
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 628036, 11 pages
http://dx.doi.org/10.1155/2013/628036

Research Article
Structural Complexity of DNA Sequence

Cheng-Yuan Liou, Shen-Han Tseng, Wei-Chen Cheng, and Huai-Ying Tsai

Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan

Correspondence should be addressed to Cheng-Yuan Liou; cyliou@csie.ntu.edu.tw

Received 10 January 2013; Accepted 3 March 2013

Academic Editor: Carlo Cattani

Copyright © 2013 Cheng-Yuan Liou et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In modern bioinformatics, finding an efficient way to allocate sequence fragments with biological functions is an important issue.
This paper presents a structural approach based on context-free grammars extracted from original DNA or protein sequences.
This approach is radically different from all those statistical methods. Furthermore, this approach is compared with a topological
entropy-based method for consistency and difference of the complexity results.

1. Introduction

DNA sequence analysis becomes important part in modern
molecular biology. DNA sequence is composed of four
nucleotide bases—adenine (abbreviated A), cytosine (C),
guanine (G), and thymine (T) in any order. With four
different nucleotides, 2 nucleotides could only code for
maximum of 42 amino acids, but 3 nucleotides could code
for a maximum 4

3 amino acids. George Gamow was the first
person to postulate that every three bases can translate to a
single amino acid, called a codon. Marshall Nirenberg and
Heinrich J. Matthaei were the first to elucidate the nature
of a genetic code. A short DNA sequence can contain less
genetic information, while lots of bases may contain much
more genetic information, and any two nucleotides switch
place may change the meaning of genetic messages.

Sequence arrangement can produce many different
results, but only few codons exist in living bodies. Some
sequences do not contain any information which is known
as junk DNA. Finding an efficient way to analyze a sequence
fragment corresponding to genetic functions is also a chal-
lenging problem.

In recent papers,methods broadly fall into two categories,
sequence complexity [1, 2] and structural pattern analysis [3–
8]. Koslicki [1] presented a method for computing sequence
complexities. He redefined topological entropy function so
that the complexity value will not converge toward zero for
much longer sequences. With separate sequence into several

segments, it can determine the segments where are exons or
introns, and meaningful or meaningless. Hao et al. [7] given
a graphical representation of DNA sequence, according to
this paper, we can find some rare occurred subsequences.
R. Zhang and C. T. Zhang [4] used four-nucleotide-related
function drawing 3D curves graph to analyze the number of
four-nucleotide occurrence probabilities. Liou et al. [9] had
given a new idea in modeling complexity for music rhythms;
this paper translated textmessages into computable values, so
computers can score for music rhythms.

In this paper, we propose a new method for calculating
sequences different from other traditional methods. It holds
not only statistical values but also structural information.We
replace four nucleotides with tree structure presented in [9]
and use mathematical tools to calculate complexity values of
the sequences. So we can compare two sequences with values
and determine dissimilarity between these two sequences.
In biomedical section, we can use this technique to find the
effective drugs for new virus with priority.

2. DNA Sequence Represented
with Tree Structure

Our method uses Lindenmayer system [10–12] property
among calculated complexities from tree structure [9]; it is
a different way of computing complexities of sequences. At
first, we introduce DNA tree and convert DNA sequence to

http://dx.doi.org/10.1155/2013/628036

2 Computational and Mathematical Methods in Medicine

A C T G

Figure 1: Nucleotide bases corresponding trees.

A A T T C C G G A C T G C A G T

Figure 2: DNA sequence represented with tree structure.

tree structure. A DNA tree is a binary tree of which each
subtree is also aDNA tree. Every tree node is either a terminal
node or a nodewith two childrens (branches or descendants).

Lindenmayer system is a powerful rewriting system used
to model the growth processes of plant development. We will
introduce it in Section 2.2 in detail. Lindenmayer system uses
some initial and rewriting rules to construct beautiful graphs.
Since it can construct a tree from rewriting rules, it also can
extract rewriting rules from a tree. In this section, we will use
tools to generate the rules from tree.

We use 4 fixed tree representations for nucleotide bases A,
T, C, and G (see Figure 1). When we apply this method to
amino acid sequence, we can construct more tree representa-
tion for amino acids, respectively.

Whenwe transfer a sequence toDNA tree, we will replace
every word to tree elements step by step, and two consecutive
trees can combine to a bigger tree. Following the previous
steps, a DNA sequence will be transfer to a DNA tree (see
Figure 2).

2.1. Bracketed Strings for a DNA Sequence. For computing
complexity of our DNA tree, we need some rules for con-
verting tree to another structure. We use a stack similarly
structure to represent the hierarchy of DNA tree, called
bracketed string. DNA tree can transfer to a unique bracketed
string by the following symbols, and it can transfer back to
the original tree:

(i) 𝐹: the current location of tree nodes; it can be replaced
by any word or be omitted;

(ii) +: the following string will express the right subtree;
(iii) −: the following string will express the left subtree;
(iv) [: this symbol is pairing with]; “[⋅ ⋅ ⋅]” denotes a

subtree where “⋅ ⋅ ⋅”; indicates all the bracketed strings
of its subtree;

(v)]: see [description.

Following the previous symbols, Figure 3 shows that
nucleotide base A and T represented tree can transfer to
[𝐹[−𝐹][+𝐹]] and [𝐹[−𝐹][+𝐹[−𝐹][+𝐹]]], respectively.

[𝐹[−]
[𝐹[−]

[𝐹[−]

[𝐹]
[𝐹]

[+𝐹]

[+𝐹]

[+𝐹]

[𝐹[−𝐹][+𝐹[−𝐹][+𝐹]]][𝐹[−𝐹][+𝐹]]

Figure 3: Bracketed strings representation for two trees.

And Figure 4 is the bracketed string of Figure 2. We
can see that when the tree grows, string seems to be more
redundant. Since we focus here only on DNA trees, we can
simplify the bracketed string representations. First, our trees
have only two subtrees. Second, the “𝐹” notation for the tree
is trivial. With these two characteristics, we may omit the “𝐹”
notation from the bracketed string and use only four symbols,
{[,], −, +}, to represent trees. In our cases, “[⋅ ⋅ ⋅]” denotes
a subtree where “⋅ ⋅ ⋅” indicates all the bracketed strings of
its subtrees. “−” indicated the next “[⋅ ⋅ ⋅]” notation for a tree
is a left subtree of current node, and “+” is a right subtree
vice versa. Figure 5 is the simplified string of bracketed string
shown in Figure 4.

2.2. DNA Sequence Represented with L-System. When we
obtain DNA tree and bracketed string representation, we
need rewriting rules for analyzing tree structure. There are
some types of rewriting mechanism such as Chomsky gram-
mar andLindenmayer system (L-system for short).The largest
difference between two string rewriting mechanisms lies in
the technique used to apply productions. Chomsky grammar
is suitable for applying productions sequentially, while L-
system is for parallel. In our structure, applying L-system to
our representations is better than Chomsky grammar.

The L-system was introduced by the biologist Linden-
mayer in 1968 [13]. The central concept of the L-system is
rewriting. In general, rewriting is a technique used to define
complex objects by successively replacing parts of a simple
initial object, using a set of rewriting rules or productions. In
the next section, we will present how we use L-system to our
DNA tree. The L-system is defined as follows.

Definition 1. L-system grammars are very similar to the
Chomsky grammar, defined as a tuple [14]:

𝐺 = (𝑉, 𝜔, 𝑃) , (1)

where

(i) 𝑉 = {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
} is an alphabet,

(ii) 𝜔 (start, axiom, or initiator) is a string of symbols
from 𝑉 defining the initial state of the system,

(iii) 𝑃 is defined by a production map 𝑃 : 𝑉 → 𝑉
∗ with

𝑠 → 𝑃(𝑠) for each 𝑠 in 𝑉. The identity production
𝑠 → 𝑠 is assumed.These symbols are called constants
or terminals.

2.3. Rewriting Rules for DNA Sequences. As discussed earlier,
we want to generate the rules fromDNA trees. In this section,

Computational and Mathematical Methods in Medicine 3

A A T T C C G G A C T G C A G T
[[−𝐹[−𝐹[−𝐹[−𝐹[−𝐹][+𝐹]][+𝐹[−𝐹][+𝐹]]][+𝐹[−𝐹[−𝐹][+𝐹[−𝐹][+𝐹]]][+𝐹[−𝐹][+𝐹[−𝐹][+𝐹]]]]][+𝐹[−𝐹[−𝐹[−𝐹[−𝐹][+𝐹]]

[+𝐹]][+𝐹[−𝐹[−𝐹][+𝐹]][+𝐹]]][+𝐹[−𝐹[−𝐹[−𝐹][+𝐹]][+𝐹[−𝐹][+𝐹]]][+𝐹[−𝐹[−𝐹][+𝐹]][+𝐹[−𝐹][+𝐹]]]]]][+𝐹[−𝐹[−𝐹[−𝐹

[−𝐹][+𝐹]][+𝐹[−𝐹[−𝐹][+𝐹]][+𝐹]]][+𝐹[−𝐹[−𝐹][+𝐹[−𝐹][+𝐹]]][+𝐹[−𝐹[−𝐹][+𝐹]][+𝐹[−𝐹][+𝐹]]]]][+𝐹[−𝐹[−𝐹[−𝐹[−𝐹]

[+𝐹]][+𝐹]][+𝐹[−𝐹][+𝐹]]][+𝐹[−𝐹[−𝐹[−𝐹][+𝐹]][+𝐹[−𝐹][+𝐹]]][+𝐹[−𝐹][+𝐹[−𝐹][+𝐹]]]]]]]

Figure 4: Bracketed strings representation for Figure 2.

[−[−[−[−[−+]+[−+]]+[−[−+[−+]]+[−+[−+]]]]+[−[−[−[−+]+]+[−[−+]+]]+[−[−[−+]+[−+]]+[−[−+]+[−+]]]]]

+[−[−[−[−+]+[−[−+]+]]+[−[−+[−+]]+[−[−+]+[−+]]]]+[−[−[−[−+]+]+[−+]]+[−[−[−+]+[−+]]+[−+[−+]]]]]]

Figure 5: More simply bracketed strings representation for Figure 2.

we will explain how we apply rewriting rules to those trees.
We can apply distinct variables to each node. Since the
technique described previously always generates two subtrees
for each node, for every nonterminal node, they always can be
explained in the following format:

𝑃 → 𝐿𝑅, (2)

where 𝑃 denotes the current node, 𝐿 denotes its left subtree,
and 𝑅 denotes its right subtree, respectively. We give an
example shown in Figure 6; left tree has three nodes and only
root is nonterminal node, it can be rewritten as 𝑃 → 𝐿𝑅.
Right tree has five nodes, root 𝑃 with left subtree 𝐿 and right
subtree 𝑅. Left subtree is terminal, but right is not. 𝑅 has two
terminal subtrees 𝑅

𝐿
and 𝑅

𝑅
, so this tree can be rewritten as

𝑃 → 𝐿𝑅 and 𝑅 → 𝑅
𝐿
𝑅
𝑅
.

2.4. Rewriting Rules for Bracketed Strings. Similarly, we can
also use rewriting rules to generate bracketed strings. In
rewriting rules for DNA trees shown in Section 2.3, we write
𝑃 → 𝐿𝑅 for a tree with left and right subtrees. Note that
we call 𝐿 and 𝑅 as the nonterminals. In this section, terminal
nodes will be separated from trees, and we use “null” to
represent a terminal. Such tree will have a corresponding
bracketed string as follows: [[−𝐹 ⋅ ⋅ ⋅][+𝐹 ⋅ ⋅ ⋅]]. “[−𝐹 ⋅ ⋅ ⋅]” rep-
resents the left subtree, while “[+𝐹 ⋅ ⋅ ⋅]” represents the right
subtree. Therefore, we can replace the rewriting rules with

𝑃 → [−𝐹𝐿] [+𝐹𝑅] ,

𝐹 → ⋅ ⋅ ⋅ ,

𝑅 → ⋅ ⋅ ⋅ ,

(3)

where “⋅ ⋅ ⋅” is the rewriting rule for the bracketed string of
each subtree. For the sake of readability, we replace the words
such as “𝑅

𝑅𝐿
” and “𝑅

𝑅𝑅
”. In Figure 7, we show the rewriting

rules for the bracketed string of the tree in Figure 3.

𝑃

𝐿 𝐿𝑅 𝑅

𝑃

𝑅𝐿 𝑅𝑅

𝑃 → 𝐿𝑅 𝑃 → 𝐿𝑅

𝑅 → 𝑅𝐿𝑅𝑅

Figure 6: Example of rewriting rules for trees.

As we can see, there are “nulls” in the rules. Those “nulls”
do not have significant effects to our algorithm, so we simply
ignore the nulls. Now, Figure 3 can apply new rewriting rules
without trivial nulls as Figure 8.

When tree grows up, the rewriting rules may generate
identical rules. Assume that we have the following rules:

𝑃 → [−𝐹𝑇
𝐿
] [+𝐹𝑇

𝑅
] ,

𝑇
𝐿
→ [−𝐹] [+𝐹] ,

𝑇
𝑅
→ [−𝐹] [+𝐹𝑇𝑅𝑅

] ,

𝑇
𝑅𝑅

→ [−𝐹] [+𝐹𝑇𝑅𝑅𝑅
] ,

𝑇
𝑅𝑅𝑅

→ [−𝐹] .

(4)

These rules can generate exactly one bracketed string and,
thus, exactly one DNA tree. All these rules form a rule set
that represents a unique DNA tree. When we look at 𝑇

𝑅
→

[−𝐹][+𝐹𝑇
𝑅𝑅
] and 𝑇

𝑅𝑅
→ [−𝐹][+𝐹𝑇

𝑅𝑅𝑅
], they have the same

structure since they both have a right subtree and do not have
a left subtree. The only difference is that one of the subtrees
is 𝑇
𝑅𝑅

and that the other is 𝑇
𝑅𝑅𝑅

. We will define two terms to

4 Computational and Mathematical Methods in Medicine

𝑃
𝑃

𝑇𝐿

𝑇𝐿
𝑇𝑅

𝑇𝑅

𝑇𝑅𝑅
𝑇𝑅𝐿

𝑃 → [−𝐹𝑇𝐿][+𝐹𝑇𝑅]
𝑃 → [−𝐹𝑇𝐿][+𝐹𝑇𝑅]

𝑇𝑅 → [−𝐹𝑇𝑅𝐿
][+𝐹𝑇𝑅𝑅

]

𝑇𝑅 → null

𝑇𝐿 → null
𝑇𝐿 → null

𝑇𝑅𝐿
→ null

𝑇𝑅𝑅
→ null

Figure 7: Rewriting rules for the bracketed string of trees.

𝑃

𝑇𝐿 𝑇𝑅

𝑃

𝑇𝐿 𝑇𝑅

𝑇𝑅𝑅
𝑇𝑅𝐿

𝑃 → [−𝐹𝑇𝐿][+𝐹𝑇𝑅] 𝑃 → [−𝐹𝑇𝐿][+𝐹𝑇𝑅]

𝑇𝑅 → [−𝐹𝑇𝑅𝐿
][+𝐹𝑇𝑅𝑅

]

Figure 8: Rewriting rules for the bracketed string without nulls of
trees.

express the similarity between two rewriting rules, and these
terms can simplify complexity analysis.

2.5. Homomorphism and Isomorphism of Rewriting Rules. At
the end of the previous section, we discussed that 𝑇

𝑅
→

[−𝐹][+𝐹𝑇
𝑅𝑅
] and 𝑇

𝑅𝑅
→ [−𝐹][+𝐹𝑇

𝑅𝑅𝑅
] are almost the same.

How can we summarize or organize an effective feature to
them? Liou et al. [9] gave two definitions to classify similar
rewriting rules described before as follows.

Definition 2. Homomorphism in rewriting rules. We define
that rewriting rule𝑅

1
and rewriting rule𝑅

2
are homomorphic

to each other if and only if they have the same structure.

In detail, rewriting rule 𝑅
1
and rewriting rule 𝑅

2
in DNA

trees both have subtrees in corresponding positions or both
not. Ignoring all nonterminals, if rule𝑅

1
and rule𝑅

2
generate

the same bracketed string, then they are homomorphic by
definition.

Definition 3. Isomorphism on level 𝑋 in rewriting rules.
Rewriting rule 𝑅

1
and rewriting rule 𝑅

2
are isomorphic on

depth𝑋 if they are homomorphic and their nonterminals are
relatively isomorphic on depth 𝑋 − 1. Isomorphic on level 0
indicates homomorphism.

Applying to the bracketed string, we ignore all nontermi-
nals in (4) as follows:

𝑃 → [−𝐹𝑇
𝐿
] [+𝐹𝑇

𝑅
] → [−𝐹] [+𝐹] ,

𝑇
𝐿
→ [−𝐹] [+𝐹] → [−𝐹] [+𝐹] ,

𝑇
𝑅
→ [−𝐹] [+𝐹𝑇𝑅𝑅

] → [−𝐹] [+𝐹] ,

𝑇
𝑅𝑅

→ [−𝐹] [+𝐹𝑇𝑅𝑅𝑅
] → [−𝐹] [+𝐹] ,

𝑇
𝑅𝑅𝑅

→ [−𝐹] → [−𝐹] .

(5)

We find that 𝑃, 𝑇
𝐿
, 𝑇
𝑅
, and 𝑇

𝑅𝑅
are homomorphic to each

other; they generate the same bracketed string, [−𝐹][+𝐹].
But 𝑇

𝑅𝑅𝑅
is not homomorphic to any of the other rules; its

bracketed string is [−𝐹].
Let us recall DNA tree example in Figure 2; we will use

this figure as an example to clarify these definitions. Now we
marked some nodes shown in Figure 9; there are tree rooted
at A, B, C, and D, respectively, tree A, tree B, tree C, and tree
D. Tree A is isomorphic to tree C on depth 0 to 3, but they are
not isomorphic on depth 4. Tree B is isomorphic to tree C on
depth from 0 to 2, but they are not isomorphic on depth 3. D
is not isomorphic to any other trees, nor is it homomorphic
to any other trees.

Afterwe define the similarity between rules by homomor-
phism and isomorphism, we can classify all the rules into
different subsets, and every subset has the same similarity
relation. Now we list all the rewriting rules of Figure 2 into
Table 1 but ignore terminal rules such as “→ null” and
transfer rule’s name to class name (or class number). For
example, we can give terminal rewriting rule a class, “𝐶

3
→

null”, and a rule link to two terminals; we can give them
“𝐶
2
→ 𝐶
3
𝐶
3
”; here𝐶

3
is the terminal class. After performing

classification, we obtain not only a new rewriting rule set
but also a context-free grammar, which can be converted to
automata.

In Table 1, rules such as 𝑇
𝑅𝐿𝐿𝐿

→ [−𝐹][+𝐹], and
𝑇
𝑅𝑅𝑅𝐿𝐿

→ [−𝐹][+𝐹] and 𝑇
𝑅𝐿𝑅𝐿𝑅

→ [−𝐹][+𝐹] are isomor-
phic on depth 1 and assigned to Class 4.There are twenty such
rules before classification, so we write “(20)𝐶

4
→ [−𝐹][+𝐹]”.

Similar rules such as 𝑃 → [−𝐹𝑇
𝐿
][+𝐹𝑇

𝑅
], 𝑇
𝑅𝐿𝐿𝐿

→

[−𝐹][+𝐹], and 𝑇
𝑅𝑅𝑅𝑅

→ [−𝐹][+𝐹𝑇
𝑅𝑅𝑅𝑅𝑅

] are isomorphic on
depth 0, and there are 47 such rules. They are all assigned
to Class 1 by following a similar classification procedure. The
classification of the all rules is listed in Table 2. Note that this
section also presents a new way to convert a context-sensitive
grammar to a context-free one.

3. DNA Sequence Complexity

When we transfer the DNA sequence to the rewriting
rules, and classify all those rules we attempt to explore the
redundancy in the tree that will be the base for building
the cognitive map [15]. We compute the complexity of the
tree which those classified rules represent. We know that a
classified rewriting rule set is also a context-free grammar,
so there are some methods for computing complexity of
rewriting rule as follows.

Definition 4. Topological entropy of a context-free grammar.
The topological entropy 𝐾

0
of (context-free grammar) CFG

can be evaluated by means of the following three procedures
[16, 17].

Computational and Mathematical Methods in Medicine 5

Table 1: Rewriting rules for the DNA tree in Figure 2.

𝑃 → [−𝐹𝑇
𝐿
] [+𝐹𝑇

𝑅
]

𝑇
𝐿
→ [−𝐹𝑇

𝐿𝐿
] [+𝐹𝑇

𝐿𝑅
]

𝑇
𝐿𝐿

→ [−𝐹𝑇
𝐿𝐿𝐿

] [+𝐹𝑇
𝐿𝐿𝑅

]

𝑇
𝐿𝐿𝐿

→ [−𝐹𝑇
𝐿𝐿𝐿𝐿

] [+𝐹𝑇
𝐿𝐿𝐿𝑅

]

𝑇
𝐿𝐿𝐿𝐿

→ [−𝐹] [+𝐹]

𝑇
𝐿𝐿𝐿𝑅

→ [−𝐹] [+𝐹]

𝑇
𝐿𝐿𝑅

→ [−𝐹𝑇
𝐿𝐿𝑅𝐿

] [+𝐹𝑇
𝐿𝐿𝑅𝑅

]

𝑇
𝐿𝐿𝑅𝐿

→ [−𝐹] [+𝐹𝑇
𝐿𝐿𝑅𝐿𝑅

]

𝑇
𝐿𝐿𝑅𝐿𝑅

→ [−𝐹] [+𝐹]

𝑇
𝐿𝐿𝑅𝑅

→ [−𝐹] [+𝐹𝑇
𝐿𝐿𝑅𝑅𝑅

]

𝑇
𝐿𝐿𝑅𝑅𝑅

→ [−𝐹] [+𝐹]

𝑇
𝐿𝑅

→ [−𝐹𝑇
𝐿𝑅𝐿

] [+𝐹𝑇
𝐿𝑅𝑅

]

𝑇
𝐿𝑅𝐿

→ [−𝐹𝑇
𝐿𝑅𝐿𝐿

] [+𝐹𝑇
𝐿𝑅𝐿𝑅

]

𝑇
𝐿𝑅𝐿𝐿

→ [−𝐹𝑇
𝐿𝑅𝐿𝐿𝐿

] [+𝐹]

𝑇
𝐿𝑅𝐿𝐿𝐿

→ [−𝐹] [+𝐹]

𝑇
𝐿𝑅𝐿𝑅

→ [−𝐹𝑇
𝐿𝑅𝐿𝑅𝐿

] [+𝐹]

𝑇
𝐿𝑅𝐿𝑅𝐿

→ [−𝐹] [+𝐹]

𝑇
𝐿𝑅𝑅

→ [−𝐹𝑇
𝐿𝑅𝑅𝐿

] [+𝐹𝑇
𝐿𝑅𝑅𝑅

]

𝑇
𝐿𝑅𝑅𝐿

→ [−𝐹𝑇
𝐿𝑅𝑅𝐿𝐿

] [+𝐹𝑇
𝐿𝑅𝑅𝐿𝑅

]

𝑇
𝐿𝑅𝑅𝐿𝐿

→ [−𝐹] [+𝐹]

𝑇
𝐿𝑅𝑅𝐿𝑅

→ [−𝐹] [+𝐹]

𝑇
𝐿𝑅𝑅𝑅

→ [−𝐹𝑇
𝐿𝑅𝑅𝑅𝐿

] [+𝐹𝑇
𝐿𝑅𝑅𝑅𝑅

]

𝑇
𝐿𝑅𝑅𝑅𝐿

→ [−𝐹] [+𝐹]

𝑇
𝐿𝑅𝑅𝑅𝑅

→ [−𝐹] [+𝐹]

𝑇
𝑅
→ [−𝐹𝑇

𝑅𝐿
] [+𝐹𝑇

𝑅𝑅
]

𝑇
𝑅𝐿

→ [−𝐹𝑇
𝑅𝐿𝐿

] [+𝐹𝑇
𝑅𝐿𝑅

]

Table 1: Continued.

𝑇
𝑅𝐿𝐿

→ [−𝐹𝑇
𝑅𝐿𝐿𝐿

] [+𝐹𝑇
𝑅𝐿𝐿𝑅

]

𝑇
𝑅𝐿𝐿𝐿

→ [−𝐹] [+𝐹]

𝑇
𝑅𝐿𝐿𝑅

→ [−𝐹𝑇
𝑅𝐿𝐿𝑅𝐿

] [+𝐹]

𝑇
𝑅𝐿𝐿𝑅𝐿

→ [−𝐹][+𝐹]

𝑇
𝑅𝐿𝑅

→ [−𝐹𝑇
𝑅𝐿𝑅𝐿

] [+𝐹𝑇
𝑅𝐿𝑅𝑅

]

𝑇
𝑅𝐿𝑅𝐿

→ [−𝐹] [+𝐹𝑇
𝑅𝐿𝑅𝐿𝑅

]

𝑇
𝑅𝐿𝑅𝐿𝑅

→ [−𝐹][+𝐹]

𝑇
𝑅𝐿𝑅𝑅

→ [−𝐹𝑇
𝑅𝐿𝑅𝑅𝐿

] [+𝐹𝑇
𝑅𝐿𝑅𝑅𝑅

]

𝑇
𝑅𝐿𝑅𝑅𝐿

→ [−𝐹][+𝐹]

𝑇
𝑅𝐿𝑅𝑅𝑅

→ [−𝐹] [+𝐹]

𝑇
𝑅𝑅

→ [−𝐹𝑇
𝑅𝑅𝐿

] [+𝐹𝑇
𝑅𝑅𝑅

]

𝑇
𝑅𝑅𝐿

→ [−𝐹𝑇
𝑅𝑅𝐿𝐿

] [+𝐹𝑇
𝑅𝑅𝐿𝑅

]

𝑇
𝑅𝑅𝐿𝐿

→ [−𝐹𝑇
𝑅𝑅𝐿𝐿𝐿

] [+𝐹]

𝑇
𝑅𝑅𝐿𝐿𝐿

→ [−𝐹] [+𝐹]

𝑇
𝑅𝑅𝐿𝑅

→ [−𝐹][+𝐹]

𝑇
𝑅𝑅𝑅

→ [−𝐹𝑇
𝑅𝑅𝑅𝐿

] [+𝐹𝑇
𝑅𝑅𝑅𝑅

]

𝑇
𝑅𝑅𝑅𝐿

→ [−𝐹𝑇
𝑅𝑅𝑅𝐿𝐿

] [+𝐹𝑇
𝑅𝑅𝑅𝐿𝑅

]

𝑇
𝑅𝑅𝑅𝐿𝐿

→ [−𝐹][+𝐹]

𝑇
𝑅𝑅𝑅𝐿𝑅

→ [−𝐹][+𝐹]

𝑇
𝑅𝑅𝑅𝑅

→ [−𝐹] [+𝐹𝑇
𝑅𝑅𝑅𝑅𝑅

]

𝑇
𝑅𝑅𝑅𝑅𝑅

→ [−𝐹][+𝐹]

(1) For each variable 𝑉
𝑖
with productions (in Greibach

form),

𝑉
𝑖
→ 𝑡
𝑖1
𝑈
𝑖1
, 𝑡
𝑖2
𝑈
𝑖2
, . . . , 𝑡

𝑖𝑘𝑖
𝑈
𝑖𝑘𝑖
, (6)

where {𝑡
𝑖1
, 𝑡
𝑖2
, . . . , 𝑡

𝑖𝑘𝑖
, } are terminals and {𝑈

𝑖1
, 𝑈
𝑖2
,

. . . , 𝑈
𝑖𝑘𝑖
, } are nonterminals. The formal algebraic

expression for each variable is

𝑉
𝑖
=

𝑘𝑖

∑

𝑗=1

𝑡
𝑖𝑗
𝑈
𝑖𝑗
. (7)

(2) By replacing every terminal 𝑡
𝑖𝑗

with an auxiliary
variable 𝑧, one obtains the generating function

𝑉
𝑖
(𝑧) =

∞

∑

𝑛=1

𝑁
𝑖
(𝑛) 𝑧
𝑛
, (8)

where 𝑁
𝑖
(𝑛) is the number of words of length 𝑛

descending from 𝑉
𝑖
.

(3) Let 𝑁(𝑛) be the largest one of 𝑁
𝑖
(𝑛), 𝑁(𝑛) =

max{𝑁
𝑖
(𝑛), for all 𝑖}. The previous series converges

6 Computational and Mathematical Methods in Medicine

Table 2: Classification based on the similarity of rewriting rules.

Classification of rules Isomorphic Isomorphic Isomorphic Isomorphic
Depth #0 Depth #1 Depth #2 Depth #3

Class #1
(19) 𝐶

1
→ 𝐶
1
𝐶
1

(4) 𝐶
1
→ 𝐶
1
𝐶
2

(4) 𝐶
1
→ 𝐶
2
𝐶
1

(20) 𝐶
1
→ 𝐶
2
𝐶
2

(8) 𝐶
1
→ 𝐶
1
𝐶
1

(3) 𝐶
1
→ 𝐶
1
𝐶
1

(1) 𝐶
1
→ 𝐶
1
𝐶
1

(1) 𝐶
1
→ 𝐶
1
𝐶
3

(1) 𝐶
1
→ 𝐶
4
𝐶
2

(1) 𝐶
1
→ 𝐶
4
𝐶
3

(1) 𝐶
1
→ 𝐶
2
𝐶
2

(1) 𝐶
1
→ 𝐶
7
𝐶
5

(1) 𝐶
1
→ 𝐶
5
𝐶
2

(1) 𝐶
1
→ 𝐶
2
𝐶
4

(1) 𝐶
1
→ 𝐶
8
𝐶
8

(1) 𝐶
1
→ 𝐶
3
𝐶
1

(1) 𝐶
1
→ 𝐶
3
𝐶
1

(1) 𝐶
1
→ 𝐶
3
𝐶
3

(1) 𝐶
1
→ 𝐶
8
𝐶
6

(1) 𝐶
1
→ 𝐶
4
𝐶
2

(5) 𝐶
1
→ 𝐶
4
𝐶
4

Class #2 (48) 𝐶
2
→ null (4) 𝐶

2
→ 𝐶
4
𝐶
5

(1) 𝐶
2
→ 𝐶
8
𝐶
10

(1) 𝐶
2
→ 𝐶
8
𝐶
6

Class #3 (4) 𝐶
3
→ 𝐶
5
𝐶
4

(1) 𝐶
3
→ 𝐶
9
𝐶
9

(1) 𝐶
3
→ 𝐶
9
𝐶
7

Class #4 (20) 𝐶
4
→ 𝐶
5
𝐶
5

(1) 𝐶
4
→ 𝐶
9
𝐶
11

(1) 𝐶
4
→ 𝐶
12
𝐶
10

Class #5 (48) 𝐶
5
→ null (1) 𝐶

5
→ 𝐶
10
𝐶
8

(1) 𝐶
5
→ 𝐶
13
𝐶
11

Class #6 (1) 𝐶
6
→ 𝐶
10
𝐶
10

(1) 𝐶
6
→ 𝐶
13
𝐶
13

Class #7 (1) 𝐶
7
→ 𝐶
11
𝐶
9

(1) 𝐶
7
→ 𝐶
13
𝐶
15

Class #8 (5) 𝐶
8
→ 𝐶
11
𝐶
11

(1) 𝐶
8
→ 𝐶
14
𝐶
14

Class #9 (4) 𝐶
9
→ 𝐶
11
𝐶
12

(1) 𝐶
9
→ 𝐶
14
𝐶
16

Class #10 (4) 𝐶
10

→ 𝐶
12
𝐶
11

(1) 𝐶
10

→ 𝐶
15
𝐶
13

Class #11 (20) 𝐶
11

→ 𝐶
12
𝐶
12

(1) 𝐶
11

→ 𝐶
15
𝐶
15

Class #12 (48) 𝐶
12

→ null (1) 𝐶
12

→ 𝐶
16
𝐶
14

Class #13 (5) 𝐶
13

→ 𝐶
16
𝐶
16

Class #14 (4) 𝐶
14

→ 𝐶
16
𝐶
17

Class #15 (4) 𝐶
15

→ 𝐶
17
𝐶
16

Class #16 (20) 𝐶
16

→ 𝐶
17
𝐶
17

Class #17 (48) 𝐶
17

→ null

when 𝑧 < 𝑅 = 𝑒
−𝐾0 . The topological entropy is given

by the radius of convergence 𝑅 as

𝐾
0
= − ln𝑅. (9)

Our productions have some difference from the afore-
mentioned definitions. First, our productions are written in
Chomsky-reduced form instead of Greibach form. Second,
DNA is finite sequence; it generates finite tree, but the
previous formulas are applied on infinite sequences. For
convenience in the DNA tree case, we rewrite the definition
as follows [9].

Definition 5. Topological entropy of context free grammar for
DNA tree.

(1) Assume that there are 𝑛 classes of rules and that each
class 𝐶

𝑖
contains 𝑛

𝑖
rules. Let 𝑉

𝑖
∈ {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
},

𝑈
𝑖𝑗
∈ {𝑅
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛

𝑖
}, and 𝑎

𝑖𝑗𝑘
∈

{𝑥 : 𝑥 = 1, 2, . . . , 𝑛}, where each 𝑈
𝑖𝑗
has the following

form:

𝑈
𝑖1
→ 𝑉

𝑎𝑖11
𝑉
𝑎𝑖12

,

𝑈
𝑖2
→ 𝑉

𝑎𝑖21
𝑉
𝑎𝑖22

,

⋅ ⋅ ⋅ → ⋅ ⋅ ⋅ ,

𝑈
𝑖𝑛𝑖

→ 𝑉
𝑎𝑖𝑛𝑖1

𝑉
𝑎𝑖𝑛𝑖2

.

(10)

(2) The generating function of𝑉
𝑖
, 𝑉
𝑖
(𝑧) has a new form as

follows:

𝑉
𝑖
(𝑧) =

∑
𝑛𝑖

𝑝=1
𝑛
𝑖𝑝
𝑧𝑉
𝑎𝑖𝑝1

(𝑧) 𝑉
𝑎𝑖𝑝2

(𝑧)

∑
𝑛𝑖

𝑞=1
𝑛
𝑖𝑞

. (11)

If 𝑉
𝑖
does not have any nonterminal variables, we set

𝑉
𝑖
(𝑧) = 1.

(3) After formulating the generating function 𝑉
𝑖
(𝑧), we

intend to find the largest value of 𝑧, 𝑧max, at which
𝑉
1
(𝑧

max
) converges. Note that we use𝑉

1
to denote the

Computational and Mathematical Methods in Medicine 7

rule for the root node of theDNA tree. After obtaining
the largest value, 𝑧max, of 𝑉

1
(𝑧), we set 𝑅 = 𝑧

max,
the radius of convergence of 𝑉

1
(𝑧). We define the

complexity of the DNA tree as

𝐾
0
= − ln𝑅. (12)

Now we can do some examples of computation pro-
cedure for the complexity. According to our definition,
the given values for the class parameters are listed in
Table 3. There are five classes, so we obtain the formulas for
𝑉
5
(𝑧

), 𝑉
4
(𝑧

), 𝑉
3
(𝑧

), 𝑉
2
(𝑧

), and𝑉

1
(𝑧

) successively.They are

𝑉
5
(𝑧

) = 1 (by definition) ,

𝑉
4
(𝑧

) =

∑
𝑛4

𝑝=1
𝑛
4𝑝
𝑧

𝑉
𝑎4𝑝1

(𝑧

)𝑉
𝑎4𝑝2

(𝑧

)

∑
𝑛𝑖

𝑞=1
𝑛
𝑖𝑞

=

𝑧

× (20 × 𝑉

5
(𝑧

) × 𝑉
5
(𝑧

))

20
= 𝑧

,

𝑉
3
(𝑧

) =

∑
𝑛3

𝑝=1
𝑛
3𝑝
𝑧

𝑉
𝑎3𝑝1

(𝑧

)𝑉
𝑎3𝑝2

(𝑧

)

∑
𝑛𝑖

𝑞=1
𝑛
𝑖𝑞

=

𝑧

× (4 × 𝑉

5
(𝑧

) × 𝑉
4
(𝑧

))

4
= 𝑧
2
,

𝑉
2
(𝑧

) =

∑
𝑛2

𝑝=1
𝑛
2𝑝
𝑧

𝑉
𝑎2𝑝1

(𝑧

)𝑉
𝑎2𝑝2

(𝑧

)

∑
𝑛𝑖

𝑞=1
𝑛
𝑖𝑞

=

𝑧

× (4 × 𝑉

4
(𝑧

) × 𝑉
5
(𝑧

))

4
= 𝑧
2
,

𝑉
1
(𝑧

) =

∑
𝑛1

𝑝=1
𝑛
1𝑝
𝑧

𝑉
𝑎1𝑝1

(𝑧

)𝑉
𝑎1𝑝2

(𝑧

)

∑
𝑛𝑖

𝑞=1
𝑛
𝑖𝑞

=

8𝑧

× 𝑉
1
(𝑧

)
2

+ 2(𝑧

)
3

× 𝑉
1
(𝑧

)

19

+

(2(𝑧

)
5

+ 2(𝑧

)
4

+ 5(𝑧

)
3

)

19
.

(13)

Rearranging the previous equation for 𝑉
1
(𝑧

), we obtain

a quadratic for 𝑉
1
(𝑧

):

8

19
(𝑧

) × 𝑉
1
(𝑧

) + (1 −

2

19
(𝑧

)
3

) × 𝑉
1
(𝑧

)

+
1

19
(2(𝑧

)
5

+ 2(𝑧

)
4

+ 5(𝑧

)
3

) = 0.

(14)

Solving 𝑉
1
(𝑧

), we obtain the formula

𝑉
1
(𝑧

) = (

(𝑧

)
2

4
−

19

8𝑧

) ±

19

8𝑧

√𝐵
2
− 𝐴, (15)

Table 3: The values for the class parameters of Table 2.

Classification of rules Isomorphic depth #1
𝑛
11

𝑛
111

𝑛
112

(8) 𝐶
1
→ 𝐶
1
𝐶
1

𝑛
12

𝑛
121

𝑛
122

(1) 𝐶
1
→ 𝐶
1
𝐶
3

𝑛
13

𝑛
131

𝑛
132

(1) 𝐶
1
→ 𝐶
2
𝐶
2

𝑛
14

𝑛
141

𝑛
142

(𝑛 = 5) Class #1 (𝑛
1
= 8)

(1) 𝐶
1
→ 𝐶
2
𝐶
4

𝑛
15

𝑛
151

𝑛
152

(1) 𝐶
1
→ 𝐶
3
𝐶
1

𝑛
16

𝑛
161

𝑛
162

(4) 𝐶
1
→ 𝐶
3
𝐶
3

𝑛
17

𝑛
171

𝑛
172

(1) 𝐶
1
→ 𝐶
4
𝐶
2

𝑛
18

𝑛
181

𝑛
182

(5) 𝐶
1
→ 𝐶
4
𝐶
4

Class #2 (𝑛
2
= 1)

𝑛
21

𝑛
211

𝑛
212

(4) 𝐶
2
→ 𝐶
4
𝐶
5

Class #3 (𝑛
3
= 1)

𝑛
31

𝑛
311

𝑛
312

(4) 𝐶
3
→ 𝐶
5
𝐶
4

Class #4 (𝑛
4
= 1)

𝑛
41

𝑛
411

𝑛
412

(20) 𝐶
4
→ 𝐶
5
𝐶
5

Class #5 (𝑛
5
= 1)

𝑛
51

𝑛
511

𝑛
512

(48) 𝐶
5
→ null

Table 4: Test data with topological entropy method and our
method.

Type Name Koslicki method Our method
E. colia Available Available
EV71b Available Available

DNA H1N1c Available Available
H5N1d Available Available
SARSe Available Available
Abrin Too short Available

Amino acid Ricin Too short Available
BSEf Too short Available
CJDg Too short Available

aEscherichia coli O157:H7.
bEnterovirus 71.
cInfluenza A virus subtype H1N1.
dInfluenza A virus subtype H5N1.
eSevere acute respiratory syndrome.
fBovine spongiform encephalopathy.
gCreutzfeldt-Jakob disease.

where

𝐴 =
32

361
(2(𝑧

)
6

+ 2(𝑧

)
5

+ 5(𝑧

)
4

) ,

𝐵 = 1 −
2

19
(𝑧

)
3

.

(16)

8 Computational and Mathematical Methods in Medicine

B

D

A C

Figure 9: Example of homomorphism and isomorphism.

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701 801 901

2
3
4

Figure 10: Koslicki method (topological entropy method, TE for
short) example.

Finally, the radius of convergence, 𝑅, and complexity,
𝐾
0

= − ln𝑅, can be obtained from this formula. But,
computing the 𝑧max directly is difficult, so we use iterations
and region tests to approximate the complexity; details are as
follows.

(1) Rewrite the generating function as

𝑉
𝑚

𝑖
(𝑧

) =

∑
𝑛𝑖

𝑝=1
𝑛
𝑖𝑝
𝑧

𝑉
𝑚−1

𝑎𝑖𝑝1
(𝑧

)𝑉
𝑚−1

𝑎𝑖𝑝2
(𝑧

)

∑
𝑛𝑖

𝑞=1
𝑛
𝑖𝑞

,

𝑉
0

𝑖
(𝑧

) = 1.

(17)

(2) The value from 𝑉
0

𝑖
(𝑧

) to 𝑉

𝑚

𝑖
(𝑧

). When 𝑉

𝑚−1

𝑖
(𝑧

) =

𝑉
𝑚

𝑖
(𝑧

) for all rules, we say that 𝑉𝑚

𝑖
(𝑧

) reach the

convergence, but 𝑧 is not the 𝑧max we want. Here, we
set𝑚 = 1000 for each iteration.

(3) Now we can test whether 𝑉
𝑖
(𝑧

) is convergent or

divergent at a number 𝑧. We use binary search to
test every real number between 0 and 1; in every test,
when 𝑉

𝑖
(𝑧

) converges, we set bigger 𝑧

 next time,
but when 𝑉

𝑖
(𝑧

) diverges, we set smaller 𝑧 next time.

Running more iterations will obtain more precise
radius.

4. Results

In 2011, Koslicki [1] gave an efficient way to compute
the topological entropy of DNA sequence. He used fixed

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251

TE
Iso 1

Iso 2
Iso 3

Figure 11: Our method compared with TE using test sequences.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 101 201

Bovine spongiform encephalopathy

Figure 12: An amino acid sequence example, Bovine spongiform
encephalopathy.

length depending on subword size to compute topologi-
cal entropy of sequence. For example, in Figure 10 (all
DNA and amino acid data can be found in NCBI website,
http://www.ncbi.nlm.nih.gov/), the sequence length is 1027
characters, and there are three subword sizes 2, 3, and 4 with
blue, red, and green lines, respectively. For larger subword
size, much larger fragment is required for complexity compu-
tation.The required fragment size grows exponentially, while
the length of sequence is not dependent on the growth rate of
subword size, so it is not a good method for us overall.

We present a new method called structural complexity in
previous sections, and there are several benefits from using
our method instead of Koslicki method, described as follows.

(1) Our results are very different from those obtained
by the topological entropy method; see the colored
lines in Figures 11∼14. These figures showed that our
method is much sensitive to certain arrangements of
the elements in the sequence.

http://www.ncbi.nlm.nih.gov/

Computational and Mathematical Methods in Medicine 9

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701 801 901

TE
Iso 1

Iso 2
Iso 3

(a) Fragment size 16

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701 801 901

TE
Iso 1

Iso 2
Iso 3

(b) Fragment size 32

0

0.2

0.4

0.6

0.8

1

1.2

1 101 201 301 401 501 601 701 801 901

TE
Iso 1

Iso 2
Iso 3

(c) Fragment size 64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 101 201 301 401 501 601 701 801 901

TE
Iso 1

Iso 2
Iso 3

(d) Fragment size 128

Figure 13: Compare with different methods.

(2) Two different characters that exchange position will
change value since Koslicki method just calculates
the statistical values without structural information.
Result was shown in Figure 11 bottom chart; the test
sequence repeats the same subword several times.
For blue line, all complexity values from topological
entropy are equal within the region of repeated
subwords. For red line, complexity values depend
on the structure of subword. When the fragment of
sequence is different from each other, ourmethodwill
evaluate to different values.

(3) Our method can also calculate amino acid sequences.
The Koslicki method depends on alphabet size and
subword size, for example, in the basic length 2

substring calculation; since standard amino acid types
have up to 20, it requires a minimum length of 202 +
2−1 to calculate, but the amino acid strings are usually
very short. Sometimes, Koslicki method cannot com-
pute the amino acid sequence efficiently. Figure 12
shows that complexity of amino acid sequence can
also be calculated by our method.

We also did experiments with lots of data, including
fixed fragment size and fixed method on test sequences (see
Figures 13 and 14). Here, we redefine the Koslicki method;

the fragment size is no longer dependent on subword size.
Instead, fixed length fragment like our method is applied.
This change allows us to compare the data easier, and
not restricted to the exponentially growing fragment size
anymore. In Figure 13, we found that for larger fragment, the
complexity curve will become smoothly because fragments
for each data point contain more information. And we note
that there is a common local peak value of those figures; the
simple sequence region is big enough that our fragment size
still contains the same simple sequence.

When we compare with the same method shown in
Figure 14, we found the same situation more obviously. Thus,
if we have many complexity values with different sizes, we
have the opportunity to restore the portion of the DNA.

4.1. Application to Virus Sequences Database and Other
Sequences. Now we can apply our technique to Chinese
word sequences. Togawa et al. [18] gave a complexity of
Chinese words, but his study was based on the number of
strokes, which is different fromourmethod. Here we use Big5
encoding for our system. Since the number of Chinese words
is larger than 10000, we cannot directly usewords as alphabet,
so we need some conversion. We read a Chinese word into
four hexadecimal letters so that we can replace the sequence
with tree representation and compute the complexity.

10 Computational and Mathematical Methods in Medicine

0

0.2

0.4

0.6

0.8

1 101 201 301 401 501 601 701 801 901

16
32

64
128

(a) Koslicki method

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 101 201 301 401 501 601 701 801 901

16
32

64
128

(b) Our method, isomorphism level 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 101 201 301 401 501 601 701 801 901

16
32

64
128

(c) Our method, isomorphism level 2

0

0.2

0.4

0.6

0.8

1

1.2

1 101 201 301 401 501 601 701 801 901

16
32

64
128

(d) Our method, isomorphism level 3

Figure 14: Compare with different fragment sizes.

When it comes to biomedical section, we can create virus
comparison database. Once a new virus or prion has been
found, it will be easy to select corresponding drugs at the
first time, according to cross comparison with each other
by complexity in the database. We focus on most important
viruses in recent years, such as Escherichia coli O157:H7 (E.
coli o157), Enterovirus 71 (EV71), Influenza A virus subtype
H1N1 (H1N1), Influenza A virus subtype H5N1 (H5N1), and
severe acute respiratory syndrome (SARS). In recent years,
these viruses have a significant impact and threat on the
human world. We test these viruses and prions listed in
Table 4. Here we can see that all prion regions cannot be
analyzed by Koslicki method, but we can do it.

Finally, if any object can be written as a sequence, and
there exists tree representation with alphabet of sequence, we
can compute the complexity of the object.

5. Summary

In this paper, we give a method for computing complexity
of DNA sequences. The traditional method focused on the
statistical data or simply explored the structural complexity
without value. In our method, we transform the DNA
sequence to DNA tree with tree representations at first.

Then we transform the tree to context-free grammar
format, so that it can be classified. Finally, we use redefined

generating function and find the complexity values. We give
a not only statistical but also structural complexity for DNA
sequences, and this technique can be used inmany important
applications.

Acknowledgment

This work was supported by the National Science Council
under project NSC 100-2221-E-002-234-MY3.

References

[1] D. Koslicki, “Topological entropy of DNA sequences,” Bioinfor-
matics, vol. 27, no. 8, Article ID btr077, pp. 1061–1067, 2011.

[2] C. Cattani, G. Pierro, and G. Altieri, “Entropy and multi-
fractality for the myeloma multiple tet 2 gene,” Mathematical
Problems in Engineering, vol. 2012, Article ID 193761, 14 pages,
2012.

[3] S. Manna and C. Y. Liou, “Reverse engineering approach in
molecular evolution: simulation and case study with enzyme
proteins,” in Proceedings of the International Conference on
Bioinformatics & Computational Biology (BIOCOMP ’06), pp.
529–533, 2006.

[4] R. Zhang and C. T. Zhang, “Z curves, an intutive tool for
visualizing and analyzing the DNA sequences,” Journal of

Computational and Mathematical Methods in Medicine 11

Biomolecular Structure andDynamics, vol. 11, no. 4, pp. 767–782,
1994.

[5] P. Tiño, “Spatial representation of symbolic sequences through
iterative function systems,” IEEE Transactions on Systems, Man,
and Cybernetics A, vol. 29, no. 4, pp. 386–393, 1999.

[6] C. K. Peng, S. V. Buldyrev, A. L. Goldberger et al., “Long-range
correlations in nucleotide sequences,”Nature, vol. 356, no. 6365,
pp. 168–170, 1992.

[7] B. L. Hao, H. C. Lee, and S. Y. Zhang, “Fractals related to long
DNA sequences and complete genomes,” Chaos, solitons and
fractals, vol. 11, no. 6, pp. 825–836, 2000.

[8] C. Cattani, “Fractals and hidden symmetries in DNA,” Mathe-
matical Problems in Engineering, vol. 2010, Article ID 507056, 31
pages, 2010.

[9] C. Y. Liou, T. H. Wu, and C. Y. Lee, “Modeling complexity in
musical rhythm,” Complexity, vol. 15, no. 4, pp. 19–30, 2010.

[10] P. Prusinkiewicz, “Score generation with lsystems,” in Proceed-
ings of the International Computer Music Conference, pp. 455–
457, 1986.

[11] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty
of Plants, Springer, New York, NY, USA, 1996.

[12] P. Worth and S. Stepney, “Growing music: musical interpreta-
tions of L-systems,” in Applications of Evolutionary Computing,
vol. 3449 of Lecture Notes in Computer Science, pp. 545–550,
Springer, Berlin, Germany, 2005.

[13] A. Lindenmayer, “Mathematicalmodels for cellular interactions
in development II. Simple and branching filaments with two-
sided inputs,” Journal of Theoretical Biology, vol. 18, no. 3, pp.
300–315, 1968.

[14] “Wikipedia: L-system—Wikipedia, the free encyclopedia,” 2012.
[15] H. Barlow, “Unsupervised learning,” Neural Computation, vol.

1, no. 3, pp. 295–311, 1989.
[16] R. Badii and A. Politi, Complexity: Hierarchical Structures

and Scaling in Physics, vol. 6, Cambridge University Press,
Cambridge, UK, 1999.

[17] W. Kuich, “On the entropy of context-free languages,” Informa-
tion and Control, vol. 16, no. 2, pp. 173–200, 1970.

[18] T. Togawa, K. Otsuka, S. Hiki, and H. Kitaoka, “Complexity of
chinese characters,” Forma, vol. 15, pp. 409–414, 2001.

