes is leading to
increasing complexity among these models17–19. Further devel-
opments and improvements of hydrologic models are essential to
advance the understanding of hydrologic processes and ensure
greater model realism20–23. One way such improvements can be
ensured is by carrying out model evaluations taking advantage of
information theory and newly available datasets24–29. Sensitivity
analysis (SA) is a well-established tool to guide such model
assessments30, navigate model development31, and identify the
most critical relationships within a system32–34. SA is based on
large sets of model runs identifying the most sensitive parameters
of a model and is thus a general method that can be applied to
any kind of model that contains unknown parameter
estimates35–37. Note that parameters can be (traditional) model
parameters, multiplicative factors to perturb input forcings, or
parameters to weight between different options, among others.

Notwithstanding the repute of SA as a tool, there are several
challenges limiting the transferability and insights of individual
analyses. Four such challenges, here highlighted for hydrologic
applications, are:

Model parameters only: SAs traditionally only estimate the
sensitivities of model parameters on streamflow35,38 or sensitivity
indices of parameters on components or processes of the water
cycle34, rather than quantifying the sensitivity of streamflow to
hydrologic processes, which limits insights in process under-
standing. Parameter-based analyses are model-specific and rarely
lead to conclusions that can be transferred to other models.

Dependence on location: SAs are based on thousands of
model runs, which makes them computationally very expensive.
They are therefore usually only carried out for individual
locations39–42, and this limits the transferability of the obtained
results to other locations.

Dependence on model structure: SAs are generally performed
for individual models, which further limits the generality of
conclusions30,33,43.

Data sharing and re-usability: In-depth SA results, especially
when applied to multiple locations using complex models, are
usually not shared in an easily accessible way due to the amount
and complexity of the data, which makes it challenging to obtain
or compile information of interest for further usage44–46.

This work applies the extended Sobol’ Sensitivity Analysis
(xSSA) method of Mai et al.47 to a set of more than 3000 mod-
elled locations across North America. The novelty of the xSSA
method is that it generates process sensitivities in addition to the
traditionally derived parameter sensitivities (addressing limitation
1). The continental-scale deployment allows for conclusions that
hold over large domains (addressing limitation 2). The method is
applied to the “Blended Model” for streamflow simulation
introduced by Mai et al.47, which enables a seamless analysis of
model parameters and model structures, reducing the dependence
of the results on specific modeling choices (addressing limitation
3). The input data, model setups, and SA results are shared on a
map-based interactive website for members of the hydrologic
research community to browse, explore, download and use for
their specific regions of interest (addressing limitation 4).

Results
Figure 1 provides an overview of the analyses performed in this
study. The HYSETS database48 is screened for watersheds with
adequate overall data availability and catchment size, and the

blended hydrological model is developed, calibrated, and tested in
validation. Models with adequate performance in the calibration
period are subjected to xSSA analyses, enabling the deduction of
functional relationships between basin attributes and the sensi-
tivity of hydrologic processes at any location.

Preliminary calibration and validation of the blended model.
Figure 2 shows the results of the preliminary basin-wise calibra-
tion of the 3826 basins with enough observed data in the cali-
bration period (January 1991 to December 2010), as well as the
performance of the 3005 calibrated basins which have enough
data available during the validation period (January 1971 to
December 1990). The median daily streamflow Nash-Sutcliffe
efficiency (NSE) is 0.73 in calibration and 0.64 in validation. This
is comparable to the performance of other models applied across
the continental US (CONUS). For instance, Rakovec et al.49

reported a median NSE of 0.72/0.66 (calibration/validation) for
the mHM model50,51 over 492 CONUS basins. Mizukami et al.52

and Rakovec et al.49 reported median NSEs of 0.61/0.57 (cali-
bration/validation) for the VIC model53,54 applied to the same
basins, and55 reported median NSEs of 0.7 to 0.75/0.6 to 0.65
(calibration/validation) using the SAC-SMA/Snow-17 model56,57

over 671 CONUS basins, with variations due to meteorological
forcings. The weaker performance of the blended model during
validation over the high plains and desert southwest (seen in
Fig. 2) is consistent with all the above-mentioned models. Regions
with NSE performances lower than 0.5 are considered to be
unreliable, and the basins are not included in the analyses to
follow. The 3316 basins with an NSE of at least 0.5 are used going
forward from here on. The selection of basins based on this
threshold is applied for calibration performance rather than
validation performance as the calibration period is the period
used for the sensitivity analysis.

It is important to note that the results of this calibration
exercise are used to (1) exclude clearly low quality models from
further analysis and (2) to demonstrate the basic adequacy of the
models for simulating streamflow over the range of simulated
conditions. While a more elaborate calibration study may
improve individual optimal model performances, it is unlikely
to yield improved global sensitivity estimates. The exclusion of
low quality models is admittedly not standard practice in
sensitivity analyses. However, ensuring that models are able to
represent physical processes is critical to confidently conclude on
the spatial behavior of process sensitivities. Detailed results for all
basins calibrated and validated, including the calibrated model
setups, can be found on the website58 associated with this
publication.

Spatial variation in hydrologic process sensitivity. Figure 3
shows the variance-weighted total Sobol’ sensitivity index STw

i , a
metric representing the sensitivity of streamflow to variations of
hydrologic processes. The variance weighting of timesteps for
temporal aggregation is chosen to increase the importance of
timesteps with high flows, which, in general, is a favored scheme
in hydrologic applications33,59. The total Sobol’ index includes
interactions between parameters and between processes. The
results show clear spatial patterns of the importance of the
hydrologic processes with regard to streamflow. The patterns are
in agreement with hydrologic reasoning; for example, snow bal-
ance sensitivity is high in mountainous and northern regions and
potential melt is only sensitive where snow occurs. The sensitivity
analysis results were determined to be robust to changes in spe-
cified parameter ranges, with negligible (< 0.0135) changes to
process sensitivities based an analysis using a subset of 150 ran-
domly selected basins (results not shown).
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Fig. 1 Flowchart of experiments and analyses. All experiments performed in this work are listed, including the number of basins on which the analyses are
based, the methods used, and the time periods over which the analyses are performed. The reasons for reducing the number of basins from the original
14,425 in the HYSETS database to 3316 for the xSSA sensitivity analysis and the deduction of relationships between basin characteristics and xSSA
sensitivity results are added as gray labels to the arrows. The figures displaying the main results of each analysis are added as labels to the left of each box
describing the analysis. The methods and results of the comparison of the xSSA results with another study can be found in the Supplementary Material
(Fig. S2).

Fig. 2 Preliminary calibration and validation results of blended model. The performance with respect to the daily Nash-Sutcliffe efficiency (NSE) of the
blended model during (a) calibration period (January 1991 to December 2010) and (b) validation period (January 1971 to December 1990). In total, 3826
basins with more than five years of streamflow observation data available during the calibration periods are calibrated. The 3005 basins that also had more
than five years of data available during the validation period are validated. Each basin is represented on the map by its location of the streamflow gauge
station (colored dots), while the color indicates the NSE performance. The distribution of basin performances is indicated on the colorbar. The black
triangles (▼) in the colorbars mark the median NSE performance of 0.73 for calibration and 0.64 for validation. The 3316 basins with an NSE performance
of 0.5 or higher during calibration are used for the remaining analyses of this study.
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Overall, quickflow (Fig. 3b) is the most important process for
streamflow simulations, with a median STw

i of 0.736 across the
3316 basins analyzed. It exhibits large sensitivities, especially in
the Eastern United States, which is covered mostly in temperate
broadleaf and mixed forests. Infiltration, evaporation, and
percolation (Fig. 3a, c, and g, respectively) are processes of
secondary importance across North America, but especially in the
Eastern US, with median STw

i of 0.300, 0.21, and 0.202,
respectively. In the Rocky Mountains and in higher latitudes
(starting over the Great Lakes), the model’s potential melt,
precipitation correction and snow balance components (Fig. 3f, i,
and d) are the most important, with an overall median STw

i of
0.102, 0.087, and 0.047, based on the 3316 basins analyzed. On
the West Coast, rain-snow partitioning (Fig. 3h) becomes more
influential, with an overall median STw

i of 0.054. The convolution
of surface runoff (Fig. 3e), a process which controls the timing
(rather than magnitude) of flow, is found to be insensitive
throughout, with a median STw

i of 0.003. The convolution of
delayed runoff and baseflow are even less sensitive, with an STw

i
below 0.01 in each basin. Both latter processes are thus not shown

in Fig. 3. It is not surprising that these three processes
(convolution of surface and delayed runoff and baseflow) are
less sensitive since the sensitivity analysis assesses the variability
in streamflow magnitudes rather than its timing.

The lack of sensitivity studies conducted over large domains
and the novelty of the sensitivity method presented by Mai et al.47

in estimating sensitivities of processes rather than model
parameters lead to challenges in comparing results to those of
previous studies. However, a large-scale sensitivity study across
the continental US was performed by Markstrom et al.34 using
the US Geological Survey’s Precipitation-Runoff Modeling
System (PRMS)60. Their study derives the sensitivity of model
parameters on eight hydrologic processes outputs. We compared
the first-order mean (rather than time-dependent) sensitivities of
runoff equivalent to Si in the Markstrom et al.60 study, and the
results are presented in the Supplementary Material (Fig. S2).
While the sensitivity metrics are (strictly speaking) not
equivalent, a correlation test yields a Pearson correlation
coefficient of 0.88, and the sensitivities exhibit similar spatial
trends as those presented here. The analysis herein furthermore

Fig. 3 Importance of hydrologic processes for streamflow simulations. The variance-weighted total Sobol' sensitivity STw
i regarding simulated streamflow

for the nine hydrologic model components, i.e.: (a) infiltration, (b) quickflow, (c) evaporation, (d) snow balance, (e) convolution of surface runoff,
(f) potential melt, (g) percolation, (h) rain-snow partitioning, and (i) precipitation correction. The results are shown for the 3316 basins that have a
calibrated Nash-Sutcliffe efficiency equal to or better than 0.5 in the calibration period (January 1991 to December 2010). The two additional processes of
Baseflow and Convolution (delayed runoff) are analyzed but not displayed as all basins show a sensitivity of less than 0.01 (lower limit of colorbar). Please
note that the colorbar is logarithmic in order to allow for a better distinction of small sensitivity estimates. Green colors indicate a large importance of the
respective process on streamflow simulations while pink colors indicate a weak impact. The location of the dots in each panel marks the location of the
outlet of each basin, which coincides with a streamflow gauging station. The histograms of sensitivity values are added as an inset to each map. The
histogram bins are the same as used for the colorbar.
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represents an improvement upon the Markstrom et al.34 study, as
it provides insights averaged over several model structures, is
based on time-dependent sensitivities, and includes sensitivity
estimates accounting for parameter interactions (STi) besides the
first-order effects (Si).

The sensitivity of hydrologic processes at the continental scale
has been highlighted here due to its novelty. However, the xSSA
analysis does not only derive the sensitivity of the hydrologic
processes but also derives the sensitivity of the parameters and
process options of the blended model regarding the time series of
simulated streamflow. The detailed results, including maps of
average main and total Sobol’ sensitivity indices (Smi and STm

i )
and variance-weighted main and total Sobol’ sensitivity indices
(Swi and STw

i ) for all parameters, process options, and processes,
as well as the according summary plots, are available on the
website associated with this publication61.

Regional variation in transient hydrologic process sensitivity.
Figure 4 shows the time-dependent sensitivities of each process
clustered by similarity. The time-dependent total sensitivities STi

regarding the simulated streamflow Q(t) are averaged for each
day of the year for the 20-year simulation period from January
1991 to December 2010. Each plot shown is a representative
example basin of each clustered region (Fig. 4a, h). The regions
are obtained by a c-means fuzzy clustering62 based on the three
climate indicators, namely, aridity, seasonality, and fraction of
precipitation as snow. The example basin is then selected as being
the closest to the cluster centroid based on the climate indicators
(not the spatial centroid). Although the clustering is unsu-
pervised, the identified regions align well with known physio-
graphic and ecological regions, and named here according to this
alignment.

In all regions, quickflow (medium blue) is the most important
process, as already deduced from the time-averaged sensitivities
in Fig. 3. Evaporation (dark blue) is also important, but mostly
during low-flow periods (consistent with low weights represented
by the black line). Potential melt (i.e., incoming energy, in
orange) and snow balance (i.e., snow ablation processes, in green)
are mostly important during cold months, and especially during
the freshet (if it exists). Baseflow (dark green) is only visible in
some regions (Fig. 4c, e, f), and only during severe low-flow
periods. The two convolution processes controlling the timing of
runoff (light green and yellow) are important almost nowhere,
except in regions with large freshet events in April and May
(Fig. 4g, h). The overall results are consistent with the time-
aggregated sensitivities. However, the variation in sensitivity of
processes throughout the year yields more detailed insights into
the seasonal variability in hydrological process influence across
basins.

To elaborate, the prototypical responses in the Coastal and
Interior Plains (Fig. 4a) and Arid Regions and Florida regions
(Fig. 4b) are almost similar. The two regions show near-constant
sensitivities throughout the year for almost all active processes
(i.e., infiltration, quickflow, evaporation, potential melt, percola-
tion, and rain-snow partitioning). Potential melt (orange) and
rain-snow partitioning (medium red) exhibit an increased
importance during the winter months (December to February
and December to March), while no overall strong streamflow
variability is present throughout the year (as seen from the
timestep weight in black).

The prototypical basin for the Mediterranean California and
Temperate Sierra region (Fig. 4c) shows a higher streamflow during
winter months and an elevated importance of rain-snow partition-
ing (medium red) during that time period, while baseflow (dark
green) becomes relevant during the low-flow periods.

The fourth cluster of mainly Temperate Broadleaf and Mixed
Forests (Fig. 4d) region with mild freshet and regular mid-winter
melt events is the first basin showing an impact of snow balance
(medium green) on the streamflow simulations during the winter
months (January to March).

The basin representing the Boreal Forest region (Fig. 4e) shows
that baseflow (dark green) becomes important during the severe
low-flow winter period (December to mid-February) and
potential melt (orange), as well as snow balance (green), are
highly elevated during the freshet (March to April).

The example basin for the Temperate Coniferous Forests
region (Fig. 4f) has large amounts of precipitation during the
winter and spring months (large weights between December and
April), but almost none is snow (blue channel of RGB of climate
index is small). The summer months (June to October) of this
catchment are fairly dry (low weight equals low flow). This leads
to two sensitivity regimes: during winter, snow balance (green),
potential melt (orange) and rain-snow partitioning (medium red)
are elevated, while during summer, evaporation (dark blue),
percolation (light red) and baseflow (dark green) become more
important. The importance of infiltration (light blue) and
quickflow (medium blue), however, is almost constant through-
out the entire year. The latter shows a slightly decreased
sensitivity during the melt period (March and April) when other
processes become more important.

The freshet, with its extreme high-flow periods (April to May),
is even more pronounced for the two examples in the Strongly
Seasonal and Snow-Dominated Regions (Fig. 4g) and Montane
Cordillera (Fig. 4h) snow-dominated clusters. The latter has a
longer flattened high-flow period, while the first generally peaks
in April and early May. In both basins, snow balance (green) and
potential melt (orange) have an increased sensitivity during the
high-flow freshet period, while during the low-flow summer
months, evaporation (dark blue) is gaining importance. In all
cases, the results of the sensitivity analysis performed here are
generally consistent with our hydrological expectations of these
landform types.

The temporal sensitivity patterns are catchment-specific, and
vary between basins within a region. The temporal sensitivities of
the 3316 analyzed basins can be viewed on the interactive map on
the website associated with this publication63.

Estimating process sensitivity directly from basin attributes.
The sensitivities generated through xSSA were regressed against
basin characteristics such as basin area and climatology (e.g.,
annual total precipitation based on the entire period of available
forcings from 1950 to 2010), in order to assess whether sensi-
tivities were readily determinable without the extensive analysis
performed here. Figure 5 shows the predictability of the process
sensitivities STw

i using these regressions, with each functional
relationship for each process using one predictor unless the use of
two predictors increased the adjusted coefficient of determination
R2
adj by at least 0.05. The regression model selection was guided by

performance in predictive mode assessed in cross-validation
experiments. The regressed relationships are given in Table 1. The
relationships are based on regressions using the entire set of 3316
basins (the skill of that regression is given as R2

adj in the table). To
obtain a measure of how sensitive these functions are to the
choice of training basins, the basin set is split into 100 random
subsets of basins, with two-thirds used for calibration and one-
third for validation. The functions shown in Table 1 are then
fitted and subsequently validated on the basins not used for
training. For each of the 100 trials, the R2

adj and the mean absolute
error MAE between the true sensitivities derived using the xSSA
analysis (see Fig. 3) and the predicted sensitivity based on the
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Fig. 4 Sensitivity of processes over time at selected locations. The importance of the eleven hydrologic processes (colorbars in right column panels) on
each day of the year (average over 20 simulated years) are shown for eight example locations (a–h). These example locations are indicated by the USGS or
WSC gauge station identifier added as a label at the top of the right column panels. These eight representative locations are the centers of eight clusters
based on the three climate indicators. The clustering and example basins are derived to show the spatial variation of the process sensitivities over time in
various climatic regions. Each cluster is named using the major physiographic or ecohydrologic region it covers (label on top of left column panels). For
reference, the average weight of each day of the year based on the average simulated streamflow is displayed (black line in right column plots). These
weights are used to derive time-aggregated sensitivities (see Fig. 3) from the time-dependent sensitivity indices displayed here in order to increase the
weight of timesteps with high flows as compared to low-flow timesteps.
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regression are derived. The individual panels of the figure show
the 2D histogram of 100 sets of validation basins (i.e., 100 × 1/
3 × 3316 > 100, 000 data points). The two processes Baseflow and
Convolution of delayed runoff are not analyzed as their sensitivity
is lower than 0.01 for all basins.

All panels show that the predicted sensitivities are in close
agreement with those derived by the xSSA analysis, indicating
that just a handful of basic variables may be sufficient for
describing the process sensitivity at most sites. The results are
consistent between calibration cal and validation val for both fit
metrics R2

adj andMAE. Further, the 100 regression trials yield very
consistent results, as indicated by the small standard deviations of
the four metrics. The adjusted coefficients of determination R2

adj

are above 0.80 for all processes in calibration and validation,
except for Convolution of Surface Runoff (Fig. 5e; R2

adj � 0:65),
which is the least sensitive process. Only 88 of the 3316 basins
show sensitivities larger than 0.01 for this process, which could
explain the reduced overall predictability. In contrast, the very
sensitive Infiltration (Fig. 5a), Quickflow (Fig. 5b), Evaporation
(Fig. 5c), and Percolation (Fig. 5g) processes, in particular, show
reliably large frequencies (dark green color) along the expected
1:1 line for large sensitivities. This, in turn, means that the
processes with large sensitivity and importance can be identified
and quantified reliably even without performing the expensive
sensitivity analysis itself. The Potential melt (Fig. 5f), Precipita-
tion correction (Fig. 5i), and Snow balance (Fig. 5d) processes,

Fig. 5 Predicted sensitivity index estimates using functional relationships based on basin characteristics. The total Sobol' sensitivity indices of
hydrologic processes on streamflow are first estimated using the xSSA method (Fig. 3; x-axis), after which they are predicted through basin-specific
characteristics only (y-axis) and using the relations in Table 1. Each panel shows the results for one hydrologic process, i.e.: (a) infiltration, (b) quickflow,
(c) evaporation, (d) snow balance, (e) convolution of surface runoff, (f) potential melt, (g) percolation, (h) rain-snow partitioning, and (i) precipitation
correction. The mean and standard deviation of the Adjusted Coefficient of Determination R2adj and the mean absolute error (MAE) are reported. Both
indexes are derived between (i) xSSA-derived indices and (ii) the predicted indices and added as labels for calibration (cal) and validation (val) sets. The
color indicates the density of samples. The samples shown here are the samples of the 100 validation experiments.
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already identified to be important in the Rocky Mountains and
the higher latitudes starting over the Great Lakes (see Fig. 3), are
also reliably quantified, even for the rarer large sensitivity indices.

It is revealing to examine the most reliable sensitivity predictors
from Table 1, which summarizes the best predictors identified by
the regression analysis. The two processes not listed—Baseflow and
Convolution of Delayed Runoff—have a total Sobol’ sensitivity of
0.01 or less in each of the basins. The predictor with the largest
influence is the fraction of precipitation as snow fS, which is used as
a predictor in eight of the nine relationships. This is in close
agreement with the findings by Konapala et al.64, who also
identified the fraction of snow as a key characteristic to explain
runoff signals in their study based on an information theory
approach. The four processes that benefit from adding a second
predictor are Quickflow, Convolution of Surface Runoff, Rain-Snow
Partitioning and Precipitation Correction. While we do not want to
read too much into the results for the almost insensitive
Convolution of Surface Runoff process, the addition of the annual
sum of precipitation ΣP to Quickflow, the average annual number
of days below 0 °C fcold to Rain-snow Partitioning, and seasonality
Im,r to Precipitation Correction as a second predictor improved the
R2
adj significantly (from 0.884 to 0.953, from 0.618 to 0.815, and

from 0.650 to 0.809, respectively). These three secondary predictors
are consistent with hydrologic reasoning.

In extreme cases, the regressions can result in negative sensitivity
index estimates, which are known to be unrealistic. We suggest
setting those values to zero in applications.

In summary, the deduced functional relationships between basin
characteristics and the sensitivity of major hydrologic processes
shows promising results, indicated by strong coefficients of
determination R2

adj between derived and predicted sensitivities.
The large number of basins, which can span over multiple climatic
regions, ensures transferability of the relationships to North
American basins on which an xSSA sensitivity analysis has not
explicitly been performed. The consistency of results with previous
studies indicates their robustness with respect to other models (e.g.,
PRMS) and sensitivity metrics (e.g., FAST method based on mean
streamflow).

Discussion
This continental-scale sensitivity analysis of hydrologic model
parameters and processes addresses the four key challenges raised
in the introduction.

First, sensitivity analyses are traditionally carried out for model
parameters only. This leads to difficulties in making high-level
modeling decisions; these include, for example, whether to

prioritize model development and improvement or to secure
better datasets, which may reduce uncertainty. The novel analysis
used herein extends the traditional Sobol’ sensitivity analysis to
cover model components or processes at the continental scale.

Second, due to the computationally expensive nature of sensi-
tivity analyses, they are usually carried out at a small set of locations.
This work successfully applies the novel sensitivity analysis over a
large domain, allowing us to draw conclusions across multiple cli-
matic regions. The analysis leads to hydrologically consistent
and quantitative sensitivity index estimates—either aggregated in
time or time-dependent—identifying quickflow as the overall
most sensitive process in the Eastern United States, with Infiltration,
Evaporation and Percolation processes being of secondary
importance. In snow-dominated regions such as the Rocky
Mountains, the Potential melt, Snow balance, Precipitation cor-
rection, and Rain-snow partitioning processes are of large impor-
tance. The time-resolved sensitivity of processes provides
particularly detailed insights into the common sensitivity of pro-
cesses across all watersheds. Furthermore, the large number of
basins analyzed allows to deduce functional relationships between
basin characteristics and climatic indices that allow estimating the
sensitivity of processes, even without the need to perform the
computationally expensive sensitivity analysis for basins not cov-
ered herein.

Third, sensitivity analyses are usually based on a single
model, which limits the conclusions to certain model process
definitions and presents the risk that sensitivity estimates might
be different for other models. The use of the Raven hydrologic
modeling framework65 and the novel blended model structure
of47 allow a seamless analysis of a range of model structures,
thereby reducing the risk of inferring model-specific conclusions
as a range of model structures are analyzed simultaneously. It
should be noted that the model structure can be inferred during
model calibration based on observations, to build hydrological
modeling hypotheses (e.g., McMillan et al.66, McMillan et al.67,
Clark et al.68, Fenicia et al.69, and Fenicia et al.70). This work can
help modelers decide on the model structure to use for inference
of model structure in the following manner. First, processes with
small sensitivities can be represented with essentially any option
since the streamflow simulations are not affected in an important
manner. Second, the processes with larger sensitivities should be
included in the calibration process since the selection of the
process option will play an important role in the streamflow
simulations.

Fourth, sharing detailed results of large-scale model analyses is
challenging due to the large amount and complexity of the data
involved. The data and results used and produced in the work

Table 1 Deduced functional relationships using basin attributes to estimate process sensitivities.

Process Pred. Pred. Estimated functional relationship Adj. Coeff. of Determ.

x y fST
w

i ¼ fðx; yÞ R2
adjðfST

w

i ; ST
w
i Þ

Infiltration fS – 0.2985− 0.8113x+ 1.0443x2− 0.5203x3 0.905
Quickflow fS ΣP 0.9044− 3.4122x2+ 2.6596x3− 4.771 × 10−5y− 0.001153xy+ 0.001870x2y 0.953
Evaporation fS – 0.3835− 0.7713x+ 0.1945x2+ 0.3964x3 0.915
Snow Balance fS – − 0.009051+ 0.4161x+ 1.3796x2− 2.0661x3 0.926
Convolution (srfc runoff) T fcold 0.06531− 0.00639x+ 1.645 × 10−4x2− 0.0008165y+ 4.104 × 10−5xy+ 2.6508 × 10−6y2 0.657
Potential Melt fS – − 0.01494+ 0.8236x+ 2.4265x2− 3.1523x3 0.950
Percolation fS – 0.2829− 0.7275x+ 0.8276x2− 0.3582x3 0.909
Rain-Snow Partitioning fS fcold − 0.001715+ 3.7710x− 0.002150y− 0.03638xy+ 1.302 × 10−5y2+ 8.753 × 10−5xy2 0.815
Precipitation Correction fS Im,r 0.07343+ 0.5829x2− 1.0106x3+ 0.01122y3− 0.1677xy2+ 0.5264x2y 0.809

Note. Results of the regression analysis identifying the functional relationships between predictors and the variance-weighted total Sobol’ sensitivities STw
i based on the results of the 3316 basins

analyzed by xSSA. The regression is performed using polynomials with one predictor (up to degree three with at most six coefficients) and polynomials with two predictors (up to degree three with at
most five coefficients). The one-predictor polynomial is used unless the use of a pair of predictors led to an improvement of the adjusted coefficients of determination R2adj by at least 0.05. The basin
characteristics used as predictors are derived from geophysical attributes and the meteorology available for each basin (1950 to 2010). The adjusted coefficients of determination R2adj between the xSSA-
derived sensitivities STw

i and the predicted sensitivities fST
w

i are given in the last column. Description of predictors: fS is the fraction of precipitation that is snow [mm/mm], ΣP is the annual sum of
precipitation [mm], T is the annual average temperature in [°C], fcold is the average annual number of days below 0 °C, Im,r is the measure of seasonality ranging between [0,2].
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presented herein are shared through an online mapping interface,
which allows researchers to access and visualize inputs and results
(see details under ‘Data Availability’). This includes all calibration
setups and results, the climatic indicators and basin properties, as
well as individual sensitivity results and summary plots.

The xSSA sensitivity method can be applied to any kind of
model. A comparison against the only other continental-scale
parameter-based sensitivity analysis we are aware of shows good
consistency with our results. It would be of interest to investigate
if more distributed land-surface hydrologic models were to show
similar patterns in these process sensitivities; and further, if the
process sensitivities could then also be related to basin char-
acteristics, as shown in this study. It would additionally be
interesting to investigate the influence on the sensitivities when
other forcing datasets are used or other modeling decisions—such
as different numbers of soil layers, other process options, or
different simulation time steps—are made. Our approach to
continental-scale sensitivity analysis can be emulated for more
complex land-surface hydrologic models, and the results suggest
such an analysis could be conducted over a reduced number of
watersheds. Such a framework could be readily extended to other
modular environmental and ecological models, similarly chal-
lenged by high degrees of structural uncertainty.

This study is a quantitative continental sensitivity analysis of
streamflow simulations to hydrologic processes- transferable both to
other (i) basins and (ii) models using similar process representations.

Methods
This work is out to analyze the sensitivity of streamflow to individual hydrologic
processes across North America. This effort includes an attempt to deduce process
sensitivities from basin characteristics alone without performing the expensive
sensitivity analysis shown herein.

Blended model structure. The model used here is a blended model introduced by
Mai et al.47. The unique definition of the blended model within the Raven
hydrologic modeling framework65 enables the seamless simulation of various
model structures simultaneously. A process, for example Infiltration, is no longer
defined by one specific process algorithm (e.g., the infiltration definition used in
model A), but is now calculated as the weighted average flux from several inde-
pendent algorithms (for example, infiltration algorithms used by models A, B and
C). The specific process options and associated model parameters used here are
available in Tables C1 and C2 of Mai et al.47, and are added to the Supplementary
Material of this publication for the convenience of the reader. The blended model
has 35 model parameters and eight parameters describing the weights between 19
process options overall. In total, the following eleven hydrologic processes are
distinguished: Infiltration M, Quickflow N, Evaporation O, Baseflow P, Snow
Balance Q, Surface Runoff R, Delayed Runoff S, Potential Melt T, Percolation U,
Rain-Snow Partitioning V, and Precipitation Correction W. The model setup used
in this study is exactly the same as in Mai et al.47, except that here, it is applied to
more than 3000 basins. More details about the model, its parameters and processes
can be found in the Supplementary Material as well as in Mai et al.47.

Basin database. The overall sequence of experiments performed in this study can be
found in Fig. 1. The analysis is based on the HYSETS dataset48, comprised of 14,425
basins filtered by size and overall data availability and quality. Details on the basin
properties can be found on the website associated with this publication, showing eight
physiographic attributes71 based on the void-filled HydroSHEDS digital elevation
model (DEM) with a 30 arc-second resolution72, eight landcover types73 based on the
250m North American Land Change Monitoring System (NACLMS) for 201074, and
three climatic indicators75 used by Knoben et al.76 for each basin.

Preliminary calibration and validation. A preliminary calibration/validation
experiment of the blended model is performed to demonstrate the basic adequacy
of the recently introduced blended model, and to act as the basis for excluding
poorly performing models from analysis. This basic calibration using a single
evaluation metric will be the precursor to a more elaborate future multi-metric
model calibration/validation study to be informed by the results found here.

The subset of 3826 basins with more than five years of observed streamflow data
between January 1991 and December 2010 (calibration period) is calibrated using
the Dynamically Dimensioned Search (DDS)77 algorithm maximizing the Nash-
Sutcliffe efficiency (NSE)78. A budget of 2000 model evaluations per basin and ten
independent trials is used for DDS to calibrate the 35 model parameters and the 8
parameters defining the model structure. All model runs use a two-year warm-up

period (January 1989 to December 1990). Both calibration and sensitivity analysis
results are found to be insensitive to warm-up period duration when this period is
extended from 2 to 5 years (results not shown). The best performing parameter set
of the ten trials is subsequently used for validation between January 1971 and
December 1990. Only the 3005 basins with more than five years of observed
streamflow available in this 20-year period are assessed in validation. The
validation is performed to show that the overall performance during calibration is
maintained during an independent time period. We assume that a strong validation
performance indicates a low likelihood that the model parameters are overfitted
during calibration. The general performance of the blended model in calibration
and in validation compared to fixed model structures has been demonstrated in
detail by Chlumsky et al.79.

Sensitivity analysis. The 3316 basins with an NSE performance of 0.5 or higher
during calibration are then analyzed regarding their simulated streamflow sensi-
tivity. The method applied here is the extended Sobol’ Sensitivity Analysis (xSSA)
introduced by Mai et al.47, and illustrated at one example catchment per climate
zone. This work replicates the analysis for 3316 basins, with exactly the same
parameter and analysis settings. For each basin, K= 1000 Sobol’ reference sets were
used, leading to a computational budget of (43+ 2) × K model runs to determine
the sensitivities of the 43 parameters, (27+ 2) × K model runs to determine the
sensitivities of the 19 process options as well as the eight parameters to weight these
options, and (11+ 2) × K model runs to determine the overall sensitivity of the
eleven processes. To assess the impact of a priori range specification for each
parameter (Table S2 in Supplementary Material), we repeated the analysis for a
subset of 150 basins using ranges for parameters x2 to x6 that were reduced by 20%.

The Sobol’ main sensitivity index Si, as well as the total sensitivity index STi, are
determined for the parameters, process options, and processes. Both indices are
time-dependent since they are derived regarding the simulated streamflow time
series Q(t). To aggregate the indices over time, the variance-weighted approach as
introduced by Cuntz et al.59 and used by Mai et al.47 is implemented. These indices
are denoted by Swi ¼ SiðQðtÞÞ and STw

i ¼ SiðQðtÞÞ, respectively. Note that the
averaging is performed over the sensitivity indices rather than the streamflow time
series as used by Markstrom et al.34, where the sensitivity regarding, for example,
the mean runoff SiðQðtÞÞ, is estimated. This averaging order is expected to lead to
major differences as models and sensitivities are known to be non-linear.

The xSSA analysis is performed using the blended model setup within the
Raven modeling framework65, but can also be performed with any modeling
framework, such as SUMMA80,81 and FUSE82. The process sensitivities can be
estimated as soon as parameters are grouped into processes (no model
implementation required), while properly analyzing multiple process options
simultaneously requires the implementation of the weighted averages of these
process option outputs (implementation in model most likely required).

Deduction of relationships between basin attributes and sensitivity analysis
results. Finally, we attempt to infer functional relationships between known basin
characteristics and the importance of these hydrologic processes using regressions.
The twelve basin characteristics used as predictors are the logarithmic area of the
basin in [km2], the mean elevation of the basin in [m], the average slope of the
basin in [∘], the fraction of the forest cover in [km2/km2], the annual sum of
precipitation in [mm], the annual average temperature in [°C], the annual sum of
potential evapotranspiration in [mm], the average annual number of days below
0 °C, the average annual number of days where precipitation is sleet, i.e., tem-
perature between− 0.85 °C and 1.15 °C, as well as the aridity Im, seasonality Im,r,
and fraction of precipitation as snow fS. The latter three are derived following
Knoben et al.76. The regression analysis is performed using the Mathematica83

function LinearModelFit by first fitting the 7 possible polynomials with up to
degree three and up to five coefficients using each of the 12 combinations to pick
one out of the twelve predictors. Second, we fit the 381 possible polynomials with
up to degree three and up to six coefficients using each of the 66 combinations to
pick two out of the twelve predictors. The regressions were performed in a cross-
validation setup, i.e., each polynomial was fitted to two-thirds of the basins and
validated using the remaining one-third of the basins. The polynomial with the best
average adjusted coefficient of determination R2

adj in validation across 10 trials was
identified- one best across all one-predictor polynomials and one best across the
two-predictor polynomials. The latter two-predictor polynomial was chosen over
the one-predictor version if the adjusted coefficient of determination was improved
by at least 0.05. In total, 252, 300 (= 12 × 7 × 10+ 66 × 381 × 10) regressions were
performed per process predicting the process sensitivity STw

i of the nine processes.
The two Baseflow and Convolution of delayed runoff processes are excluded as
their weighted total Sobol’ index STw

i are smaller than 0.01 in all of the 3316 basins
analyzed. The regression function leading to the best adjusted coefficient of
determination R2

adj is then used to perform a regression using all 3316 basins
(reported in Table 1). To assess the robustness of this regression, we performed
another cross-validation experiment similar to the previous one. The regression
coefficients of the best regression (reported in Table 1) are refit now using two-
thirds of the basins and validating them using the remaining one-third of the
basins (reported in Fig. 5). This experiment is repeated with 100 random splits of
basins.
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Data availability
The xSSA data generated in this study, including examples, can be found on GitHub
(https://github.com/julemai/xSSA-North-America). They have been deposited in the
Zenodo database under accession code https://doi.org/10.5281/zenodo.5730428.
Additional information such as model setups and interactive visualization of data and
results can be found on the webpage associated with this publication (http://
www.hydrohub.org/sa_introduction.html#xssa-na) and in the Supplementary Material.

Code availability
The xSSA code used to generate the results presented in this study, including examples,
can be found on GitHub (https://github.com/julemai/xSSA-North-America). They have
been deposited in the Zenodo database under accession code https://doi.org/10.5281/
zenodo.5730428.
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