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Irinotecan (CPT11) and its active metabolite ethyl-10-hydroxy-camptothecin (SN38) are
broad-spectrum cytotoxic anticancer agents. Both cause cell death in rapidly dividing
cells (e.g., cancer cells, epithelial cells, hematopoietic cells) and commensal bacteria.
Therefore, CPT11 can induce a series of toxic side-effects, of which the most conspicuous
is gastrointestinal toxicity (nausea, vomiting, diarrhea). Studies have shown that the gut
microbiota modulates the host response to chemotherapeutic drugs. Targeting the gut
microbiota influences the efficacy and toxicity of CPT11 chemotherapy through three key
mechanisms: microbial ecocline, catalysis of microbial enzymes, and immunoregulation.
This review summarizes and explores how the gut microbiota participates in CPT11
metabolism and mediates host immune dynamics to affect the toxicity and efficacy of
CPT11 chemotherapy, thus introducing a new concept that is called “microbiota-host-
irinotecan axis”. Also, we emphasize the utilization of bacterial b-glucuronidase-specific
inhibitor, dietary interventions, probiotics and strain-engineered interventions as emergent
microbiota-targeting strategies for the purpose of improving CPT11 chemotherapy
efficiency and alleviating toxicity.
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INTRODUCTION

Surgery, radiotherapy and chemotherapy are there main treatments for cancer treatment. For most
cancers, surgery is still the primary and possible cure, while radiation and chemotherapy are mostly
auxiliary or palliative treatments for advanced cancers (Furue, 2003). However, some of the cancers,
such as endometrial cancer (Taylor et al., 2020) and testicular cancer (Baird et al., 2018), can be
healed up by chemotherapy. Additionally, with the comparison of the local treatment of surgery and
radiotherapy, chemotherapy works on the whole body as it can reach all organs and systems of the
body by intravenous injection, thus it is possible to comprehensively kill cancer cells (Berman et al.,
1993). Therefore, chemotherapeutic agents continue to be the backbone of oncotherapy for
advanced cancer (Wallington et al., 2016).

As a topoisomerase I (TOP1) inhibitor, irinotecan (CPT11) was first approved in Japan for
cancer treatment in 1995 (Bailly, 2019). Since then, CPT11 has been used widely in the treatment of
metastatic or advanced solid tumors (e.g., gastric, pancreatic, ovarian, colorectal and other tumors).
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Up until now, CPT11 and its derivatives remain the primary
anticancer drugs used in the clinic (Kciuk et al., 2020).

CPT11 kills cancer cells and normal proliferating cells
indiscriminately. Hence, severe toxicity is induced in the form of
myelosuppression, nausea, vomiting, diarrhea and peripheral
neuropathy (Eng, 2009). All these adverse factors can incur
treatment interruption/cessation, thereby imperiling the prognosis
and quality of life of patients (Bailly, 2019). Furthermore, severe
diarrhea and neutropenia symptoms are associated with a greater
risk of dying (Campbell et al., 2017; Paulik et al., 2020). CPT11 use is
correlated with diarrhea in 50–80% patients if used individually or
in combination with other chemotherapy drugs (Gelibter et al.,
2019). Moreover, the prevalence of severe diarrhea (defined as grade
3 or 4) caused by CPT11 can reach up to 22–44% (de Man et al.,
2018). Studies have shown that CPT11 is detoxified mainly through
uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1)-
catalyzed glucuronidation (Bruera and Ricevuto, 2020). UGT1A1
is a crucial phase-II enzyme that canmetabolize CPT11 into inactive
metabolites. Hence, medication guides for CPT11 were labeled by
the US Food and Drug Administration (FDA) in 2005 and 2010.
Patients carrying the homozygous UGT1A1*28 allele (known as
Gilbert’s syndrome) have decreased hepatic expression of UGT1A1
enzyme, and a lower initial dose is recommended (Hulshof et al.,
2020). However, this recommendation has been challenged because
patients with Gilbert’s syndrome do not seem to be more sensitive
when undergoing CPT11 chemotherapy than anticipated previously
(Toffoli et al., 2006; Palomaki et al., 2009).

Thus, the metabolism and elimination of CPT11 does not
appear to be a simple detoxification reaction. Other metabolic
pathways may also be involved in this metabolic process. With
the rapid development and innovation of multi-omics (e.g.,
microbial metabonomics, genomics, and immunomics),
increasing numbers of researchers have found that the gut
microbiota (GM) may be an important consideration in
clinical oncology (Yachida et al., 2019; Dohlman et al., 2021).
The human gut is colonized by ~1013 bacterial cells, which is
defined as the GM (Ma et al., 2021). In addition, the genome of
the GM is 100-fold larger than that of humans, which can encode
various types of metabolic enzymes specific to microbiota (Xie
et al., 2020). This phenomenon expands the metabolic capacity
of the host and influences chemotherapy for patients in terms of
efficacy, toxicity, and bioavailability (Ervin et al., 2020).

In this review, we focus on the complex metabolic processes
of CPT11. We discuss in-depth how the GM is involved in this
process, explaining and illustrating how the GM modulates
CPT11 chemotherapy through three key mechanisms:
microbial ecocline, catalysis of microbial enzymes, and
microbial-mediated immunoregulation.
CELLULAR AND MOLECULAR
MECHANISMS OF CPT11
CHEMOTHERAPY

CPT11 is a semi-synthetic and water-soluble analog of
camptothecin (CPT). The latter is a pentacyclic alkaloid isolated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
from Camptotheca acuminata, and is a TOPI inhibitor (Li et al.,
2017). CPT11 has been used widely in the treatment of colon cancer
(Reita et al., 2019), non-small-cell lung cancer (Zhang et al., 2015),
pancreatic cancer (Glassman et al., 2018), gastric cancer (Fukuchi
et al., 2020), and other cancer types (Mabuchi et al., 2019; Mizrahi
et al., 2020). The primary antitumor mechanism of CPT11 is to
inhibit DNA TOPI specifically (Pommier, 2006). TOPI modulates
the DNA topology and “twists”DNA into a specific spatial structure
during replication and transcription with its nuclear enzymatic
activity (Gentry et al., 2011). CPT11 as well as its active metabolite
ethyl-10-hydroxy-camptothecin (SN38) can bind to TOPI. The
formation of a CPT11–TOPI–DNA complex blocks the DNA
replication fork, the single strand of DNA breaks, and thereby
leads to cell-cycle arrest and apoptosis (Bailly, 2019). Studies have
shown that TOPI expression in cancer cells may be 14–16-times
higher than that of normal cells surrounding the tumor. Owing to
the dose-dependent inhibition of the enzyme, cancer cells are more
susceptible to TOP toxicity (Burris and Fields, 1994).

Recent studies have found that CPT11 has other targets
besides TOPI. The active metabolite ethyl-10-hydroxy-
camptothecin (SN38) has been shown to significantly increase
expression of p53 protein and pro-apoptosis proteins Bax,
caspase-3, and caspase-9 in human hepatocellular carcinoma
cell lines, and meanwhile decrease expression of the anti-
apoptosis protein B-cell lymphoma (Bcl)-xL (Takeba et al.,
2007). In addition, studies using nuclear magnetic resonance
have demonstrated that CPT11 can bind directly to mouse
double minute 2 homolog (MDM2), a ligase of tumor
suppressor p53, and Bcl-xL. Moreover, p53 expression is
increased by CPT11 only in the presence of MDM2 (Takeba
et al., 2007). CPT11 has also been shown to activate p38. Early
and short-duration activation of p38 is induced by a higher
CPT11 concentration but, with a lower CPT11 concentration,
the activation is delayed and sustained (Rudolf et al., 2013).

CPT11 can be used individually but it is more frequently
combined with other cytotoxic drugs (e.g., 5-fluorouracil,
oxaliplatin), monoclonal antibodies (e.g., cetuximab,
bevacizumab) or with kinase inhibitors (Di Desidero et al.,
2017; Chen and Jiang, 2019). Recent experimental and clinical
studies have indicated that inhibitors of DNA repair, epigenetic
modifications, signaling modulators, and immunotherapy can
also be combined with CPT11 (Liu et al., 2021). Several CPT
derivatives have been developed over the past two decades. They
have been developed to show different activity for a given tumor
type in the clinic, such as rubitecan, lurtotecan, difflomotecan,
lurtotecan and others (Li et al., 2017). Such findings indicate that
CPT11 is a major anticancer drug and may exert its effect
through multiple pathways. Nevertheless, the detailed
mechanism has not been clarified.
METABOLISM OF CPT11

Various metabolic enzymes and drug transporters can
participate in CPT11 metabolism directly and indirectly:
human carboxylesterase 2 (CES2) (Xu et al., 2019), UGT1A1
October 2021 | Volume 11 | Article 710945
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(Hulshof et al., 2020), cytochrome P450 (CYP)3A4 (Riera et al.,
2018), butyrylcholinesterase (Hyatt et al., 2005), adenosine
triphosphate-binding cassette B1 (Garcia et al., 2018), and
microbial b-glucuronidase (Chamseddine et al., 2019).
Elaborating the complex metabolic processes of CPT11
(Figure 1) may offer a unique opportunity to understand its
efficacy and toxicity, and promote “ individualized”
chemotherapy regimens.

Direct Metabolism by the Host
CES1 and CES2 are the two major carboxylesterases in
metabolizing endogenous and exogenous chemicals distributed
in the blood, colon, kidney, and liver of humans. CES2 is
primarily responsible for the metabolic activation of various
prodrugs, including CPT11 (the affinity of CES2 for CPT11 is
as high as that for CES1) (Xu et al., 2019). After intravenous
injection, CPT11 flows through peripheral blood to the liver.
Then, this agent can be metabolized to a more efficient
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
compound, SN38, by hepatic CES enzymes (CES1 and CES2)
(Alimonti et al., 2004). However, SN38 can also be generated by
butyrylcholinesterase (hBChE) and CES in blood plasma, and the
metabolic activity of hBChE is 6-times higher than that of CES
(Morton et al., 1999; Rudakova et al., 2011). Subsequently, SN38
can be metabolized rapidly to inactive O-glucuronide (SN38G)
by hepatic microsomal enzymes (UGT1A1 and UGT1A9), as
well as UGT1A7 and UGT1A10 secreted by bile (de Man et al.,
2018). Most notably, SN38G is generated almost immediately
after SN38 production (Rivory et al., 1997).

Furthermore, intrahepatic CYP enzymes such as CYP3A4 and
CYP3A5 also participate in the metabolism of CPT11. They convert
CPT11 to additional inactivated metabolites, including 7-ethyl-10-
[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxy-
camptothecin (APC) and 7-ethyl-10-(4-amino-1-piperidino)
carbonyloxy-camptothecin (NPC) (Kuhn, 1998; Santos et al.,
2000). The latter can be converted to SN38 by CES1 and CES2
enzymes (Sanghani et al., 2004).
FIGURE 1 | CPT11 metabolism and excretion in the human body. The deactivation and activation of compounds (CPT11 or SN38) are represented by blue and red
arrows, respectively. CPT11 induced delayed diarrhea are represented by red stellate symbol. The black solid arrows indicate the antineoplastic activity of CPT11
and SN38. The transport of CPT11 and its metabolites (SN38 and SN38G) between the blood circulation system, liver and gut lumen are pointed out by dashed-line
arrows. CES1/2, carboxylesterase 1/2; APC, 7-ethyl-10-(4-N-(5-aminopentanoic acid)-1-piperidino) carbonyloxy-camptothecin; NPC, 7-ethyl-10-(4-amino-1-
piperidino) carbonyloxy-camptothecin; CYP3A4, cytochrome P450; UGT, UDP-glucuronosyltransferase; b-Gus, b-glucuronidase.
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Indirect Metabolism by the GM
Humans are colonized by 10–100 trillion interconnected
microbial organisms, most of which are positioned on the gut
(Adak and Khan, 2019). Moreover, the microbial genomes
are about 100-fold greater than that of the human host, so
the metabolic repertoire of theGM is larger than that of
humans. Distinct from host genomes, the GM encodes various
enzymes serving the function of metabolism and detoxification
in unique and unnoticed ways (Zimmermann et al., 2019).
Notably, >60 bioactive compounds undergo direct and indirect
GM modifications. Specifically, the microbial transformations
of chemical components often counteract the host metabolism
by changing the pharmacokinet ics parameters and
pharmacodynamics characteristics of exogenous compounds
(Spanogiannopoulos et al., 2016; Koppel et al., 2017).

As a microbiome-encoded enzyme, b-glucuronidase plays an
important part in human health by metabolizing exogenous
compounds in the intestinal tract. An elegant study profiled an
atlas of human GM-encoded enzymes, and found that b-
glucuronidase is derived mainly from four major microbial
phyla: Bacteroidetes, Firmicutes, Verrucomicrobia, and
Proteobacteria (Pollet et al., 2017). Furthermore, b-
glucuronidase can beget drug-originated intestinal toxicity.
Examples of such drugs include CPT11, of which the inactive
metabolin SN38G is produced after complex metabolism in the
liver. In the intestinal lumen, however, bacterial b-glucuronidase
expressed by the host microbiota regenerate the active ingredient
(SN38) and might induce severe diarrhea in a dose-limiting
manner. Studies have shown that selective and highly effective
inhibition of bacterial b-glucuronidase recedes the intestinal
destruction induced by CPT11 without eliciting abnormal
disturbance of serum pharmacokinetics (Wallace et al., 2010;
Wallace et al., 2015). Moreover, reducing or eliminating the GM
by broad-spectrum antibiotics shows lower intestinal toxicity in
mice, and the same as that in germ-free mice (Pedroso et al.,
2015; Mody et al., 2017). Taken together, the evidence mentioned
above emphasizes the crucial role that bacterial b-glucuronidase
has in affecting CPT11 metabolism and influencing
chemotherapy toxicity.
INTERACTION BETWEEN MICROBIOTA
AND THE HOST AFTER CPT11
CHEMOTHERAPY

CPT11 chemotherapy is administered to cancer patients. The
physiology and ecology of the GM of patients given CPT11 tend
to be disturbed and immature compared with that of healthy
individuals (Hofseth et al., 2020). In addition, dysbiosis might
occur after CPT11 treatment and further exacerbate the
influence of harmful bacteria, thereby reducing efficacy or
aggravating chemotherapy toxicity (Alexander et al., 2017). A
“vicious circle” may be formed because CPT11 might further
aggravate this disturbed status instead of redressing it. These
inharmonious state can be called “microbiota-host-irinotecan
axis dysregulation”. The microbiota-host-irinotecan axis refers to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the intercommunication system between gut microbiota, host
immune microenvironment and host drug metabolism after
CPT11 chemotherapy. Understanding the mechanisms by
which CPT11 alters the diversity, catalysis and metabolism of
microbiota is crucial for real-time monitoring the dynamic
variation of host immune response and CPT11 toxicity after
CPT11 chemotherapy. Furthermore, in-depth discussion on the
dynamics of the bacterial community and immunological
condition in patients receiving CPT11 chemotherapy is
needed, because it may provide a new opportunity for
individualized cancer chemotherapy. Moreover, cancer
chemotherapy combined with a “dynamics atlas” of the GM
may be an exciting new strategy for cancer treatment.

Microbial Ecocline
The first stage in illustrating the interactive relationships and
estimating the curative effect of CPT11 chemotherapy is to detail
the variation in the diversity and ecology of microbiota. Some
studies have shown how CPT11 affects microbial ecocline. After
3 days of CPT11 (125 mg/kg bodyweight) treatment in rats, Lin
et al. observed an obvious change in microbiota composition,
including an increased abundance of intestinal Enterobacteriaceae
spp. and Clostridium cluster XL (Lin et al., 2012). Another study
noted a prominent reduction of diversity in the microbiota
community in colitis-associated mice with colon cancer upon 5-
fluorouracil (25 mg/kg)/CPT11 (25mg/kg) treatment (Wang et al.,
2020b). Wang et al. found that the GM was enriched in mice
suffering from intestinal mucositis induced by 5-fluorouracil (25
mg/kg)/CPT11 (25mg/kg); the enrichedbacterial specieswere from
the genera Escherichia, Shigella, Clostridium, Parasutterella,
Streptococcus, Lactococcus, Staphylococcus, and Enterococcus
(Wang et al., 2020a). Wang et al. showed that CPT11 (150 mg/
kg) administration decreased the richness of the GM markedly
compared with that in control mice, but the level of bacteria of the
phylum Proteobacteria and class Porphyromonadaceae and
Mogibacteriaceae increased significantly (Wang et al., 2019).
Several recent studies have indicated that CPT11 triggers the
innate immune response to cause the secretion and release of
proinflammatory cytokines such as interleukin (IL)-18, IL-1b, IL-
6, and tumor necrosis factor-a (Stringer, 2013; Lian et al., 2017). In
addition, the increase in the level of proinflammatory cytokines
accelerates the discharge of mucin stored in goblet cells. There
actions induce vacuole formation, which further influences
intestinal microbial ecocline by reducing the number of adhesion
sites and decreasing nutrition. Those actions cause a reduction in
the number of symbiotic bacteria (e.g., Lactobacillus spp.) and an
increase in the number of opportunistic pathogens (e.g.,Escherichia
coli) (Stringer, 2013). Notably, these changes in the GM are
strikingly similar to those observed in intestinal inflammatory
diseases such as ulcerative colitis, Crohn’s disease, and proctitis
(Shivaji, 2021).
Alterations in the Catalysis and
Metabolism of Microbial Enzymes
Changes in the composition of the intestinal microbiota caused
by CPT11 have garnered interest. Studies have shown that
October 2021 | Volume 11 | Article 710945
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intestinal dysbacteriosis might not be the leading cause of CPT11
toxicity. However, microbial metabolites [e.g., short-chain fatty
acids (SCFAs)] and enzyme catalysis (e.g., b-glucuronidase) are
correlated with the intestinal mucosal barrier and CPT11
detoxication, respectively (Lin et al., 2014; Gallotti et al., 2020;
Hueso et al., 2020). As ubiquitous bacterial metabolites, SCFAs
are generated mainly by fermentative bacteria. They maintain the
intestinal epithelial barrier, inhibit the growth of colorectal
cancer cells, and modulate the immune response (Cani and
Jordan, 2018; Singh et al., 2014). The abundance of bacteria of
the genera Lactobacillus and Bifidobacterium is decreased after
CPT11 treatment. Moreover, these two species of bacteria
generate or contribute to SCFA creation (LeBlanc et al., 2017;
Markowiak-Kopec and Slizewska, 2020). Therefore, a vicious
cycle arises whereby the decreased level of SCFAs induced by
CPT11 therapy can aggravate its toxicity further.

Bacterial b-glucuronidase (or putative b-glucuronidase) has
been identified from 43% of species in the Human Microbiome
Database (Morkunas et al., 2020). However, a discrepant GM
possesses a structurally diverse assortment of bacterial b-
glucuronidase enzymes (Pollet et al., 2017). A study based on
mouse-gut microbiome-encoded b-glucuronidase found that the
latter were largely encoded by bacteria in the GM of the phyla
Firmicutes (60%) and Bacteroidetes (21%), but the taxonomy for
~20% of the GM was not defined (Creekmore et al., 2019). b-
glucuronidase from bacteria in mice or humans maintain a
portion of an active site named the “bacterial loop” (Wallace
et al., 2015; Creekmore et al., 2019). CPT11 can induce changes
in microbial ecocline that are correlated with augmentation in
bacteria from the family Enterobacteriaceae and E. coli, thereby
leading to a higher level of b-glucuronidase in the intestine, and
resulting in enhanced toxicity from b-glucuronidase (Stringer
et al., 2008; Fujimura et al., 2010; Lin et al., 2012).

Alteration of the Immune Environment
Immune-based therapeutic strategies for cancer have become
increasingly attractive to researchers. Several immune-checkpoint
inhibitors have been developed over the past decade (Meric-
Bernstam et al., 2020). The importance of the immune-
checkpoint inhibitor programmed cell death-1 was recognized
with the award of the 2018 Nobel Prize in Physiology or
Medicine to Professor James Allison. Therefore, researchers must
monitor the vital functions of the immune system during
oncotherapy. Conventional chemotherapy (including CPT11)
operates mainly by blocking TOPI, thereby exerting a highly anti-
proliferation effect upon cancer cells. However meanwhile, an
antinomy may be involved that this aggravate cytotoxicity
probably brings ‘off target’ effect responding to immune cells and
the inflammatory microenvironment (Duffy and Greten, 2014).

Direct impact on the immune system. Xue et al. were the first
to investigate the effects of CPT11 on the gut and systemic
immune environment in tumor-bearing rats. They discovered
that CPT11 facilitates a preponderance of activated T cells but
induces hypo-reactivity in spleen cells (Xue et al., 2009). One
study involving 133 patients showed that CPT11 administration
led to 28% of patients experiencing severe neutropenia and 10%
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
of patients suffering febrile neutropenia (van der Bol et al., 2010).
A review by Logan et al. noted that cancer treatment using
CPT11 resulted in (Logan et al., 2007). Those data suggest
changes in the immunological micro-environment the
activation of mitogen-activated protein kinase and nuclear
factor kappa-B (NF-kB) signaling pathways which, ultimately,
caused apoptosis of intestinal cells upon CPT11 treatment.

Indirect impact on immune cells mediated by the microbiota.
An intact commensal microbiota contributes to cancer treatment
and orients the therapeutic outcome from chemotherapy (Iida
et al., 2013). The intestinal commensal microbiota is vital for the
maintenance of the epithelial barrier and immune functions
(Mukaida, 2014). Schluter et al. disclosed a fascinating
association between gut bacteria and immune-cell dynamics;
Faecalibacterium, Ruminococcus and Akkermansia were the
taxa with the strongest association with immune-cell dynamics
in the gut (Schluter et al., 2020). Bifidobacteriaceae are the only
family of bacteria in the order of Bifidobacteriales .
Bifidobacteriaceae are one of the preponderant bacteria of the
GM, accounting for >1% of total intestinal bacteria (Picard et al.,
2005; Russell et al., 2011; Bottacini et al., 2017). López et al.
reported that dendritic cells (DCs) exposed to Bifidobacterium
bifidum LMG 13195 stimulated the polarization of naïve T cells
into functional T regulatory cells. Meanwhile, the IL-10 level was
increased significantly after DCs were exposed to B. bifidum
LMG13195 membrane vesicles in vitro (Lopez et al., 2012). This
action could trigger a “domino effect” of local immunological
suppression in the gut. Moreover, study showed that oral
supplementation with B. infantis and B. bifidum in Balb/c mice
reduced levels of endotoxins and inflammation (Griffiths
et al., 2004).

Another probiotic,Lactobacillus salivarius LI01, shows immune
modulation that can restore the levels of serum biomarkers (IL-1a,
IL-5, IL-10) before the differentiation of naïve T cells towards
immune homeostasis in germ-free Sprague–Dawley rats (Xia
et al., 2021). A transcriptome study using a germfree murine
mode revealed that Lactobacillus acidophilus NCFM (as
immunostimulatory components) could coordinately “educate”
the immune system without eliciting a detrimental immune
response in the host (Goh et al., 2021). Furthermore, studies also
showed that Lactobacillus spp. initiate apoptosis of cancer cells
(especially colorectal cancer cells) by mediating apoptotic signals.
Exopolysaccharides (EPS) generated by Lactobacillus plantarum
NCU116 restrain the proliferation and induce the apoptosis in the
mouse epithelial colorectal carcinoma cell line CT26 via toll-like
receptor 2 and activation of the death receptor Jun (Zhou et al.,
2017). Use of the human colorectal cancer line HT29 in vitro
indicated that EPS from nine strains of Lactobacillus spp.
significantly suppressed cell-cycle arrest at the G0/G1 phase and
apoptosis (Di et al., 2018). Nevertheless, Nowak et al. discussed in
detail the anti-proliferative and pro-apoptotic activity of
Lactobacillus spp. and Bifidobacterium spp. in a review (Nowak
et al., 2019). As mentioned above, CPT11 can cause a lower
abundance of Bifidobacterium spp. and Lactobacillus spp. in the
intestinal tract, which entails initiation of destabilization in the
tumor immune environment.
October 2021 | Volume 11 | Article 710945
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CPT11 administration resulting in augmentation of the number
of opportunistic pathogens can also lead to disturbance of the host
immunologic state. Asnon-spore-formingGram-negative bacteria,
Escherichia spp. and Shigella spp. can spark acute mucosal
inflammation. Escherichia spp. and Shigella spp. elicit a series of
acute inflammation responses, including activation of caspase-1, to
release IL-1b and IL-18 through infection of macrophages and
epithelial cells (Sansonetti et al., 2000). Moreover, Escherichia spp.
and Shigella spp. possessing the Shigella type-III secretion system
generate various effector molecules (e.g., OspI, IpaH9.8, and
PtdIns5P) through which Escherichia spp. and Shigella spp. use
the NF-kB signaling pathway and thereby mediate expression of
some proinflammatory cytokines (Okuda et al., 2005; Sperandio
et al., 2008; Sanada et al., 2012; Puhar et al., 2013). Furthermore,
Escherichia spp. and Shigella spp. induce a deviant adaptive
immunity response. One study using a murine infection model
revealed that Shigella flexnerimainly initiates a Th17-cell response
to produce IL-17 and IL-22 (Sellge et al., 2010). Besides, the
apoptotic death rate of DCs is augmented after treatment with the
effectors (OspF)ofShigella spp. (Kimetal., 2008).Moreover, studies
have shown that Shigella spp. intrude into T cells and inhibit
migration of chemokines and chemokine receptor-induced
lymphocytes, thereby affecting the function and dynamics of
lymph nodes (Konradt et al., 2011; Salgado-Pabon et al., 2013). In
particular, the chronic inflammatory status presenting inmicewith
deficiency of DNA-mismatch repair is often accompanied by
enrichment of Escherichia spp. and Shigella spp. in the fecal
sample, which aggravates colonic tumorigenesis (Lang et al.,
2020). In conclusion, opportunistic pathogens trigger an
anomalously local immunological micro-environment in the host,
which can aggravate adverse reactions in the body and which may
be new focus of ongoing research.
MICROBIOTA AS AN INTERMEDIARY IN
THE EFFICACY AND TOXICITY OF CPT11
CHEMOTHERAPY

A cutting-edge research topic in regard to the GM is mediation of
the efficacy and toxicity of CPT11 chemotherapy (Alexander
et al., 2017) (Figure 2). As stated above, the GM impacts the host
immunological state and pharmacodynamic metabolism
pathways of CPT11. Thus, the GM may have a dual role in
carcinogenesis as an oncogene and tumor suppressor (Bhatt
et al., 2017). By regulation of intestinal microorganisms as an
auxiliary strategy or by utilizing inhibitors that target microbial
enzymes, the GM can improve CPT11 chemotherapy and
alleviate toxicity (Figure 3).

Inhibition of Bacterial b-Glucuronidase
Bacterial b-glucuronidase is a lysosomal exoglycosidase enzyme.
It can cleave the glucuronic moiety to glucuronic acid and an
aglycone, a process termed “deglucuronidation”. As a glucuronide
prodrug, SN38G is non-toxic with highly hydrophilic
characteristics, and can be subject to fast renal clearance so that it
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
cannot to enter cells. However, SN38G enters the gut through the
enterohepatic circulation, and is reactivated by b-glucuronidase
generated from the GM (Pusztaszeri et al., 2007). Hence, b-
glucuronidase prolongs the clearance time of CPT11 within the
bodyand is, therefore, considered tobeadirectpromotorofCPT11-
induced intestinal toxicity and delayed diarrhea (Wallace et al.,
2010).Moreover, several investigations have demonstrated that the
extent of intestinal damage induced by CPT11 is highly and
positively correlated with the level of intestinal b-glucuronidase
activity (Nishiike et al., 2013; Roberts et al., 2013). Targeted
inhibition of intestinal bacterial b-glucuronidase has shown to be
a promising therapeutic strategy for relieving the toxicity induced
by CPT11 chemotherapy (Chamseddine et al., 2019). Most
strikingly, a study conducted by Cheng et al. indicated that
pharmacological inhibition of b-glucuronidase alleviates the
intestinal injury caused by CPT11 without diminishing its anti-
tumor effect (Cheng et al., 2019).

However, one study cast doubts on the crucial role of bacterial
b-glucuronidase in CPT11-induced diarrhea; streptomycin
ablated intestinal toxicity but did not restrain b-glucuronidase
activity (Kurita et al., 2011). The reason for this result is probably
because b-glucuronidase from different bacterial phyla has
distinct differences with one another in terms of catalytic
efficiency, substrate binding, and reaction rates (Wallace et al.,
2015). Subsequently, an innovative study using a novel activity-
based protein profiling platform identified various specific
bacterial b-glucuronidase enzymes that could regenerate SN38
(Jariwala et al., 2020).

Explorations of inhibitors of bacterialb-glucuronidase to relieve
CPT11-induced intestinal damage have increased in recent years.
Initially, Ahmad et al. screened marketed drugs from the US FDA
using purified b-glucuronidase from E. coli. They found that
nialamide, isocarboxazid, phenelzine, amoxapine, and mefloquine
had significant inhibitory activity in vitro, respectively (Ahmad
et al., 2012). Three older drugs (aspartame, N-desmethylclozapine
and gemifloxacin) have also been shown to have b-glucuronidase
inhibitory activity using enzyme-based assays (Chen et al., 2020). In
vivo studies have indicated that amoxapine alleviates CPT11
toxicity and enhances the anti-tumor efficacy (to a certain extent)
in tumor-bearing mice, and that the pharmaceutical activity of
CPT11 is associated with its inhibitory impact on b-glucuronidase
from E. coli, Enterococcus spp., Streptococcus spp., Escherichia spp.,
and Staphylococcus spp. (Kong et al., 2014; Yang et al., 2018). The
specificity of inhibitors against b-glucuronidase from E. coli was
designed and exhibited activity in protecting mice from CPT11-
induced toxicity, but did not kill bacteria or harmmammalian cells
(Roberts et al., 2013; Pollet et al., 2017). Another E. coli b-
glucuronidase-specific inhibitor, the pyrazolo[4,3-c]quinoline
derivative TCH-3562, also exhibited inhibitory activity against
endogenous b-glucuronidase from the anaerobes Eubacterium
spp. and Peptostreptococcus anaerobius (Cheng et al., 2019). As a
uniquely covalent inhibitor, UNC102016524 is combined with
b-glucuronidase from Clostridium perfringens after conjugation at
the active site of b-glucuronidase, and prevents intestinal toxicity
while retaining the anti-tumor efficacyofCPT11 (Bhatt et al., 2020).
Besides synthetic compounds, natural products derived fromherbs
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and fruits (e.g.,flavonoids and cinnamic-acidderivatives) exhibitb-
glucuronidase inhibitory activity (Li et al., 2020; Sun et al., 2020;
Yang et al., 2020). Nevertheless, almost all the discovered inhibitors
based onb-glucuronidase have been designed to reduce the toxicity
of CPT11 chemotherapy rather than enhance its efficacy.

Regulation of Intestinal Microorganisms
Maintenance of a normal structure and diversity of a microbial
community is crucial for continuous routine CPT11
chemotherapy and its curative effect. However, intervention
measures to regulate the GM are suboptimal, such as dietary
and probiotics interventions, which are not adequate for
microbiota adjustment and are controversial.

Antibiotic treatment. Clinical guidelines state that antibiotics
should be used for the management of CPT11 chemotherapy-
induced diarrhea. As a broad-spectrum antibiotic, neomycin can
relieve CPT11-induced diarrhea in patients by reduction in the
activity of fecal b-glucuronidase (Sharma et al., 2005). A
combination of neomycin and bacitracin also appeared to affect
treatment efficacy in one small study (Alimonti et al., 2003). A
phase-I clinical trial revealed that cefixime significantly decreased
the dose-limiting toxicity induced by CPT11 treatment in pediatric
patients with refractory solid tumors (Furman et al., 2006).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Moreover, preventative ciprofloxacin treatment lowered CPT11
chemotherapy-related mortality in tumor-bearing rats (Xue et al.,
2009). Nevertheless, the usefulness of antibiotics for the duration of
CPT11 chemotherapy is controversial. Retrospective analyses
conducted at Osaka National Hospital (Osaka, Japan) revealed no
difference in the prevalence of grade-3–4 diarrhea between the co-
administration group (clarithromycin andCPT11) and theCPT11-
monotherapy group in patients with colorectal cancer (Makihara
et al., 2017). Another retrospective study found that antibiotics did
not improve the therapeutic efficacy of CPT11 in advanced
colorectal cancer (Imai et al., 2020). Bacterial resistance is another
serious issue. A literature review and modeling study revealed that
in the USA, 26.8% of pathogens causing infections are resistant to
standard prophylactic antibiotics after chemotherapy (Teillant
et al., 2015). Use of antibiotics in immunocompromised patients
may provoke aClostridiumdifficile infection, thereby increasing the
riskofdiarrhea (Kimetal., 2013).Due to thediverse rolesof theGM,
non-selective killing of all bacteria by antibiotics elicits only limited
benefits for CPT11 chemotherapy.

Dietary interventions. Dietary interventions can improve the
efficacy of CPT11 chemotherapy, but their role in regulation of the
GM during CPT11 chemotherapy is incompletely understood.
However, evidence from animal studies is emerging. Mammals
fed a high-fiber diet showed lighter symptoms of CPT11-induced
mucositis, which is related to a decrease in abundance of
Enterobacteriaceae, and increasing numbers of Lactobacillus spp.
and Bifidobaterium spp., as well as increasing cecal production of
butyrate (Lin et al., 2014; Gallotti et al., 2020). Other
dietary interventions, including glutamine supplementation
(Gaurav et al., 2012), supplementation with n-3 fatty acids
(Hardman et al., 2002; Xue et al., 2007), protein/calorie restriction
(de Man et al., 2020), fasting (Huisman et al., 2016), butyrate
supplementation (Encarnacao et al., 2018), and ketogenic diets
(Wang Y. et al., 2020), have also shown the usefulness for CPT11
chemotherapy (Table 1). These approaches have limited
advantages in combination with concurrent CPT11
chemotherapy (and are deficient in comprehension of diet–
microbiota–chemotherapy interactions in cancer). However,
evidence from the effect of dietary components on cancer as well
the GM studies have shown that dietary components affect the
efficacy of cancer chemotherapy by targeting the GM (Kanarek
et al., 2020; Tao et al., 2020). Therefore, theGMis likely conditioned
by dietary interventions and, in turn, is a crucial regulator of the
outcome of CPT11 chemotherapy.

Probiotics and bacterial strain-engineered interventions.
Studies in animals and humans have suggested that probiotics
based on Bifidobacterium spp., Lactobacillus spp., and
Saccharomyces spp. can prevent intestinal mucositis and
promote curative effects (Pico-Monllor and Mingot-Ascencao,
2019). VSL#3 comprises freeze-dried living bacteria: four strains
of Lactobacilli spp., three strains of Bifidobacteria spp., and one
strain of Streptococcus spp. VSL#3 can prevent CPT11-induced
weight loss and diarrhea in rats (Bowen et al., 2007). Qiu et al.
investigated the efficacy of selenium-enriched Bifidobacterium
longum (Se-B. longum) on CPT11-induced intestinal mucositis.
They found that Se-B. longum significantly reduced the
FIGURE 2 | Effects of microbiota on the trend of CPT11 chemotherapy
efficacy and toxicity. Schematic presents the dualism’s functional role of
microbiota in CPT11 chemotherapy. Lactobacillus spp, bifidobacterium spp,
oncolytic viruses, and azide-modified phages can cooperate with CPT11,
respectively, and exert immune activation, synergetic anti-proliferative and
pro-apoptosis effect on tumor. That eventually enhances the anti-tumor
efficacy on tumor. However, some microbes, such as Escherichia-shigella,
Parasutterella, Streptococcus, Lactococcus, Staphylococcus and Clostridium
difficile elicit a series of inflammation response by activating NF-kB pathway
after infection of macrophages and epithelial cells, which aggravate the toxic
reactions induced by CPT11, and impair chemotherapeutic outcome.
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FIGURE 3 | Manipulation of microbiota improve the outcomes of CPT11 chemotherapy. SN38 active), regenerated by microbial b-glucuronidases in the intestinal
tract from SN38G (inactive), primarily targets topoisomerase 1, thereby causing breaks in DNA strands. SN38-induced DNA lesions lead to the apoptosis of intestinal
epithelial cells, which destroys the epithelial barrier. Then, local inflammation and dysbiosis are triggered. In addition, shortening of intestinal villi and bacterial
translocation can amplify this damage, and lead eventually to CPT11-induced diarrhea. Moreover, microbial dysbiosis can affect the development and progression of
cancer by activating inflammatory signaling pathways. Antibiotics, b-glucuronidase inhibitors, and herbal medicines can be used to inhibit b-glucuronidases to
alleviate intestinal symptoms. Probiotics mediate microbial metabolism and immunologic homeostasis by reconstruction of the intestinal microbiota, thereby
synergizing with CPT11 chemotherapy. SCFAs, short-chain fatty acids; PAMP, pathogen-associated molecular patterns; IL-10, interleukin 10; TNF, tumor necrosis
factor; b-Gus, b-glucuronidases; Th17, T helper 17; Top1, Topoisomerase I; NF-kB, nuclear factor-kappa B; Bax, BCL2-associated X; Bcl2, BCL2
apoptosis regulator.
TABLE 1 | Outcomes of different dietary interventions upon CPT11 chemotherapy.

Type of dietary intervention Research object Outcome Mechanism of action Ref.

Glutamine Rats bearing the
Ward colon tumor

Reduction of severe diarrhea Unknown (Xue et al., 2007)

n-3 fatty acids Rats bearing the
Ward colon tumor

Enhanced efficacy of CPT11
chemotherapy

Unknown (Xue et al., 2007)

n-3 fatty acids Male Swiss mice Reduced the side effects of
CPT11 chemotherapy

Unknown (Hardman et al., 2002)

Protein and calorie restriction Patients with liver
metastases from solid
tumors

Improved the therapeutic window
of CPT11 chemotherapy

Plasma SN38 exposure increased, but toxicity
unchanged

(de Man et al., 2020)

Fasting C26 colorectal carcinoma-
bearing mice

Prevented the diarrhea induced
by irinotecan

Induced lower systemic exposure to SN38,
but not in tumor tissue

(Huisman et al., 2016)

Saccharomyces cerevisiae
UFMG A-905 (Sc-905)

Murine model of CPT11-
induced mucositis

Protect mice against the damage
caused by CPT11

Reduced oxidative stress and preserve the
intestinal mucosa

(Bastos et al., 2016)

Diet containing fish oil Ward colon-bearing rats Enhanced the efficacy of CPT11
chemotherapy

Reduced the level of transcription factors
involved in adipogenesis and lipogenesis

(Almasud et al., 2017)

Dietary fibers Rats bearing a Ward colon
tumor

Reduced the intestinal toxicity
induced by CPT11

Increased the cecal production of butyrate (Lin et al., 2014)
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prevalence of diarrhea in mice (Qiu et al., 2019). In preliminary
clinical studies, Se-B. longum also presented positive outcomes if
used as a probiotic. Mego et al. conducted a randomized double-
blind, placebo-controlled pilot study and showed that oral
probiotic supplements composed mainly of Bifidobacterium
spp., Lactobacillus spp., and Streptococcus spp. decreased the
prevalence and severity of intestinal toxicity induced by CPT11
(Mego et al., 2015). According to a recent prospective
observational study, Lactobacillus kefiri LKF01 (Fefibios®) can
relieve CPT11-induced severe diarrhea in cancer patients
(Ghidini et al., 2021). Notably, a phase II/III, randomized,
double blind, placebo controlled study conducted by Sharma
et al. showed that a high-concentration multi-strain probiotic
supplements (consist of 4 strains of Lactobacillus, 3 strains of
Bifidobacteria and 1 strain of Streptococcus thermophilus)
showed a relieved effect for grade 3 and grade 4 diarrhea
induced by CPT11 (Sharma et al., 2018). All preclinical studies
are summarized in Table 2.

Besides probiotics, several commensal bacteria, as well as
genetically engineered bacteria and viruses, can also be used to
alleviate intestinal toxicity or improve the efficacy of CPT11
chemotherapy. As a Gram-negative bacteria, E. coli Nissle 1917
relievesGMdysbiosis andpromotes the intestinalbarrier inCPT11-
induced intestinal injury (Wang et al., 2019). In recent years, studies
on oncolytic viruses in combination with chemotherapy have been
undertaken (Zhang and Cheng, 2020). The consensus is that
oncolytic viruses infect and lyse tumor cells, as well as activate
innate and adaptive immunity through antigen presentation
(Lawler et al., 2017). An in vitro study indicated that combination
of ReoT3D (Dearing strain of oncolytic viruses), CPT11, and
napabucasin (inhibitor of signal transducer and activator of
transcription 3) induced the apoptosis of murine colorectal
cancer cells (CT26) (Babaei et al., 2020). It has been reported that,
as an intravenously delivered oncolytic reovirus, pelareorep can
activate the immune response in the host. In a phase-Ib study,
Mahalingam et al. revealed that pelareorep adjuvanted with
CPT11 showed encouraging efficacy without additional toxicity
in patients with an advanced pancreatic adenocarcinoma
(Mahalingam et al., 2020). As a newly discovered bacterium,
Fusobacterium nucleatum has been implicated in driving
formation of a pro-tumoral microenvironment, as well as
inducing chemoresistance and immunosuppression (Kostic
et al., 2013; Mima et al., 2015). However, Zheng et al. revealed
that F. nucleatum rescued the inhibitory effect of CPT11 on
colorectal cancer cells (HCT116 and CT26) (Zheng et al., 2019).
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Nevertheless, the emergence of bioengineered phages could
reduce the unfavorable effects of bacteria (Kannen et al., 2019).
One study showed that azide-modified phages linked covalently to
CPT11-loaded dextran nanoparticles could significantly inhibit F.
nucleatum growth and strengthen the therapeutic effect of CPT11
against colorectal cancer (Zheng et al., 2019).
FUTURE PERSPECTIVES

Germ-free mice have been shown to be more resistant to CPT11-
induced intestinal toxicity than holoxenic mice (Brandi et al., 2006).
Hence, researchers have demonstrated the benefits of applying
antibiotics for prevention of the intestinal injury induced by
CPT11. The GM has diverse roles in hosts. Antibiotics used for
non-selective elimination of pro-tumoral and antineoplastic bacteria
show only limited advantages during CPT11 chemotherapy in
cancer patients. One study revealed that combination of
metronidazole and ciprofloxacin increased the occurrence of
breast cancer in proto-neu transgenic mice (Rossini et al., 2006).
Besides, indiscriminate removal of gut microbes can reduce
microbial diversity, increase the infection risk, and induce
antibiotic resistance (Murphy et al., 2019). Prolonged use of
antibiotics in cancer patients treated with CPT11 may cause a
particularly stubborn C. difficile infection (Principi et al., 2020).
Moreover, a recurrent C. difficile infection may induce severe
diarrhea and cause electrolyte imbalances, toxic megacolon, shock,
and even death, and thereby lead to the failure of CPT11
chemotherapy (Abu-Sbeih et al., 2019; Aziz et al., 2019).

Application of dietary and probiotics interventions seems to
open new perspectives for a better pharmacological action of
CPT11. CPT11 metabolism involves multiple activation and
deactivation pathways. Most notably, inhibition of b-
glucuronidase blunts the stark shifts in GM composition induced
by CPT11 (Bhatt et al., 2020). Nevertheless, an alternative strategy
to reduce CPT11-related intestinal toxicity that, by contrast,
requires active biotransformation via bacterial b-glucuronidase to
exert its protective effect on the intestinal epithelium, is provided by
the Chinese herbal formulation PHY906. This is achieved through
regeneration of intestinal stem cells and potentiation of Wnt
signaling (Lam et al., 2010). Besides, various herbs have been used
as adjuvants in animal and clinical studies for assisting CPT11
chemotherapy through other mechanisms, and are summarized
in Table 3.
TABLE 2 | Preclinical study outcomes of probiotics interventions upon CPT11 chemotherapy.

Research methods Patients Formula Outcome Ref.

A randomized double blind,
placebo controlled pilot study

46 patients with
colorectal cancer

Probiotic formula Colon Dophilus™ Reduction of the incidence of
diarrhea and enterocolitis

(Alimonti et al., 2003)

A prospective observational
study

78 cancer patients Lactobacillus kefiri LKF01 (Kefibios®) Safe and effective in preventing
severe diarrhea in cancer patients

(Ghidini et al., 2021)

A phase II/III, randomized,
double blind, placebo-
controlled study

291 patients with
Chemotherapy-induced
diarrhea

900 billion CFU/sachet of 4 strains
of Lactobacillus, 3 strains of Bifidobacteria and
1 strain of Streptococcus thermophilus

Reduction all grades of diarrheal
episodes, but a limited effect in
severe CID

(Sharma et al., 2018)
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The biological complexity of various signaling pathways in the
GMis anobstacle for understanding howhost–microbial reciprocal
actions meditate the outcomes of CPT11 chemotherapy. However,
several emerging interventions have been studied in the preclinical
setting to assist in CPT11 chemotherapy for cancer patients.
Microbial diversity impacts upon cancer chemotherapy. Hence,
the research focus should shift from a “one-size-fits-all”
antibacterial pattern to maintenance of a diverse microbiota.
Studies on how GM components act together to mediate the
metabolism, bioavailability, efficacy, and toxicity of CPT11 will be
of enormous value. GMmanipulation by dietary, herbal, probiotic,
or bacterial strain-engineered strains is likely to become an integral
part of cancer treatment regimens.
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