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Simple Summary: Discovered more than three decades ago, the urokinase-type plasminogen ac-
tivator receptor (uPAR) has now firmly established itself as a versatile molecular target holding
promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually
all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the
therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to
selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple
avenues are being explored in a preclinical setting, including the more innovative immune- or stroma
targeting therapies. This review discusses the current state of these strategies, their potentialities,
and challenges, along with future directions in the field of uPAR targeting.

Abstract: One of the largest challenges to the implementation of precision oncology is identifying and
validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target
toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively
emerged as a promising therapeutic target in the management of aggressive malignancies. By
focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell
surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory
potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant
sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular
interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is
observed in virtually all human cancers and is frequently associated with poor patient prognosis and
survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has
prompted the development of distinct targeted intervention strategies. The present review will focus
on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits
hindering their application in the clinical setting. Finally, future research directions and emerging
opportunities in the field of uPAR targeting are also discussed.

Keywords: urokinase plasminogen activator receptor (uPAR); targeted therapy; cytotoxic approaches;
translational research; theranostics

1. Introduction

Chemotherapy continues to be the first-line therapy in clinical management of patients
with difficult-to-treat tumors, such as advanced metastatic diseases, where radical surgery
is not an option [1]. Notwithstanding the efficacy of this conventional treatment modality,
there is still an increasing demand for more targeted approaches with less adverse systemic
toxicity.

Most drug development is now oriented toward the design of cancer-cell-targeted cy-
totoxic interventions [1]. These often consist of hybrid constructs incorporating a cytotoxic
warhead linked to a tumor-targeting drug carrier (e.g., antibodies, peptides, aptamers, etc.)
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that provides selective drug release into and subsequent eradication of cells overexpressing
the target antigen/receptor on their surface. The tumor-targeting principle could involve
the cancer cells per se and/or the surrounding stromal cells in the tumor-activated mi-
croenvironment [2,3]. The improved intra-tumoral delivery bestowed by this “trojan-horse”
approach confers a more favorable therapeutic profile to the cytotoxic agent by enhancing
the therapeutic potential while limiting off-target toxicity. The urokinase plasminogen
activator receptor (uPAR) represents one of the emerging attractive tumor targets for such
targeted therapy due to its sparse expression in healthy homeostatic tissues compared to
the robust expression in most solid tumors [4,5]. Internalization and recycling of uPAR
could further boost the efficiency of tumor uptake of the targeted therapeutic agents [6–9].
Cytotoxic insults mediated by specific uPAR-targeting have long been underestimated in
the development of new therapeutic interventions using this system. Indeed, most targeted
approaches developed to date have focused on neutralizing uPAR function, primarily by
interfering with its gene expression and interactions, especially with the bona fide protease
ligand uPA. Although promising in some preclinical settings, none of them have advanced
to the clinics so far. An in-depth overview of the mentioned approaches, along with
the existing challenges hampering their clinical translation, is provided by the following
comprehensive reviews [4,10–21].

Targeted cytotoxic therapy is an emerging strategy bringing a new horizon for ther-
apeutically exploiting the urokinase receptor in cancer. It may provide valuable drug
candidates that, alone or in combined intervention regimes, might lead to more robust
therapeutic effects than the function inhibition approaches, which would only slow tumor
growth without killing cancer cells. Distinct uPAR-binding agents, including anti-uPAR
monoclonal antibodies, uPA-derived peptides, and the amino-terminal fragment of uPA
(ATF, which contains the receptor-binding domain) have been widely exploited as uPAR-
targeting vehicles. Similar principles have been successfully applied for the development
of uPAR-directed imaging probes to detect receptor-positive malignant lesions, monitoring
intratumoral drug delivery and antitumor effects of uPAR-targeted interventions, both in
preclinical and clinical settings [17,22–26]. The design and implementation of theranostic
approaches combining uPAR-targeted therapeutic and non-invasive imaging modalities,
such as positron emission tomography (PET), magnetic resonance (MRI), or near-infrared
(NIR) fluorescence imaging, are currently underway and hold clinical potential for sig-
nificantly improving patient management and disease outcomes, as evidenced by the
encouraging results achieved for prostate cancer in recent years [27,28].

After summarizing the key properties of uPAR, setting the stage for its therapeutic
relevance in cancer, the present review outlines the current landscape of uPAR-targeted
cytotoxic-based approaches, emphasizing the recent developments and technologies (up
to July 2021). The advantages and limitations of the different strategies will be discussed,
along with some of the main inherent challenges. Finally, novel opportunities and future
directions of uPAR therapeutic targeting will be presented.

2. Biology of the Urokinase Receptor

Since the initial identification, purification, and sequencing of human uPAR were
accomplished around 1990 [29–31], a still-expanding body of literature documenting uPAR
association with cancer has accumulated, and new indications continue to be uncovered.
Through the combination of biochemical analysis via site-directed mutagenesis [32–35]
and structural elucidation by crystallography [36–41], detailed knowledge about the uPAR
structure–function relationships governing the interplay with its two cognate ligands, the
serine protease uPA and the provisional matrix protein vitronectin (Vn), was outlined. As
the structural and biochemical aspects of uPAR have been extensively investigated and
reviewed in detail in [17,33,42–44], they are only briefly discussed here and summarized in
Figures 1–3. The pathophysiological role and expression profile of uPAR shaping its value
as a cancer target will be the focus of a more detailed discussion.
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2.1. uPAR: A Flexible Multidomain Receptor

Human uPAR is a 55–60 kDa highly glycosylated protein (283 aa residues) [45,46],
tethered to the outer leaflet of the lipid bilayer of the cell membrane by a C-terminal
glycosyl-phosphatidylinositol (GPI) anchor [35,47]. The extracellular ligand-binding part
of uPAR consists of three homologous cysteine-rich modules (denoted DI, DII, and DIII, as
numbered from the N-terminus) of approximately 90 amino acids each, connected by two
flexible hinge regions [17]. These domains belong to the Ly-6/uPAR/α-neurotoxin (LU)
protein domain family, which display a distinct conserved disulfide bridge pattern that
creates the archetypical three-finger Ly6/uPAR (LU) domain [44,48]. Figure 1A illustrates
a schematic model of the multidomain assembly of GPI- anchored uPAR, based on the
crystal structure of the bimolecular complex of uPAR with the receptor binding fragment
of uPA (ATF) (Figure 1B) [36]. As clearly shown, all LU-domains are intimately assembled
into an almost globular structure and contribute to the formation of a central hydrophobic
ligand-binding cavity, where the tip of the β-hairpin of the epidermal growth factor-like
domain (GFD1–48) of uPA is deeply buried (as highlighted in the inset in Figure 1B). This
tight interaction governs the high-affinity binding between uPA and uPAR (KD ~0.2 nM),
which exhibits a pronounced species-specificity between humans and mice [49,50].
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Figure 1. Graphical representation of the structure of uPA•uPAR complexes on the cell surface. A composite molecular
model representing human uPAR based on the crystal structure solved for uPAR•ATF complexes is displayed in (A) using
the PDB coordinates 2FD6 [36]. The molecular shape of uPAR is visualized by a semitransparent surface, while secondary
structure elements are depicted as ribbons. The assembly of the three LU-domains is evident from the color coding, yellow
(DI), blue (DII), and red (DIII). A hypothetical model for the GPI-anchor, tethering uPAR to the cell surface, is shown as
sticks. In (B), the bimolecular complex of uPAR with its natural binding ligand uPA is illustrated using a solid surface
representation for uPAR and a ribbon diagram for the receptor-binding fragment of uPA (ATF) used to crystallize the
complex. The large hydrophobic ligand-binding cavity of uPAR is highlighted by the grey area delimited by the hatched
black line using the following atomic color coding: grey (C), blue (N), red (O), and yellow (S). The inset in the bottom right
corner provides a more detailed illustration of the tight engagement and burial of the tip of the β-hairpin of GFD in uPA
within the deepest region of the central cavity in uPAR. Adapted from [23].

This unique conformation enables the large outer receptor surface to engage in other
protein interactions, e.g., Vn, as detailed in the next paragraph [38,41,51]. Vn binds uPAR
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at a composite epitope exposed on the DI/DII interface, via its small, N-terminal so-
matomedin B (SMB) domain and with a relatively weaker binding affinity (KD of 2 µM)
(Figure 2) [33,37,40,43]. The existence of topographically distinct uPA and Vn binding sites
on uPAR enables the simultaneous binding of both ligands and, therefore, the coordinated
regulation of uPAR activities (e.g., cell adhesion and pericellular proteolysis) [52–54].
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Figure 2. Graphical representation of the crystal structure of the ternary uPA•uPAR•Vn complex. (A) A composite molecular
model of the ATF•uPAR•SMB complex solved by X-ray crystallography is shown in (A) using the PDB coordinates 3BTI [37].
The structure is rotated 90◦ in the horizontal axis compared to Figure 1, providing a “top view” of uPAR and moving the
cell surface to the back of the picture. As in Figure 1, uPAR is represented in a composite semitransparent surface and
cartoon representation. The bound ligands ATF and SMB (representing uPA and Vn, respectively) are depicted as ribbons.
A detailed view of the molecular binding interface between uPAR and SMB in this ternary complex is provided in (B). The
corresponding hot spot residues in uPAR (R91 and W32) and SMB (F13, D22, Y27, and Y28) are highlighted and shown as
sticks. Adapted from [23].

Notably, a ~3-fold increase in the vitronectin-binding affinity is induced upon the con-
current binding of uPAR by uPA, which may act as an allosteric modulator of the vitronectin
binding site, as demonstrated both biochemically, in purified systems, and in vitro [40,53–55].

The effective binding of uPAR to its ligands strictly depends upon the intact three-
domain structure of the receptor molecule [16,43,56,57]. Indeed, proteolytic cleavage of the
exposed protease-sensitive DI–DII linker region by a wide variety of proteases irreversibly
impairs uPAR interactions, generating a soluble D1 fragment and a DIIDIII cleaved uPAR
form, which can remain membrane-associated or shed via enzymatic hydrolysis of the
GPI-anchor [5,57–59]. Similarly, intact uPAR can be converted to a soluble three-domain
form that retains its binding capacity toward uPA and Vn (Figure 3) [5,57–59].

All these isoforms of uPAR generated by post-translational hydrolytic processing
(suPAR DI–D3, suPAR D2–D3, suPAR D1, and GPI-anchored uPAR D2–D3) have been
detected in vitro and in vivo, in both healthy and ill subjects, including cancer patients. In
cancer, the plasma levels of soluble uPAR fragments are inversely associated with patient
prognosis and disease outcome [4,11,16,59–62].

Circumstantial evidence from cell culture studies suggests a functional role for trun-
cated DII-DIII uPAR forms [5,13,14,56–59,63]. Upon proteolytic cleavage, the N-terminal of
the resultant C-terminal fragment may expose the chemotactic epitope sequence of uPAR
located in the DI-DII linker region “88SRSRY92”, which has been shown to mimic uPA-
induced directional cell migration and chemotaxis and promote angiogenesis by acting as
an endogenous agonist of members of the G-protein-coupled formyl-peptide chemokine
receptor family, including FPR-like 1 (FPRL1, a homolog of the formyl peptide receptor,
also known as lipoxin A4 receptor, LXA4R) (Figure 3) [4,5,13,14,43,56–59,63–69].
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These uPAR forms may therefore allegedly play a role in the process of tumor pro-
gression, possibly as autocrine or paracrine signals for tumor cell motility and angiogene-
sis [59,65,67].

2.2. Biological Functions of uPAR

From a historical perspective, uPAR was initially identified as a key regulator of
extracellular-matrix (ECM) proteolysis, a fundamental process in the context of cell migra-
tion. The high-affinity binding interaction of its bona fide protease ligand uPA is, indeed,
instrumental in focalizing plasminogen-activation and subsequent plasmin-mediated pro-
teolytic activity to the cell surface of migrating cells at their leading edge, thereby greatly
enhancing the efficiency of the system [70–72]. The biochemical aspects of this cascade
have been extensively reviewed in [43] and schematically illustrated in Figure 3, which
provides a graphical overview of uPAR functional involvement in cancer biology.
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Figure 3. Function and regulation of the urokinase-type plasminogen activator receptor (uPAR) in the biology of cancer.
(a) Through a high binding affinity interaction (KD ~0.2 nM), the urokinase receptor binds active uPA and its zymogen
pro-uPA, favoring its focused cell-surface activation. Active uPA proteolytically converts the zymogen plasminogen (plg)
into active plasmin (plm), which can reciprocally activate pro-uPA, while remaining protected from its primary plasma
physiological inhibitors, α2-antiplasmin (α2-AP). These mutual zymogen activation reactions start a powerful positive
feedback mechanism, resulting in efficient and localized plasmin generation on the cell surface of migrating cancer cells
at their leading edge. The increased cell surface concentration of the reactants involved, respectively, uPA or pro-uPA, by
binding to uPAR, and plasmin and plasminogen, via multiple receptors, strongly accelerate and amplify this reciprocal
activation loop. Once activated, the broad-spectrum protease plasmin mediates the non-specific proteolysis of several ECM
and basement membrane (BM) components, either directly or through the activation of pro-matrix metalloproteinases
(pro-MMPs), thereby promoting cancer cell migration, invasion, and metastasis. Plasmin and MMPs can also release or
activate ECM-bound cancer-related growth factors (GF) contributing to tumor progression and angiogenesis. Most of these
factors then feedback in an autocrine or paracrine fashion to enhance the expression of different pro-cancer genes, including
urokinase plasminogen activating system (uPAS) components, such as uPA and uPAR, that further supports the proteolytic



Cancers 2021, 13, 5376 6 of 45

cascade and thus tumor progression. Besides α2-AP, another important physiological regulator of uPA-uPAR-induced plg-
activation is the serine protease inhibitor (serpin) plasminogen activator inhibitor 1 (PAI1), which specifically inhibits uPA
by forming stable ternary complexes with uPAR-bound uPA, which are subsequently internalized via the α2-macroglobulin
receptor/low-density lipoprotein receptor-related protein 1 (LRP1). (b) By becoming a part of functional units involving
distinct extracellular molecules and membrane co-receptors (e.g., its second main cognate ligand, the matrix protein
Vn, members of the integrin adhesion receptor superfamily, G-protein-coupled receptors (GPCR), and growth factors
receptors (GFR, e.g., EGFR and VEGFR-2, epidermal growth and vascular endothelial growth factor receptor 2)), uPAR is
believed to indirectly choreograph—in a non-proteolytic fashion—several cancer-associated intracellular signal-transduction
pathways regulating other tumor hallmarks, including, among others, proliferation, survival, migration, invasion, metastasis,
angiogenesis, and epithelial–mesenchymal transition (EMT). The intracellular signaling components are indicated (focal
adhesion kinase (FAK), Src, Rac, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), etc.), but
the pathways remain speculative. A more comprehensive list of uPAR putative non-canonical interacting proteins and
related signaling consequences is reported in [4,16,73]. (c) Cell surface uPAR may undergo two major post-translational
processing events, namely proteolytic cleavage (in the DI–DII linker region) and shedding (via hydrolysis of the GPI-anchor),
resulting in diverse uPAR isoforms, including suPAR D1, suPAR DI–D3, suPAR D2–D3, and GPI-anchored uPAR D2–D3.
Created with BioRender.com.

As elegantly shown by uPAR gene-targeted knock-out studies in mice, uPAR-mediated
extracellular proteolysis is involved in several physiological and pathological tissue re-
modeling processes including fibrinolysis, wound healing, tissue regeneration and invo-
lution, immune response/inflammatory responses, and tumor progression in the context
of malignancy (recently reviewed in [4,16]). Surprisingly, no early-onset overt phenotypic
abnormalities were observed in uPAR null mice (Plaur −/−) [74–76], in contrast to those
genetically deficient in plasminogen (Plg −/−) [77], implicating the existence of a functional
redundancy by which other proteases, besides the physiological bona fide activators, uPA
and its homolog tissue plasminogen activator (tPA), may intervene to compensate for uPAR
deficiency [14,17,43,52,57,78,79]. Notwithstanding this relationship, evidence for a func-
tional role of uPAR in plasminogen activation in vivo does exist, as shown by the severe
pathogenic cutaneous alterations (pemphigoid lesions) of bitransgenic mice overexpressing
uPA and uPAR under the control of the keratin 5 promoter [80]. The normal skin phenotype
exhibited by either the single transgenic mice, bitransgenic mice overexpressing uPAR and
a receptor-binding catalytically inactive form of uPA, or bitransgenic mice crossed into a
Plg −/− background undoubtedly underscores the strict requirement for the assembly of
a functional cell surface (pro-)uPA-uPAR template to activate plasminogen [80,81]. The
same prerequisite is also extended to normal physiological conditions since mice null for
either Plg, uPA, or uPAR tolerate an engineered anthrax toxin, whose activity is strictly
dependent on its proteolytic activation by cell-bound uPA, as detailed later [82,83].

As an obvious consequence of its role in plasminogen activation and tissue remodeling,
uPAR likely facilitates cancer invasion and metastasis by providing malignant cells with a
high proteolytic potential required for dissolution of ECM barriers and metastatic spread
to distant sites as well as for invasive tumor growth and angiogenesis through ECM-
associated GF, processed or released by plm or plm-activated MMPs (Figure 3).

Although impairment of uPAR function or inhibition of its expression was associated
with impaired invasive, metastatic, and tumorigenic potential of many tumor models
in vitro and in vivo [4,11,12,14,16,17,20,52,57,79,84,85], one study in transgenic mice with
uPAR gene ablation showed no pronounced causal effects on disease dissemination by
metastasis [86].

Besides uPAR’s well-established role in pericellular proteolysis, so-called non-proteolytic
functions have emerged over the years, implying uPAR’s involvement in multiple intracellular-
signaling pathways affecting several aspects of the neoplastic evolution such as cell pro-
liferation, differentiation, survival, adhesion, migration, angiogenesis, EMT [87–90], and
more [4,14,16,52,56,57,61,79,85,89]. New indications related to uPAR-function in cancer and
putative signaling networks continue to be uncovered, complicating the interpretation of the
functional relevance and therapeutic targeting of this receptor [91–93].
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As a GPI-anchored receptor and, therefore, lacking an intracellular domain, signaling
through uPAR is commonly believed to occur via dynamic lateral interactions in hypotheti-
cal multimolecular complexes involving diverse signaling partners and their downstream
second intracellular messengers [4,14,16,44,52,56,57,79] (Figure 3). Since their discovery
about 30 years ago, a wide variety of uPAR non-canonical interactors have been proposed
in the literature, leading to the definition of the so-called uPAR interactome, comprising
over 42 alleged protein partners so far [16,52,56,73,79,94]. In addition to the second uPAR
cognate ligand, the matrix protein vitronectin, which implicates uPAR in cell adhesion
and migration [43,55,63,95–101], at least three types of transmembrane proteins have been
proposed to entertain physical contacts with uPAR and are assumed to serve as co-receptors
mediating uPAR signaling in response to uPA or vitronectin. These include integrins (e.g.,
αMβ2 and α3β1), GPCRs, and GFR (e.g., EGFR and VEGFR-2)), with the former being the
most studied and considered the most significant partners so far, as shown both in vitro
and in vivo [4,14,16,43,52,56,79,102–107]. For an exhaustive overview of potential uPAR-
interactors, signaling networks, and functional implications in cancer, we invite the reader
to refer to the following detailed reviews [4,16,73].

Noteworthily, while the core of uPAR interactions with its key ligands, uPA and Vn,
were unambiguously delineated based on crystal structure and biochemical analyses, the
other claimed uPAR interplays, and functional consequences have often been inferred or
indirectly demonstrated by fluorescence resonance energy transfer (FRET) microscopy,
immunolocalization, or co-immunoprecipitation studies and, therefore, still remain specu-
lative. Yet, despite the wealth of indications of direct interactions between uPAR and its
putative partners (e.g., integrins), the possibility that this interaction is driven by other
proteins, such as Vn or uPA, cannot be excluded, as recently demonstrated by Sidenius and
colleagues [96–98].

More conclusive evidence along with robust structural information is essential to
better discern the complex molecular networks underlying uPAR’s pathophysiological role
and fully exploit its enormous potential as a cancer target.

2.3. uPAR Expression during Normal Physiology and in Cancer

Under normal homeostasis, baseline expression levels of uPAR are generally low
or even undetectable; when present, the few sporadic uPAR-positive foci represent pre-
dominantly bone-marrow-derived blood cells, in particular neutrophils, monocytes, and
macrophages, as well as quiescent endothelial cells [4,16,17,56,57,108–111]. Scattered uPAR
positive cells are found in the thymus, heart, liver, spleen, lungs, and kidneys [108]. In mice,
uPAR is also expressed by a subset of hematopoietic stem/progenitor cells (HSCPs) [111].

In agreement with its functional role, a remarkable up-regulation of uPAR levels
transiently occurs during normal physiological processes involving cell migration and
active tissue remodeling, namely embryonic development, reproduction, tissue involution,
injury/wound healing, and related inflammatory/immune responses [52,57,108,112,113].
Accordingly, pathological conditions associated with chronic inflammation (e.g., central
nervous and cardiovascular system disorders and immune and infectious diseases) exhibit
a profound increase in uPAR expression, primarily due to infiltrating immune cells (for
comprehensive reviews, the reader may refer to [114,115]). Notably, uPAR-deficient mice,
although viable and fertile, exhibit functional phenotypes in congruence with these observa-
tions, such as defective leukocyte recruitment in models of bacterial infection, amelioration
of inflammatory proteinuria, reduced brain damage in a model of cerebral ischemia, and
depletion of a subset of HSPCs [4,16]. This implies that rather than being cell-specific,
uPAR expression should be regarded as process-specific, with many cells being capable of
expressing the receptor, but only during specific perturbations of homeostasis.

In line with this, elevated uPAR levels, both in resected lesions or in body fluids (blood,
plasma, urine, and ascites) as shed soluble suPAR (as described above and illustrated in
Figure 2), have been detected in almost all human malignancies investigated to date and
are frequently associated with highly invasive phenotypes, poor prognosis, and adverse



Cancers 2021, 13, 5376 8 of 45

clinical outcomes. The broad gene expression profile of uPAR in human cancer as reported
in the Gene Expression Profiling Interactive Analysis (GEPIA) database is illustrated in
Figure 4. As evident, pancreatic cancer (PAAD) is the one exhibiting the highest mean
levels of uPAR mRNA, as well as the largest expression separation between neoplastic and
normal tissues, compared to all other cancer types.
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Not surprisingly, the adverse prognostic potential broadly associated with this re-
ceptor expression in cancer is related to its involvement in most tumor hallmarks, espe-
cially tumor invasion and metastasis. A more in-depth description of uPAR expression
and its clinical diagnostic, prognostic, and predictive value in cancer can be found else-
where [4,11,14,16,59–61,84,109].

Histological immunostaining and in situ hybridization studies have been instrumental
in characterizing the expression profile of uPAR in human solid tumors. Although data
comparison between different reports is complicated or even confounded by method-
ological differences (e.g., histological protocols, detection antibodies, and mRNA probes
employed, lack of appropriate specificity controls, surgical specimen available, etc.) and
tumor complexity, the results of most studies collectively point in the same direction and
allow the identification of some general features of uPAR expression in cancer, regardless
of the tumor type.

First, the expression pattern is usually complex and highly heterogeneous with varying
contributions from both malignant cells and various tumor-associated cells in the surround-
ing reactive stroma. These typically include sub-populations of tumor-recruited inflam-
matory cells, mainly macrophages and neutrophils, as well as neoangiogenic endothelial
cells, active fibroblasts, myofibroblasts, and rarely even neuronal cells [4,11,16,59–61,109].
Although the predominant cellular localization of uPAR expression appears to be tumor-
specific, it is primarily confined to the stromal compartment. Pancreatic cancer is a clear
example of this heterogeneity. Expression of uPAR is indeed principally confined to

http://gepia.cancer-pku.cn/
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the desmoplastic tumor stroma, which accounts for up to 90% of the entire tumor vol-
ume [116–120]. There are also malignancies where the prominent uPAR expression is re-
ported on cancer cells such as in esophageal [121,122] and cutaneous squamous cell carcino-
mas [40], as well as in gliomas such as anaplastic astrocytoma and glioblastomas [123,124].

Interestingly, in some cases, the tumor-specific expression patterns of uPAR seem
to replicate those found in the same tissues under normal physiological remodeling and
may thus underlie the functional similarities observed between normal and cancer tissue-
remodeling processes (e.g., wound healing) [11,17,23,57,109,112,125–127].

Notably, dissimilarities in uPAR expression levels and prevalent cellular localizations
are also observed among different tumor subtypes, patients with the same cancer type, and
sometimes accordingly to the relative histological grade and stage with distinct impacts on
the biological aggressiveness of tumors [128]. Although challenging from a therapeutical
viewpoint, this substantial intratumoral heterogeneity may endorse the potential use of
uPAR as a diagnostic biomarker to identify and stratify high-risk patient subgroups and
therefore tailor individual-based therapies.

Regardless of this complexity, uPAR overexpression is typically observed at the in-
vasive front of the neoplastic lesion, usually at the tumor–stroma or tumor–benign tissue
interface. This is particularly eye-catching at the invasive front of several types of cancers
including, among others, colon [129,130], gastric [131], lower esophagus [132], hepatocel-
lular [133,134], breast [135–137], prostate [138] bladder [139,140], and oral squamous cell
carcinomas [141–143] (Figure 5).
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Figure 5. Tissue expression of uPAR in human cancer. (a) Peroxidase and multi-immunofluorescence staining of primary
colon adenocarcinoma (panels 1–2) and a corresponding liver metastasis with desmoplastic growth pattern (panels 3–4).
uPAR is primarily expressed by tumor-infiltrating macrophages (black arrows in 1 and 3; blue arrows in 2 and 4) along with
some few detached budding cancer cells at the invasive cancer front (white arrows in 2 and 4) (Ca: cancer, ST: stroma, DS:
desmoplastic stroma; LP: liver parenchyma). Reproduced from [129], Copyright (2009, John Wiley & Sons, Inc., Hoboken,
New Jersey, USA) with permission of John Wiley & Sons, Inc. (b) An analogous expression pattern is seen in the intestinal
subtype of gastric cancer (panels 1–2), where macrophages (green arrows in 2) and neutrophils account for the principal
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uPAR-expressing cells, while myofibroblasts (blue arrows in 2), at a similar location, contribute to uPAR expression to
a lesser extent. In the diffuse subtype (panel 3), the uPAR-positive cells are widespread within the tumor. Despite this
heterogeneity, tumor cells (black arrows) constitute a relevant fraction of the uPAR-positive cell population in both gastric
cancer subtypes. Modified from [131], Copyright (2011, John Wiley & Sons, Inc.) with permission of John Wiley & Sons, Inc.
(c) uPAR expression in normal (panel 1) and cancerous ovarian tissues grade II, III, and IV (panels 2, 3, and 4, respectively).
Intense uPAR immunoreactivity is detected in both neoplastic epithelium and juxtatumoral stroma compared to the normal
tissue and is significantly associated with the increasing tumor grade. Adapted from [144], Copyright (2011, American
Association for Cancer Research, AACR, Philadelphia, Pennsylvania, USA), with permission of AACR.

In pancreatic cancer, uPAR immunoreactivity is consistently detected in the highly
fibrotic, inflammatory or desmoplastic areas adjacent to cancer cells [120], both in the
primary tumors and their paired liver metastasis [145]. In the latter, uPAR upregulation in
fibroblast-like cells was found to be associated with fibrotic encapsulation of the secondary
tumors, implying a functional role of fibroblasts in the metastatic process of pancreatic
cancer via the uPA-uPAR pathway [145] (Figure 6).
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Copyright (2007, American Association for Cancer Research, AACR), with permission from AACR.

Similarly, colon cancer liver metastasis with desmoplastic growth (Figure 5(a3)) ex-
hibits high uPAR levels with a pattern that recapitulates the one found in the primary
tumors (Figure 5(a1)) where uPAR is primarily expressed by stromal macrophages along
the invasive front. On the contrary, metastasis with a pushing, or sinusoidal, growth pat-
tern, where the neoplastic cells are in direct contact with the liver parenchyma, is essentially
devoid of uPAR expression [129].

In addition to consolidating the correlate of uPAR expression with tumor progression
and aggressiveness, these observations also signify the important contribution of the uPAR-
positive stromal compartment to the overall process. Indeed, stromal uPAR expression
may support ECM proteolysis and malignant tumor invasion and concomitantly assist
the well-known tumor-promoting functions of the stroma (e.g., angiogenesis) through
the receptor-mediated signaling activities [11,12,15,52,146,147]. This observation further
strengthens the now well-accepted idea of cancer progression as a complex process involv-
ing a dynamic molecular interplay between malignant and supporting stromal cells that
concurrently remodel the tumor microenvironment (TME) to provide sustained pro-cancer
signals. Bidirectional paracrine signaling pathways intervene to regulate this complex
cancer-stromal crosstalk. Soluble mediators released by cancer cells recruit and activate
stromal cells such as macrophages to secrete further bioactive molecules (cytokines, growth
factors, and proteolytic mediators, including uPA/uPAR), which create a permissive and
supportive microenvironment for tumor growth and progression [146–148]. The negative
prognostic value associated with uPAR stromal expression in multiple cancer types, includ-
ing breast [135], colon [130], and pancreatic cancer [119], clearly emphasizes this concept
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and underscores the therapeutic potential of targeting the tumor stroma as a promising
adjuvant anti-cancer treatment.

Distinct regulatory mechanisms control uPAR expression in tumor and associated
stromal cells at multiple levels, respectively, transcriptional, post-transcriptional, and post-
translational, with the former being considered the principal one [12,14,52,84,85,103,149].

uPAR transcription is driven by a variety of common cancer-associated signaling
pathways via autocrine and paracrine mechanisms. Notably, the same pathways are also
activated through uPAR signaling, whose overexpression may thereby establish a positive
feedback loop that sustains tumor progression.

In some tumors, uPAR expression has also been detected in cancer stem cells [93,125]
and bone marrow cancer cells [131,150,151]. These circulating cancer cells likely originate,
at least partially, from the uPAR positive “budding” cancer cells sporadically found within
the tumor stromal microenvironment such as, for example, in colon adenocarcinomas or
gastric cancers, in contrast to the bulk of the primary uPAR-negative tumor [130,131], as
shown by the IHC images in Figure 5a,b.

In gastric and breast cancers, uPAR expression on disseminated cancer cells in the
bone marrow is an independent predictor of tumor recurrence from minimal residual
disease and poor patient prognosis after surgery [151,152]. This association may have
a bearing on the ability of uPAR to drive the transition between single-cell tumor dor-
mancy and proliferation, which allows for the long-term survival of residual tumor cells
during dormancy and reactivation of their proliferation years after primary treatment
upon favorable conditions [13,85,91,92,153]. Simultaneous uPAR and HER2/neu gene
amplification on circulating cancer cells, as well as in primary tumor cells, has also been
described in advanced metastatic breast cancer (MBC) patients and similarly associated
with tumor recurrence, enhanced metastatic potential, and unfavorable outcomes [154].
Such co-amplification suggests the proposed HER2–uPAR cooperativity as being specific to
an early-stage aggressive breast carcinoma subtype and may partially explain the failure of
existing HER2-targeted therapies and drug resistance, thereby indicating these receptors as
potential synergistic targets for therapeutic intervention [154]. Besides breast cancer, uPAR
amplification has also been frequently reported in pancreatic cancer and analogously recog-
nized as a significant adverse prognostic parameter identifying a subgroup of particularly
aggressive tumors [10].

This brief overview of uPAR expression provides a glimpse into the existing clinical
evidence advancing uPAR as a prognostic cancer biomarker and a possible therapeutic
target in several common malignancies, as specified in the following section.

3. uPAR: A Potential “Gateway” for Cytotoxic Cancer Therapy

The pathophysiological role and expression of uPAR in most aggressive cancer lesions,
the related prognostic value in many of them, coupled to the apparent lack of overt
phenotypes associated with uPAR deficiency, all highlight uPAR as a potential candidate in
targeted cancer therapy.

Most experimental strategies explored to date have focused on restraining pericellular
uPAR-mediated plasminogen activation, mostly by interfering with the receptor gene
expression and interaction with its bona fine ligand, uPA. These include monoclonal an-
tibodies, small molecules- and peptide-derived antagonists (recently reviewed in [62]),
recombinant uPA-derived fusion proteins, and various gene therapy approaches. However,
although promising in a preclinical setting, none of them have advanced into clinical
evaluation. Species-specificity, tumor model limitations, and a rapidly evolving landscape
on the relevant determinants and functions of uPAR to target are the main hurdles to the
development of uPAR antagonists. The later evidence of uPAR putative involvement in sig-
naling cross-talks with other cancer-associated protein partners has provided an alternative,
yet challenging, opportunity to explore therapeutically targeting these interactions and
potentially interfere with uPAR functions downstream of uPA proteolytic activity. However,
the potential of this approach remains an open question, and future studies elucidating the
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current controversies underlying uPAR signaling, particularly within in vivo models, will
help the field advance.

An in-depth overview of the mentioned approaches, along with the existing chal-
lenges hampering their advance into the clinics, is provided by the following detailed
reviews [4,10–21,43].

The last decade has brought new avenues in cancer treatment focusing on targeted
cytotoxic therapies [1]. The widespread overexpression of uPAR in most malignant tissues as
compared to their normal counterparts renders uPAR a selective and versatile tool for deliv-
ering a direct cytotoxic insult to uPAR expressing cells, leading to their targeted eradication.

This targeting strategy steadily gains momentum and is showing promise in preclin-
ical studies. Different avenues have been and are currently being explored, including
immunotherapy approaches. The rationale behind them, related advantages and draw-
backs, will be discussed in-depth in the following sections.

In most cases, uPAR targeting is accomplished using monoclonal antibodies, uPA-
derived peptides, and a high-affinity receptor-binding fragment of uPA (ATF1-135, which
contains the GFD). These ligands provide effective binding scaffolds for conjugation and
targeted delivery of different types of cytotoxic payloads or effectors, including traditional
anticancer agents, cytotoxic products, radioisotopes, photosensitizers, chimeric antigen
receptor (CAR) T-cells, oncolytic virus, or even immunostimulators.

Not only does this approach enhance tumor-specificity, but it also improves intra-
tumoral delivery as uPAR-dependent internalization provides a gateway for targeted
intracellular drug release, thereby optimizing the therapeutic response while reducing
systemic toxicity. Given the intratumoral heterogeneity in uPAR expression, it is important
to characterize this expression pattern when designing an optimal uPAR-targeted cytotoxic
insult, as it would strongly impact its effectiveness. The remarkable stromal expression of
uPAR also allows targeting this compartment, which offers multiple opportunities to en-
hance the therapeutic efficacy compared to exclusively targeting the tumor cells, especially
in tumors expressing uPAR in both cell types, such as pancreatic cancer, or those lacking
a tumor-specific molecular target [11,12,15,52,120,146]. Indeed, while having an indirect
anti-cancer effect by attenuating the tumor-promoting effect of the stroma, cytotoxic tar-
geting of this compartment may also increase drug-delivery efficiency by breaking down
the dense stromal barrier, which severely hampers tumor perfusion by therapeutic agents,
ultimately leading to drug resistance and disease recurrence [3].

In principle, as the tumor stroma predominantly accounts for uPAR expression in most
cancer types and patient subgroups, effective tumor regression and/or eradication would
ideally be achieved by implementing combined strategies with cytotoxins targeting both the
cancer cells per se and the surrounding activated tumor stroma. An intriguing option that
is gaining growing interest involves the use of stromal cells, especially tumor-associated
macrophages (TAMs) [155,156], as potential autologous delivery vehicles for a localized
tumor bystander effect that would indirectly enhance the killing of neighboring cancer cells
with low or no uPAR expression. Alternatively, immunosuppressive uPAR-positive TAMs
may also be reprogrammed to restore their immunostimulatory/tumoricidal properties
and possibly potentiate immune checkpoint blockade therapies (anti-PD-1/PD-L1/CTLA-4
antibodies), as already observed for other therapeutic targets [155,156]. Although still in its
infancy, uPAR-mediated stromal targeting is now becoming an attractive avenue, holding
promise for the design of combinatorial intervention strategies that may benefit future
cancer treatment.

It is also relevant to mention that although uPAR expression levels are generally low
in most vital tissues, the baseline expression in the glomeruli of normal kidneys raises
concerns about potential cytotoxic implications of such treatment modalities, as will be
discussed later.
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3.1. uPAR-Targeted Radionuclide Therapy

Radiopharmaceutical therapy (RPT) is rapidly emerging as an effective and safe tar-
geted approach to treating various cancer types, with radiolabeled peptides and antibodies
representing important targeting vehicles [157,158]. In this context, the most successful
example, so far, regards somatostatin-based targeting of neuroendocrine tumors (e.g.,
177Lu-DOTA-TATE, 90YDOTA-TOC) [159]. Among the benefits of this approach is the
possibility to target disseminated cancer cells that have spread throughout the body and
cause tumor relapse, limiting the efficacy of conventional radiotherapy.

Although still at its early stage, a few uPAR-targeted radiopharmaceuticals have
been constructed in the last decade (Table 1). As for most RPTs, these agents are re-
engineered versions of existing compounds used for nuclear imaging. As alluded to in
the previous sections, the ubiquitous uPAR expression at the tumor–stromal interface
of several invading cancer lesions makes it an appealing molecular imaging target for
the clinical assessment of tumor invasion and metastatic dissemination. Accordingly, a
plethora of uPAR-targeting PET-probes mostly based on the high-affinity 9-mer antagonist
peptide AE105 have been synthesized and tested preclinically in diverse human xenograft
mouse models and, recently, also in two clinical uPAR PET studies in humans, including
prostate, breast, and bladder cancer patients, with promising results [17,22–25,28,160]. A
thorough overview of the versatile applications of AE105 for non-invasive imaging of
cancer is provided by the following review [26].

In preclinical studies, AE105 was explored for targeted delivery of highly ionizing
α- or β-emitting nuclides for therapeutic intervention, thus setting the very early stage
for a uPAR-targeted therapy. The dual use of AE105 as an imaging and therapeutic agent
(theranostics) provides an additional opportunity as a companion diagnostic to optimize
cancer management by stratifying patients that may benefit from the treatment.

An inherent limitation in the preclinical use of AE105 is its strict species-specificity
(does not bind mouse uPAR), which complicates the evaluation of undesired toxic side
effects such as nephrotoxicity in mouse models using human tumor xenografts [161]. This
aspect is even more relevant when targeting uPAR, whose baseline expression in the
kidneys, and other non-target organs, such as the bone marrow, may further exacerbate the
potential PPRT-induced damage to these organs.

Sebastian et al., published the first report of a uPAR-targeted radiopharmaceutical.
They synthesized a 213Bi-labeled-DOTA-conjugated dimer of AE105, designated 213Bi-P-
P4D, for α-emitter radiotherapy of uPAR-positive advanced ovarian carcinomas in cell cul-
ture [162]. 213Bi-P-P4D bound specifically to uPAR-overexpressing human monocytic U937
and OV-MZ-6 ovarian cancer cells, as demonstrated by competitive binding studies using
pro-uPA, or the soluble receptor form, suPAR. A clear dose-dependent correlation between
the OV-MZ-6 survival rate and 213Bi-P-P4D activity was established by a colony-forming
assay [162]. Biodistribution of 213BiP-P4D was studied in nude mice bearing intraperitoneal
(i.p.) OV-MZ-6 cell-derived tumor nodules, following i.p. injection. 213Bi-P-P4D uptake
by tumor tissue was higher than in all other organs throughout the observation period,
except for pancreas and kidney, but overall within the range of other published radiola-
beled peptides in tumor-bearing mice [148]. Kidney uptake was distinctly reduced (~50%)
following the pre-administration of the plasma expander gelofusine, which is among the
compounds currently investigated to prevent or limit renal damage by radiopeptides, both
in preclinical and clinical settings [163,164]. Unfortunately, the specificity of 213Bi-P-P4D
tumor accumulation was not substantiated by proper controls, and the in vivo therapeutic
efficacy was not evaluated, thus demanding a further preclinical investigation.

Persson et al. provided the first proof-of-concept evidence of localized radiotherapy
using a DOTA-AE105 derivative radiolabeled with the therapeutic β-emitter 177Lu in a
human colorectal HT-29 xenograft cancer model [165]. The treatment (two doses admin-
istered on days 0 and 7, respectively) induced a significant targeted effect on both tumor
size and the number of uPAR positive cancer cells compared to non-binding analog (177Lu-
DOTA-AE105mut) and vehicle control-treated groups [165]. Although all uPAR-expressing
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cells were eradicated by this treatment, the reduction of tumor size was only moderate and
transient due to the combined small penetration range of 177Lu β-radiation (<2 mm) and
the confined expression of uPAR only at the periphery of the tumor comprising only 10% of
the total HT-29 cancer cells in the tumor lesion [165]. As in the former report, the kidneys
had the highest accumulation of radioactivity as they constitute the secretion pathway of
AE105—this effect is not caused by tracer binding to murine uPAR-positive podocytes
due to AE105 species-specificity. No gross histopathological changes were observed on
H&E-stained kidney sections nor weight differences, though this does not preclude that
toxicity may occur if the host-derived uPAR were to bind AE105 [165].

177Lu-DOTA-AE105 was also well-tolerated in a mouse model of human disseminated
prostate cancer, where it demonstrated a pronounced anti-metastatic effect leading to a
significant reduction in metastatic foci and prolonged metastatic-free survival versus the
control groups [165]. In both models, the uPAR-positive primary and metastatic lesions
were accurately detected by PET imaging using the above-mentioned uPAR-imaging
probe, 64Cu-labeled DOTA-AE105. Despite providing in vivo evidence of a uPAR-specific
targeting effect, the full theranostic potential of this targeted radiotherapy approach, and
related systemic adverse toxicity (e.g., nephrotoxicity), still needs further evaluation due
to the species-selectivity inherent to AE105. The full cytotoxic effect on human tumor
lesions in xenograft mouse models is probably underestimated as it leaves the host stromal
compartment essentially unharmed, as stated before [161].

The same consideration also applies to another study that similarly explored the
theranostic targeting of uPAR in a metastatic breast cancer model using a 111In/177Lu-
conjugated recombinant anti-uPAR antagonist antibody 2G10 IgG [166,167]. This antibody,
identified from a human phage display library, binds human (KD ~10–40 nM) but not mouse
uPAR, prevented the uPA-uPAR interaction, and showed in vivo diagnostic and therapeutic
efficacy in triple-negative breast cancer (TNBC) tumor xenografts and a metastatic mouse
model [166,167]. The radioimmunotherapy (RIT) study performed with 177Lu-2G10 IgG
resulted in complete tumor regression. However, the intrinsic antitumor activity exhibited
by this antibody in its unlabeled form complicates the definition of the added beneficial
theranostic impact deriving from the radionuclide targeting per se.

Although further preclinical validation is required, and notwithstanding the existing
limitations in toxicity assessment, the availability of human anti-uPAR targeting vehicles
and their successful application as imaging agents firmly support the clinical translation
of the present findings to determine the theranostic utility of uPAR in the management of
aggressive tumors, such as prostate or breast cancers.

Table 1. uPAR-targeted radiotherapy interventions.

Compound Sequence/Structure of the
uPAR-Targeting Moiety Radionuclide Application Model System Ref.

[Bi3+]-DOTA–
(linker4-AE105)2
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3.2. uPAR-Targeted Recombinant Fusion Toxins, Protease-Activated Prodrugs, and
Antibody-Drug Conjugates
3.2.1. uPAR-Targeted Recombinant Fusion Toxins

Another class of targeted cytotoxic approaches is represented by recombinant immuno-
and ligand-targeted toxins (IT and LT) [168–172]. In these fusion constructs, the tumor-
targeting moiety—the receptor-binding antibody/antibody fragment or endogenous ligand—
is armed with the catalytic domain of highly potent cytotoxic products, usually microbial or
plant protein toxins, to achieve selective tumor potency and thus the killing of designated
target cells [168,170,171]. Indeed, the construct is devised to replace the cell-binding domain
of the toxin with the tumor-targeting vehicle to dictate the desired binding specificity [168].
Toxin-induced cell death generally occurs via apoptosis through irreversible inhibition of pro-
tein synthesis after internalization and intracellular processing of the construct [168,170,171].
Because of the catalytic potency of the toxin moiety, a small number of molecules delivered
to the cytosol may kill the target cells [173]. Unlike radioisotope immunoconjugates, the
internalization of the construct is strictly required for the toxin to exert its cytotoxic action
on the respective intracellular targets. Various toxins have been used for this purpose, but
the most intensively employed include mutated Pseudomonas aeruginosa exotoxin A (PE) and
Diphtheria toxin (DT), along with plant toxins, such as ricin and saporin [168,170,171,174].
Genetic engineering of the toxin moiety has been pivotal for eliminating two of the main hur-
dles related to this class of therapeutics, namely too low toxicity and immunogenicity [169].
Nevertheless, their production has increasingly gained interest in the biopharma sector, as
evidenced by the growing number of recombinant chimeras currently undergoing preclinical
and clinical investigation for solid and, especially, hematological tumors with promising
results. The most successful examples are Denileukin diftitox (Ontak) and Tagraxofusp
(Elzonris), two DT-derived chimeras targeting the IL-2 and IL-3 receptors, approved by the
FDA for the treatment of cutaneous T-cell lymphoma and blastic plasmacytoid dendritic
cell neoplasm, respectively [168,170,171]. Despite its promise, Denileukin diftitox has been
clinically discontinued due to production issues inherent to the bacterial recombinant expres-
sion system used, E. coli [175], the choice of which is critical in the development process of
recombinant therapeutics, as described later. Recently, a PE-based immunotoxin targeting
CD22 has been approved for therapy of hairy cell leukemia [169].

Various uPAR-targeted recombinant fusion toxins have been developed using the
high-affinity catalytically inactive ATF1-135 of human uPA (containing the receptor binding
domain, GFD) [176] as the molecular entity enabling the specific targeting of uPAR positive
cancer cells [177]. The various cytotoxic warheads were mostly derived from DT, PE, and
saporin toxins.

Several DT-based recombinant fusion proteins have been developed to target uPAR-
overexpressing GBMs, where targeted-toxin therapy has been successfully applied, holding
promise as a new adjuvant treatment for the therapy-resistant forms [178]. Despite its
highly invasive nature, GBM rarely metastasizes outside the brain, allowing for targeted
agents to be directly delivered to the tumor, thus avoiding toxicity issues associated with
systemic delivery. Besides uPAR, the most targeted GMB surface antigens include the
aberrantly overexpressed IL-13, IL-4, and EGF receptors. However, due to the inconsistent
receptor expression in these tumors, no single fusion protein would ideally be inclusive in
recognizing all the different GBM forms [178]. DTAT, the first monospecific uPAR-targeted
DT-fusion protein, was designed by Vallera et al. to address this question. It was conceived
as an alternative strategy for GBMs unresponsive to treatment with DTIL13, another fusion
protein targeting the IL-13 receptor [179]. DTAT consists of the ATF of uPA fused with
the first 388 amino acid residues of DT encoding the catalytic and translocation domains
(DT388). Choosing uPAR to target both GBM cancer cells and the associated uPAR-positive
tumor neovasculature seemed advantageous, potentially enhancing the therapeutic efficacy
by depriving the growing tumor of its essential nutrient supplying source [180]. Based on
DTAT, bispecific ligand-directed toxins (BLT) were subsequently developed to improve
the efficacy of anti-GBM therapeutics while reducing the cost associated with combination
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therapies [174]. The first example, DTAT13, was constructed by coupling ATF to DTIL13 to
retain site-specific binding to both uPA and IL-13Rα2 receptors and further broadening
the reactivity against GBM [181]. In vitro, both glioblastoma cells and human umbilical
vein endothelial cells (HUVECs) were selectively killed by DTAT and DTAT13 in a dose-
dependent manner with nanomolar IC50 values [182]. However, due to differential receptor
expression, neither agent was able to eradicate all GBM cell lines tested, thus confirming the
previous assumption that no single targeted toxin is likely to be universally effective against
heterogeneous tumors such as GBM. On the other hand, the requirement of both uPA and
IL-13 receptors for DTAT13 cytotoxicity was shown by the lack of sensitivity in receptor-
deficient cells and the inhibitory effects of receptor-blocking antibodies [181,182]. In vivo,
both DTAT and DTAT13 induced rapid regression of subcutaneous xenotransplanted
human GBM tumors when administered either subcutaneously or intracranially. However,
DTAT13 appeared to be more effective than DTAT in U87MG tumor-bearing mice, whose
tumor relapse was delayed following DTAT13 treatment. In contrast, in U373 tumors,
DTAT13 had similar inhibitory effects to DTIL13, as observed in vitro, thus confirming
the impact of receptor expression heterogeneity on drug efficacy [181,182]. Additionally,
DTAT13 was 160- and 8-fold less toxic than DTAT and DTIL13, respectively, probably due
to the favorable pharmacokinetic properties conferred by its larger size compared to small
conjugates, as reasoned by the authors [179,181–183]. Pharmacokinetic studies showed
that DTAT13 exhibits properties of both the native fusion proteins, which endows it with
an improved therapeutic profile [183].

DTAT was further tested in an intracranial xenograft model that more accurately mim-
ics the clinical use of this agent, namely intracranial delivery, compared to subcutaneous
tumor models [184]. Administration of the fusion toxin to the brain resulted in a significant
decrease in tumor volume and doubled the survival time, an impressive result since mice
were treated when the tumor burden was advanced, more closely mimicking a clinical
course for GBM [184]. Magnetic resonance imaging (MRI) was successfully employed
to monitor tumor growth, treatment toxicity, and efficacy, demonstrating the utility of
this imaging tool in brain tumors [184]. Together with IHC analysis, MRI confirmed no
DTAT-related vascular leak syndrome, which is one of the major dose-limiting toxicity deter-
minants associated with the use of IT/LT that may preclude their clinical use [169–171,185].
Yet, consistent with other published reports, a 16-fold increase in the maximum tolerated
dose (MTD) was observed following stereotactic administration of DTAT at the tumor
site via convection-enhanced delivery (CED), which is typically employed in brain tumor
clinical trials [184,186].

A dual-targeting DTAT-based BLT (DTATEGF) was synthesized to simultaneously tar-
get uPAR- and EGDR-expressing non-small-cell lung cancer (NSCLC) that has metastasized
to the brain [187]. In vivo, a xenograft intracranial tumor model was established using hu-
man NSCLC cells transfected with a firefly luciferase reporter gene (NSCLC-luc) to monitor
intracranial tumor growth using real-time bioluminescent imaging (BLI). Compared to the
parental monospecific cytotoxins, DTATEGF exhibited more than 100- to 1000-fold more
potent antitumor efficacy both in vitro (IC50 = 0.001 nM) and in vivo when administered
intracranially by CED via an osmotic minipump, providing a significant survival benefit
relative to the controls [187].

Overall, these encouraging preclinical results underscore the potential of bispecific
agents, such as DTATEGF and DTAT13, whose enhanced targeting specificity may im-
prove treatment of heterogeneous tumors while simultaneously reducing off-target toxi-
city, thereby warranting their further clinical investigation [181]. Importantly, the use of
xenograft models employed in these studies, although informative, impeded the evaluation
of the potential uPAR-induced vascular effect of the DT-chimeras, and related systemic
toxicity on normal organs, due to the species-specificity barrier posed by the ATF moiety,
as already observed for AE105 or 2G10 Ab [49]. However, the fact that pigs, which express
cross-reactive uPAR and whose brain size is about a tenth of a human brain, tolerated
2 µg of intracranially administered DTAT without evidence of toxicity indicates that a
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therapeutic index may exist, mandating further studies [184]. A second limitation of
these studies is that they did not address the potential immunogenicity of the DT-targeted
toxins, which is one of the principal drawbacks affecting the clinical application of this
class of therapeutics, as patients with neutralizing antitoxin antibodies, which frequently
appear after one or two treatment cycles, rapidly clear the fusion proteins from the blood-
stream dramatically compromising their efficacy [169,170,177]. This phenomenon is even
more relevant for DT-based toxins due to DT preimmunization in most people, which
leads to a pretreatment blood antibody titer in many patients and subsequent mount-
ing of anamnestic immune responses after DT conjugate therapies such as, for example,
Denileukin diftitox [169,170,177].

Different strategies have been devised to address this issue, such as the construction
of toxin variants with diminished antigenicity by mutagenic deletion of immunogenic
epitopes [169,170,177,188,189]. In the context of uPAR targeting, an example is provided
by another BLT that, similarly to DTAT and DTAT derivatives, was designed for simulta-
neous targeting of EGFR overexpressing GBMs and uPAR on the associated neovascula-
ture [190–192]. In this case, the targeting ligands (respectively, human EGF and ATF) were
spliced to a truncated variant of Pseudomonas exotoxin A (PE38) modified with a C-terminal
Lys-Asp-Glu-Leu (KDEL) sequence, which increases the toxin potency by enhancing its
retention in the endoplasmic reticulum (ER) [190–192]. Further, critical amino acids in
each of the seven mapped immunodominant epitopes in PE38 were mutated to reduce
the toxin immunogenicity without a loss of catalytic activity [193]. This toxin, originally
called EGFATFKDEL-7mut, became later known as EGFR-targeted bispecific angiotoxin
(eBAT) [190–192]. In vitro, eBAT was selectively active in the picomolar range against both
human glioblastoma cell lines and HUVECs cells, thus proving its antiangiogenic poten-
tial [191,192]. PE38 with reduced antigenicity did not reduce drug activity compared to the
nonmutated parental form. In vivo, aggressive brain tumors were grafted subcutaneously
and intracranially in athymic nude mice and rats, respectively, using human U87GM-luc
glioma cells and then monitored by real-time BLI to assess the therapeutic response. A
novel hollow fiber catheter system was employed in rats for intracranial delivery of eBAT
via CED to improve drug distribution while reducing backflow compared with conven-
tional single-port catheters [190,192]. Treatment significantly reduced tumor growth of the
established small gliomas in two independent experiments and resulted in some long-term
disease-free survivors (>130 days post-tumor inoculation), without apparent treatment-
related systemic toxicity [190–192]. As already seen for the above-described uPAR-targeted
BLT, DTAT13 and DTATEGF, eBAT was consistently more effective than its monospecific
counterparts, ATFKDEL and EGFKDEL, or an equimolar combination of the two, both
in vitro and in vivo [190–192]. Remarkably, the adaptive immune response toward PE
was successfully abated (<90%), underscoring the relevance of toxin deimmunization
strategies to mitigate immunogenicity risks in potential future trials involving IT/LT [172].
Indeed, humans recognize the same PE epitopes as mice, supporting the latter’s utility
as a model for human immunogenicity [194]. Unfortunately, in vivo evidence of eBAT
uPAR-mediated vascular effects could not be provided due to the use of xenograft models,
similarly to the previously reported studies. Hence, to investigate this aspect and enable
better interpretation and potential translation of the preclinical findings, adequate model
systems should be employed such as knock-in humanized models expressing human uPAR
or, more simply, xenograft murine cancer models. The latter will require the use of murine
ATF as a targeting moiety.

eBAT effectiveness was further proven against other cancer cell types and related
in vivo xenograft models, respectively, human head and neck squamous cell carcinomas,
breast cancer [195], and pediatric sarcomas [196]. As observed in GBM, eBAT was more
potent than its monospecific form. Accordingly, cancer cells expressing both receptors
were more sensitive to eBAT than the monospecific targeted cells and related in vivo
models [196]. Although the differential sensitivity of cell lines to the toxin may play a
role, the increased potency may likely result from the BLTs’ superior binding affinity
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(due to avidity effects) to dual-receptor expressing cells, EGFR- and uPAR-expressing
cells in the case of eBAT, as confirmed by flow-cytometry analysis in GBM cells and,
recently, in other sarcoma and ovarian cancer cell lines. Noteworthily, in the latter, a more
pronounced difference was observed in the IC50 between eBAT and ATFKDEL than that
reported between eBAT and EGFKDEL, probably due to the relatively low expression
of uPAR on these cells as compared with EGFR, which was the primary determinant of
cytotoxicity [197]. Thus, bispecific targeted agents, such as eBAT, may also potentially
overcome deficiencies in individual receptor expression while retaining high potency [195].
In vivo, eBAT was well-tolerated, and no adverse effects arose at the concentrations used
based on the unchanging average mouse weights [195,196]. Yet, cutaneous, ocular, and
gastrointestinal dose-limiting toxicities, typically associated with EGFR-targeted therapy in
humans [198], were not reported. This was likely due to the cytotoxic activity of eBAT that
does not interfere with EGFR signaling per se, along with the enhanced targeting specificity
conferred by its bispecific nature.

A recent study of canine hemangiosarcoma (HSA) validated this line of argumentation.
HSA is an aggressive and incurable spontaneous tumor whose histopathology resembles
human angiosarcoma (AS), thus offering a valuable comparative model for this and po-
tentially other aggressive cancer types [199]. Indeed, as confirmed by HIC analysis, the
expression pattern of receptors, including EGFR and uPAR, is almost overlapping between
HSA and AS, allowing for non-species cross-reactive agents, such as eBAT, to be tested
in “on target models” and, therefore, in a more clinically translatable setting compared to
“nontarget” xenograft models.

In vitro, eBAT effectively killed both human HA and canine HSA cells as well as canine
hemangiospheres enriched with cancer stem cells at clinically relevant subnanomolar
doses [199]. Encouraged by this result, an adaptative dose-finding, Phase I–II clinical trial—
the first ever performed—was undertaken in which 23 dogs with spontaneous low-stage
HSA received one cycle of intravenous eBAT after splenectomy and before doxorubicin
chemotherapy. eBAT was well-tolerated at the biologically effective concentration of
50 µg/kg, with none of the dogs experiencing common EGFR-targeting associated toxicities
or signs of capillary leak syndrome [199]. Reversible liver toxicity was only observed in
two cases. Impressively, eBAT almost doubled the 6-month survival rate (~70%) of dogs
receiving the biologically active dose versus the comparison group treated with standard
of care alone (<40%). Six dogs were long-term survivors, living over 450 days [199]. Anti-
eBAT antibody responses were observed in less than half of the dog population without
interfering with eBAT efficacy, as already seen in GMB. Collectively, these studies provide
a strong rationale for clinical translation of this BLT as adjuvant therapy to supplement
standard of care therapies for treating both residual and metastatic, relapsed cancers,
such as sarcomas, and potentially other EGFR- and uPAR-expressing cancers. Further
testing, along with pharmacokinetic studies, will be instrumental for elucidating the exact
mechanisms underlying the in vivo efficacy and excellent safety profile of this bispecific
ligand-directed toxin and optimize the appropriate treatment strategy for future clinical
trials in humans, considering the existing relevant species-related physiological differences.

Another example of a monospecific uPAR-targeted fusion toxin is ATF-SAP, compris-
ing the plant-derived type I ribosome inactivating protein (RIP) saporin (SAP), isolated
from the seeds of Saponaria officinalis [200]. The lack of a receptor-binding domain in these
types of RIPs makes them excellent candidates as catalytic moieties to produce such recom-
binant chimeras [201]. Among Type I RIPs, SAP has been extensively employed due to its
potent enzymatic activity and thermal and proteolytic stability, as well as better tolerability
and reduced immunogenicity compared to bacterial toxins, rendering it a valuable tool
for cancer therapy [201]. Its internalization mechanism, which remains still controversial
for most of Type I RIPs, has been demonstrated to involve the low-density lipoprotein
receptors (LDLR) family and, in particular, LRP1 [201,202], which is also known to mediate
the physiological internalization of receptor-bound urokinase/PAI-1 complexes [6,7]. Elu-
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cidating the intracellular routing of such targeted toxins is fundamental for their optimal
use as anticancer drugs since their biochemical targets reside in the cytoplasm.

The production of ATF-SAP, initially based on the traditional E. coli expression sys-
tem [203,204], was later set up in Pichia pastoris GS115 yeast [205] due to the misfolding and
degradation of the structurally complex ATF moiety in the bacterial host cells, resulting
in low product yields, as well as the advantageous presence of a characteristic eukaryotic
secretory pathway. ATF-SAP was efficiently and safely expressed in the GS115 yeast strain,
following codon usage optimization of the fusion construct [205,206]. A fermentation
process with lab-scale stirred bioreactors was successfully implemented to produce dis-
crete homogeneous batches of ATF-SAP. In vitro, selective cytotoxicity was demonstrated
against uPAR-overexpressing U937 leukemia cells with a IC50 of 0.1 nM [206]. Recently, the
therapeutic potential of ATF-SAP has also been investigated in other putative candidate
uPAR-overexpressing tumor entities, including breast and bladder cancers [207]. ATF-SAP
selectively killed the in vitro models in a dose-dependent manner and proportionally to
uPAR surface density, with IC50 values in the nanomolar range, as found for the U937
cells [207]. In both cases, these values were 100 times lower compared to that of untar-
geted SAP, further evidence of the targeting efficiency of the ATF moiety that enhances
SAP delivery to the receptor-positive target cells [207]. However, an absolute correlation
between uPAR expression and ATF-SAP cytotoxicity was not observed, as proven by the
unexpected lack of activity of ATF-SAP toward highly uPAR expressing cells such as fibrob-
lasts and the triple-negative breast cancer cell line, MDA-MB-231. The authors attributed
this phenomenon to potential differences in the internalization process of the ATF chimera
in distinct cell lines based on the relative differential expression of uPAR and accessory
molecules involved in the receptor internalization, uPA, PAI-1, and LRP-1, which has also
proven to be involved in ATF-SAP receptor-mediated endocytosis [203,204]. Although
potential uptake mechanisms have been postulated by the authors, further study is needed
to appropriately address this aspect, as no internalization assays were performed, and the
assumptions were purely based on the expression data of the investigated internalizing
components. Indeed, in addition to the most characterized ligand-induced LRP-1-mediated
route, other endocytic pathways may regulate uPAR intracellular trafficking, including a
ligand- and LRP1-independent macropynocitic-like mechanism identified by Cortese et al.
as responsible for uPAR constitutive endocytosis and recycling [8].

Intravenous administration of ATF-SAP in an allogenic xenograft mouse model of
bladder cancer significantly delayed tumor growth and increased animal overall survival,
without eliciting noticeable toxic effects such as weight loss or lethargy [207]. However,
immunogenicity was not evaluated in this study, thus demanding a future investigation.
Overall, the present studies, along with the availability of a fermentation strategy for
large-scale production, signifies the promising therapeutic potential of this toxin chimera
that encourages its further preclinical evaluation. The main features of the herein described
ATF-toxin fusion proteins are summarized in Table 2.

Table 2. Mono- and bi-specific ATF-fusion recombinant toxins targeting the urokinase receptor in cancer.

LT Name Toxin Origin of the
Toxin

Additional
Surface Target Application Model System Ref.

DTAT DT Corynebacterium
diphtheriae / Preclinical

Human GBM and HUVECs cells;
Human GBM SC and IC

xenograft models
[179,182]

DTAT13 DT Corynebacterium
diphtheriae IL-13Rα2 Preclinical

Human GBM and HUVECs cells;
Human GBM SC and IC

xenograft models
[181,183]

DTATEGF DT Corynebacterium
diphtheriae EGFR Preclinical

Human NSCLC cells; Human
metastatic NSCLC IC

xenograft model
[187]



Cancers 2021, 13, 5376 20 of 45

Table 2. Cont.

LT Name Toxin Origin of the
Toxin

Additional
Surface Target Application Model System Ref.

eBAT PE38 Pseudomonas
aeruginosa / Preclinical

Human GBM, HUVECs, HNSCC,
breast, ovarian, sarcoma and

pediatric sarcoma cell lines; GBM
SC and IC xenograft models;

Adaptive dose-finding, phase I–II
clinical trial for canine HSA

[191,192,195–197,199]

ATF-SAP Saporin Saponaria
officinalis / Preclinical

Human bladder and triple
negative breast cancer cell lines;

bladder cancer SC
xenograft models

[203,204,206,207]

Abbreviations: GBM, glioblastoma multiforme; HUVECs, human umbilical vein endothelial cells; HNSCC, head and neck squamous cell
carcinoma; HSA, hemangiosarcoma; SC, subcutaneous; IC, intracranial.

3.2.2. uPA-Activated Prodrugs

Besides bispecific targeting, another exciting approach to finely improve the therapeu-
tic profile of fusion toxins implies the construction of tumor-selective prodrugs that are
site-specifically activated at the intended tumor site by tumor overexpressed pericellular
proteases [172,208]. Bacterial toxins such as DT, PE, and anthrax toxin are particularly
amenable to this strategy as their cytotoxic activity is proteolytically unleashed on the cell
surface in an early step of the intoxication process [172]. This strict and unique requirement
enables the toxins to be engineered to make their activation depend on a tumor-associated
protease and, accordingly, endows the resulting recombinant construct with the ability to
selectively act on target protease-overexpressing cancer cells while sparing the healthy
counterpart. Not surprisingly, the broad and localized activity of uPA in most tumors has
provided an excellent opportunity for implementing such a strategy [11,14,17,209].

In this context, most of the published work has been performed by the group of Liu,
Leppla, and Bugge, who elegantly pioneered this field with the construction of an engi-
neered anthrax toxin protective antigen (PrAg)-based prodrug named PrAg-U2 (Table 3).
This was obtained by replacing the native furin cleavage site in PrAg, 164RKKR167, with a
urokinase activable sequence 163PGSGRSA169, called U2. PrAg-U2 was then combined with
a PrAg-dependent fusion protein, FP59, consisting of anthrax toxin lethal factor residues
1–254 (containing the N-terminal PrAg binding domain required for LF internalization)
fused to the catalytic domain of Pseudomonas exotoxin A (PE3), to improve its cytocidal
efficacy [82,83,209,210]. A comparison between the putative mechanism of actions of PrAg-
U2/FP59, as a uPA-activated prodrug, and one of the previously described uPAR-targeted
cytotoxins, DTAT, is illustrated in Figure 7.
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catalytic A domains of DT, fused to the amino-terminal fragment of uPA; (1A) The ATF targeting moiety mediates DTAT
delivery and binding to the target uPAR-expressing cells. Cell-surface furin protease or furin-like proteases activate DT by
proteolytic “nicking” of the arginine-rich bridge connecting the A and T domains, which remain linked by a disulfide bond;
(2A) DTAT is then internalized in clathrin-coated pits into early endosomal vesicles (EE), where (3A) proteolytic activation of
toxin molecules that escaped cleavage by cell-surface proteases may occur. (4A) Upon endosome acidification, the T domain
undergoes a conformational change, inserts into the endosomal membrane, and forms a pore through which the catalytic
domain A translocates to the cytoplasm, after concomitant reduction of the interdomain bridging disulfide bond. (5A) Here,
the A domain inactivates the translation elongation factor 2 (eEF-2) by ADP-ribosylation, causing irreversible inhibition of
protein synthesis and subsequent cell death, via apoptosis. A single molecule of toxin delivered to the cytosol is sufficient to
kill the target cell [172,173,179,211]. (B) PrAg-U2/FG59 is a dual-component prodrug designed to be selectively activated by
uPA on the surface of uPAR-overexpressing tumor cells. (1B) In the presence of pro-uPA and plg, receptor-bound PrAg-U2
undergoes a uPA-mediated activating cleavage and, subsequently, (2B) self-associates into a barrel-shaped heptamer, which
binds the recombinant cytotoxin FP59. (3B) The resulting toxin complex is then internalized into endosomes where FP59
translocates to the cytosol in a PrAg-dependent manner (4B). (5B, 6B) As for DTAT, cell death occurs via apoptosis following
protein synthesis arrest induced by EF2 inactivation catalyzed by the ADP-ribosylating domain of Pseudomonas exotoxin A
(PE3) included in the fusion protein FP59 [83,212]. Abbreviations: ATR, anthrax toxin receptor. Created with BioRender.com.

The tumoricidal potential of the dual prodrug, PrAg-U2/FP59, has been success-
fully verified both in vitro on several malignant urokinase and anthrax toxin receptors
expressing cell lines (nanomolar to picomolar IC50 values) [83,209,213], and in vivo, both in
murine syngeneic and human xenograft tumor models of diverse origin, where significant
anti-tumor effects were observed following local and systemic PrAg-U2/FP59 admin-
istration [209,214,215]. A dose–response relationship with both antitumor efficacy and
systemic toxicity was observed, the latter being prevented upon concurrent treatment with
the anti-inflammatory dexamethasone [209,214,215]. IHC analysis following maximum
tolerated dose (MTD) assessment confirmed that, apart from endowing the engineered
toxin with potent tumor-selective cytotoxicity, the switch from furin to urokinase activation
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noticeably attenuated or completely abolished toxicity to major organ systems, even at high
toxin dosage, compared to the native PrAg [82,209]. Remarkably, total tumor regression
and 30% complete histologic remission were reported in subcutaneous NSCLC bearing
athymic nude mice after systemic administration of tolerated doses of PrAg-U2/FP59 [214].
The absolute requirement for the functional assembly of an active uPA/uPAR cell surface
template for uPA-mediated plasminogen and subsequent PrAg-U2 activation in vivo was
impeccably demonstrated by the complete lack of treatment response in tumor-bearing plg,
uPA, and uPAR single-deficient mice challenged with the engineered toxin, as opposed to
wild-type mice, which, in contrast, became terminally ill [82,83,209]. Similarly, deficiency
of the cognate uPA inhibitor PAI-1 lowered the IC50 of this chimeric toxin [82,209]. As
mentioned above, this study provided unequivocal evidence for the critical role of uPAR in
the generation of cell-surface uPA activity in vivo.

After this pioneering work, additional improvements have been attained by the au-
thors to further increase the tumor selectivity of the engineered anthrax toxins. This
objective was achieved by combining PrAg protoxins with different specificity determi-
nants, respectively, the formerly described PrAg-U2 and the MMP-activated PrAg protein
PrAg-L1 [216] (Table 3). An intermolecular complementation approach was devised to
target tumor cells displaying high levels of both proteolytic activities on their cell surface.
As the LF binding site spans two adjacent monomers of the PrAg oligomeric heptamer,
the two uPA- and MMP-activated PrAg protoxins were further mutated in one of the LF
binding subsites so that efficient intracellular translocation would only occur upon inter-
molecular assembly of a hetero-heptameric pore, consisting of both uPA- and MMP-derived
PrAg mutated monomers forming a functional LF-binding site [216]. The combination of
uPA-activated PrAg-U2-R200A and MMP-activated PrAg-L1-I210A variants proved to be
the most effective in vitro.

In vivo, when administered in combination with either FP59 or LF, the inter-
complementing toxin PrAg-U2-R200A/PrAg-L1-I210A showed effective anti-tumor activ-
ity toward various types of aggressive transplanted tumors compared to the individual
PrAg variants, signifying intermolecular complementation as the key mechanism to achieve
potent tumoricidal efficacy [216,217]. In an anti-tumor potency comparing assay, PrAg-
U2-R200A/PrAg-L1-I210A was at least as effective as an equivalent dose of PrAg-U2.
However, the maximum tolerated dose of PrAg-U2-R200A/PrAg-L1-I210A was higher
than that of PrAg-U2, evidence of the higher tumor specificity achieved by the dual-specific
complementing mixture. This was further confirmed by the marked decreased toxicity of
PrAg-U2-R200A/PrAg-L1-I210A compared to the parental PrAg-U2 and PrAg-L1 [216].
The present study provides POC for the rational design of engineered toxins with ex-
ceptional specificity for selected tumor types designated with unique combinations of
overexpressed pericellular proteases not found on normal tissues. The efficacy of this
reengineered anthrax toxin was recently demonstrated in a small clinical study on canine
oral mucosal melanomas (OMM) with all five dogs showing stable disease after intra-
tumoral treatment and no outward signs of systemic toxicity [218]. However, survival
after treatment, and potential toxin-associated immunogenicity, were not assessed in these
reports and require further research to clinically advance this promising fusion toxin.

The protease-activated prodrug approach has been successfully applied by the same
authors to optimize the therapeutic index of DT-fusion toxins such as DT388GMCSF. This
monospecific chimera combines the catalytic and translocation domains of DT (DT388, as
for DTAT) with the granulocyte-macrophage colony-stimulating factor (GMCSF), which
stimulates acute myeloblastic leukemia (AML) blast cells’ growth [219]. DT388GMCSF
belongs to the first generation of DT chimeric toxins for refractory and relapsed AML
comprising DTIL3 and DTAT [177,181,209]. Despite the promising preclinical and clini-
cal toxicity exhibited by DT388GMCSF, its clinical applicability was limited by the pro-
nounced hepatotoxicity due to the non-specific targeting of normal liver GM-CSF recep-
tor (GM-CSFR)-expressing cells, such as macrophages [209,220]. Taking advantage of
uPA/uPAR overexpression in AML relative to normal tissues [213,221], coupled with
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the DT-dependency on cell-surface proteolytic activation, DT388GMCSF’s specificity to
AML was enhanced by engineering the DT furin site to acquire an AML-selective protease
system, such as uPA/uPAR, for PrAg-U2. The uPA-cleavable sequence (U2) insertion
yielded DTU2GMCSF (Table 3). Preclinically, this dual-specificity fusion toxin exhibited
high toxicity on different leukemic cell lines with picomolar IC50 values. The cytotoxic
effect proved to correlate to the cell surface density of both receptors and total uPA levels,
as also shown by the reduced toxicity or resistance seen in normal cells expressing uPAR
or GMCSF-R alone, as well as in the sensitive cells following pretreatment with receptor-
blocking antibodies [209]. Interestingly, compared to the former studies, the minimal
receptor expression levels needed for DTU2GMCSF antitumor activity were determined
and found to be 236 and 54 receptors/cell for GM-CSFR and uPAR, respectively. These
results suggest that there may be a threshold effect for uPAR expression that may mediate
drug effect similar to what has been found for other cell-surface tumor targets such as
HER2 and c-MET [222]. Although preclinical evaluation of DTU2GMCSF has not yet been
performed in vivo, this study provides a POC for the efficacy and increased specificity of
bispecific fusion protoxins. From a broader perspective, the combination of targeted deliv-
ery with protease-mediated toxin activation strategies, accomplished with DTU2GMCSF,
may provide an optimum approach to improve the therapeutic index of both bi- and
monospecific fusion toxins aimed for cancer treatment, and in the case of DTU2GMCSF,
for potential AML therapy, and therefore merits further investigation.

In this context, an additional example is provided by ALA, a novel uPAR-targeted
recombinant protoxin, recently developed using the scorpion toxin peptide AGAP, which
has been recognized as a new promising anti-cancer drug candidate [223] (Table 3). ALA
design combines the strategies of both classes of ATF-fusion toxins as it involves ATF fusion
to the AGAP domain along with two uPA-cleavable sites. The conjugation to ATF improves
AGAP suitability as a putative therapeutic peptide, a goal generally challenged by the
intrinsic biologic properties of natural peptides including, among others, fast clearance,
short half-life, limited permeability and stability, and accumulation in non-targeted healthy
organs [224]. The targeting and cytotoxic potential of ALA was evaluated in vitro with
high uPAR-expressing breast cancer cell lines, including MDA-MB-231, and uPAR-negative
control cells. ALA was selectively delivered to and inhibited the proliferation of the
target cancer cells in a dose- and receptor-dependent manner compared to the control cells
lacking both uPAR and uPA required for the toxin proteolytic activation [223]. AGAP-
induced cell apoptosis may underlie ALA’s cytotoxic mechanism of action as suggested
by flow cytometry and western blot analysis [223]. In addition to confirming ATF as an
effective targeting vehicle, this preliminary study highlights the potential of ALA as a novel
antitumor candidate for treating uPAR-positive malignant tumors.

Collectively, these findings motivate further pre-clinical and clinical evaluation of
uPAR-targeted fusion toxins, alone or in combination with conventional treatment modali-
ties. Toxin-induced immunogenicity will most likely remain the main hurdle challenging
their long-term therapeutic application in immunocompetent patients, as seen for other
IT/LT. However, the implementation of strategies to mitigate or neutralize host anti-drug
antibody (ADA) responses, as successfully achieved with eBAT, renews hopes to cope with
or potentially overcome this problem.
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Table 3. Mono- and bi-specific ATF-fusion recombinant protoxins targeting the urokinase receptor in cancer.

LT Name Toxin Origin of the
Toxin

Additional
Surface Target Application Model System Ref.

PrAg-U2/FP59 AT Bacillus
anthracis / Preclinical

Human and mice
uPAR-overexpressing
malignant cell lines;

syngeneic mouse and
human xenograft cancer

models of diverse
origin; Pilot POC study

of canine OMM

[82,83,213–215,217,218]

PrAg-U2-R200A/
PrAg-L1-I210A LF/FP59 Bacillus

anthracis / Preclinical Syngeneic mouse
models of diverse origin [216]

DT388GMSF DT Corynebacterium
diphtheriae GMCSFR Preclinical Human AML cell lines [219]

ALA AGAP B. martensii
Karsch / Preclinical Human breast cancer

cells [223]

Abbreviations: PrAg, protective antigen; AT, anthrax toxin; DT388, diphtheria toxin (truncated form); GMSF, granulocyte-macrophage
colony-stimulating factor; POC, proof-of-concept; OMM, oral mucosal melanomas; GMCSFR, granulocyte-macrophage colony-stimulating
factor receptor.

3.2.3. uPAR: A Novel Molecular Target for Antibody-Drug Conjugates (ADCs)

Conceptually similar to ligand-based toxin conjugates, ADCs represents an emerg-
ing and actively growing class of anti-cancer therapeutics that has reached clinical and
regulatory milestones, with a total of 11 FDA-approved ADCs currently marketed for
oncologic indications, over hundreds under advanced clinical evaluation, and many more
in preclinical development. They provide another example of cancer-specific prodrugs.
The toxin moiety is covalently linked to a tumor-targeting antibody via specialized serum-
stable chemical linkers that, after target receptor-mediated internalization, ensure the cargo
release and processing selectively into the desired cancer (or stromal) cells, leading to their
targeted eradication [225–227].

This approach is now stepping into the uPAR field, with only one relevant example
recently reported by the group of Craik et al., using the 2G10 antibody (introduced in
Section 3.1 “uPAR-targeted radionuclide therapy”). Based on the encouraging preclinical
results obtained with both naked Ab and the 177Lu radiolabeled version and the practi-
cal limitations inherent in the use of radioimmunoconjugates [166,167], a panel of nine
2G10 ADCs were designed and produced bearing the antimitotic tubulin inhibitor pay-
loads, maytansine, and monomethyl auristatin E (MMAE), site-specifically conjugated via
different linkers [228] (Figure 8).

Besides being a high-affinity binder to uPAR, 2G10 displays fundamental properties
that render it an excellent Ab scaffold for ADCs, namely slow dissociation rate constant
(koff) and capability to induce receptor-mediated internalization. The nine ADCs were
tested and validated in vitro with the reference TNBC cell line, MDA-MB-231, and the
cell-derived xenograft mouse model [228]. All ADCs were efficiently internalized and,
at the highest concentration, induced a ~17–60% reduction in cell viability relative to the
vehicle-treated cells [228]. In vivo, the anti-uPAR ADC that exhibited superior efficacy,
leading to a one-third decrease in tumor volume, comprised an MMAE payload with a
cathepsin B cleavable linker, named 2G10-RED-244-MMAE. Interestingly, the maximal
dose used, 10 mg/kg, was a third lower than that of naked 2G10 causing tumor regression
in the same TNBC xenograft model [167].

At this dosage, there was no evidence of toxicity based on body weight determination
or clinical observations. However, as already noticed, the use of this antibody, specific to
human uPAR, in a xenograft mouse model excluded the evaluation of drug-related toxicity
to normal mouse cells along with ADCs effect on the mouse stroma, thus demanding an
in-depth investigation.
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modified via the SMARTag® technology, which genetically incorporates an aldehyde tag to the
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In addition to validating uPAR as a novel potential target for ADC-based constructs,
this study supports the future development of 2G10-RED-244-MMAE as a promising
anti-uPAR ADC candidate.

Given the availability of well-characterized anti-uPAR monoclonal antibodies, and
the expanding clinical success of ADCs for cancer treatment, the development of ADCs
targeting uPAR is expected to open new therapeutic avenues for aggressive cancers, such
as TBNC, where there is a paucity of molecular targets.

3.3. uPAR-Targeted Nanoparticles as Potential Anti-Tumor Theranostic Platforms

uPAR-targeting moieties, such as the AE105 peptide and ATF, have been successfully
employed by several groups to engineer and guide drug-loaded nanoparticles (NPs)
selectively to tumor sites (Table 4).

In addition to the improved site-specific drug delivery and reduced toxicity conferred
by the active tumor targeting, nanoscale carrier systems inherently display fundamen-
tal advantages over conventional chemotherapy and are, therefore, gaining increasing
attention in cancer research and treatment [229]. Beyond their favorable pharmacokinetics
(e.g., prolonged blood circulation half-life), they provide versatile platforms that can be
functionalized with multiple agents and, thus, enable different biomedical applications,
including imaging and diagnosis, besides drug delivery [229]. These unique properties
have fostered the development of tumor-targeted theranostic nanoparticles to achieve
efficient tumor-selective imaging and therapy [230]. Magnetic iron oxide nanoparticles
(IONPs) have emerged as excellent candidates for this purpose due to their intrinsic prop-
erties as clinically valuable MRI contrast agents and versatile surface chemistry that allows
incorporating various imaging modalities [229–231]. Their biological safety in humans has
been assessed, with non-targeted IONPs currently in use or under clinical development to
detect liver tumor lesions or lymph node metastases [232–234].

Yang et al., were the first to develop multifunctional uPAR-targeted IONPs [235].
The ATF peptide was conjugated to amphiphilic polymer-coated IONPs carrying conven-
tional chemotherapeutic drugs, such as doxorubicin (Dox), gemcitabine (Gem), or cisplatin
(Cis) [236–239]. The encapsulated payloads were effectively internalized and released into
uPAR-positive breast and pancreatic cancer cells, following receptor-mediated endocytosis,
and produced significant cytotoxic effects compared to equivalent concentrations of free
drugs and non-targeted drug-loaded IONPs. A low level of non-specific uptake was also
detected for the latter upon incubation for a longer time, consistent with previous observa-
tions [236–238]. Importantly, the drug-release process of all the investigated payloads was
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pH-dependent, and the release rate increased with decreasing pH values. This pH-sensitive
behavior is highly desirable for targeted cancer therapy as it improves drug-delivery effi-
ciency at the tumor site and prevents premature drug release into the bloodstream (pH 7) by
exploiting the unique characteristics of tumors, such as the slightly acidic pH, besides cancer
cell lysosomes [240]. In the case of the Gem-loaded IONPs, using a pH-sensitive lysosomally
cleavable linker peptide for conjugating the chemotherapeutic Gem on the polymer surface
of the IONPs achieves Cathepsin B-dependent drug release into intracellular lysosomes.

In vivo studies were conducted on mice bearing human orthotopic breast or pancreatic
tumor xenografts [236,238,239]. Interestingly, a mixture of human and mouse ATF was
insightfully employed to target both human tumor cells and mouse-derived tumor stromal
cells in the mouse models used, unlike the previously reported studies [236,238]. For NIR
optical imaging, the ATF moiety was labeled with NIR dyes such as NIR-830 or Cy5.5.
This potential multimodal imaging approach provides a valuable tool to validate and
track the IONPs and, therefore, better investigate tumor targeting and biodistribution of
nanoconstructs in animal models. Following systemic delivery, selective accumulation
of the drug-loaded ATF-IONPs was observed in both tumor and stromal cells, especially
at the tumor margin, congruent with the uPAR expression profile [236,238]. As expected
for systemically delivered IONPs, accumulation in normal organs was mostly found in
the liver and spleen, due to the non-specific uptake of IONPs by resident macrophages
(reticuloendothelial system, RES), but not in other organs (heart, liver, intestine, and kidney)
or tissues surrounding the tumor lesions.

The possibility to specifically target both tumor and stromal compartments, as in the
present example, provides a double benefit: it allows overcoming or weakening the dense
stromal barrier that severely hampers tumor perfusion by therapeutics and support tumor
progression; at the same time, it increases the intratumoral drug delivery and retention of the
targeted nanoparticles and thus the sensitivity of tumor detection through imaging. This is
particularly relevant when targeting uPAR positive tumors where the stromal compartment
primarily accounts for the prominent uPAR expression, as detailed in the previous sections.
Due to the high level of IONPs delivered into the tumor areas, significant tumor growth
inhibition was observed in both tumor models, with no apparent systemic toxicity compared
to free drugs, such as Dox. As anticipated, highly proliferative cancer cells were more
sensitive to Dox than the slowly dividing stromal cells, as shown by the higher number of
IONPs positive cells found in the tumor stroma after the treatment [238]. This observation
underscores the importance of tuning the targeting strategy and thus selecting the optimal
payload to ensure the efficient killing of the desired cell types without or marginally affecting
normal healthy cells. Moreover, the presence of drug-resistant residual tumors could also be
identified non-invasively by NIR or MRI, signifying the value of uPAR-targeted theranostic
agents, such as nanoparticles, for imaging-guided therapy.

Using the same approach, Abdalla et al., have developed optical-MR imaging track-
able, pH-responsive ATF-IONPs for the selective delivery of noscapine (Nos), a tubulin-
binding anti-cancer agent, to prostate cancer cells [241]. The Nos-loaded targeted IONPs
markedly enhanced intracellular Nos accumulation, leading to a ~6-fold increase in cell
death compared to the free, untargeted drug. Although preclinical evaluation of the fol-
lowing NPs has not yet been reported, this theranostic approach holds potential for the
management of prostate cancer patients. It further underscores the utility of targeted
delivery and drug encapsulation to improve the therapeutic index and pharmacokinet-
ics of anticancer drugs, such as noscapine or doxorubicin [241]. The following figures
schematically illustrate the composition, drug loading strategies (Figure 9), and theranostic
applications (Figure 10) of some of the above-described uPAR-targeted nanoparticles.
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Figure 9. Composition and drug loading strategies of uPAR-targeted IONPs. (A) Most of the uPAR-targeted NPs developed
up to date consist of magnetic IONPs coated with amphiphilic polymers. In addition to high stability, these polymers
provide active functional carboxyl groups (COOH) on the particle surface for bioconjugation of targeting moieties, such as
recombinant ATF (PDB accession number: 1URK) or other uPAR-peptide antagonists (not shown in the figure). (B) Different
drug encapsulation methods can be utilized based on the physicochemical properties of the cargo, as well as drug-delivery
strategies. Direct adsorption of the drug on the NP surface through non-covalent interaction increases the amount of
drug encapsulated and efficiency of release into the targeted cells, compared to covalent linking [242]. Using this direct
encapsulation method, doxorubicin and noscapine, two hydrophobic anticancer drugs, were physically adsorbed onto the
amphiphilic polymer coating of ATF-IONPs via hydrophobic interactions (top) [236,237]. Similarly, the chemotherapeutic
cisplatin (middle) was conjugated on the surface of ATF-PEG-IONPs via a coordinate bond between the positive charge
of platinum (Pt+) with the negative charge of the coating polymer’s carboxylate groups (O=C-O-, Lewis base) [239]. In
both cases, drug release is triggered at acidic pH values, typical of the hypoxic tumor milieu or intracellular lysosomes.
Alternatively, more controlled drug release may be achieved via linker-mediated adsorption [242]. Using a pH-sensitive
lysosomally cleavable peptide linker, gemcitabine, a hydrophilic drug, was covalently conjugated on the polymer surface of
ATF-IONPs, achieving cathepsin B-mediated intracellular drug release (bottom) [236]. Created with BioRender.com.
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IONPs were efficiently internalized and accumulated in the treated cancer cells compared 
to normal prostate epithelial cells, as visualized by MRI imaging [243]. Accordingly, 
LHRH-AE105-IONPs-PTX showed enhanced cell killing capability versus the single-re-
ceptor-targeting IONPs-PTX (2-fold), non-targeted IONPs-PTX, and free PTX (3-fold). 
Moreover, the concentration of free PTX required to attain similar cytotoxicity as LHRH-
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Figure 10. Theranostic application of uPAR-targeted IONPs. (A) Schematic representation of optical-
MRI imaging trackable Dox-loaded ATF-IONPs [238,239]. The near infrared (NIR)-830 dye was
conjugated to the targeting moiety, ATF (PDB accession number: 1URK), for optical imaging. Incor-
porating multiple imaging modalities on the same nanocarrier system provides a valuable way to
validate and track the IONPs and, therefore, better investigate tumor targeting and biodistribution
of nanoconstructs in animal models. (B) In vivo, these theranostic-targeted nanoparticles allowed
for real-time and non-invasive MRI and NIR-optical imaging assessment of targeted drug delivery
and distribution, tumor response to treatment, and detection of small drug-resistant residual tumors
in orthotopic human pancreatic (shown in 2, reproduced from [238] under the Creative Commons
Attribution (CC BY-NC) License) and breast cancer xenograft models, thus supporting the translation
potential of these agents for image-guided therapy of cancer. Created with BioRender.com.

Dual-targeted strategies based on the simultaneous targeting of two tumor-selective
targets or combinatorial antitumor therapy offer another appealing way to synergistically
amplify the therapeutic response while minimizing the occurrence of drug resistance.
In this context, Ahmed et al., recently reported, for the first time, the development of
MRI-trackable dual-targeted IONPs to selectively and preferentially deliver the chemother-
apeutic paclitaxel (PTX) to prostate cancer cells, taking advantage of the simultaneous
overexpression of uPAR and the luteinizing hormone-releasing hormone receptor (LHRH-
R) in this cancer type [243]. The IONPs were conjugated to the receptor’s targeting peptides,
AE105 for uPAR, and a modified LHRH peptide for the LHRH-R. These LHRH-AE105-
IONPs were efficiently internalized and accumulated in the treated cancer cells compared
to normal prostate epithelial cells, as visualized by MRI imaging [243]. Accordingly, LHRH-
AE105-IONPs-PTX showed enhanced cell killing capability versus the single-receptor-
targeting IONPs-PTX (2-fold), non-targeted IONPs-PTX, and free PTX (3-fold). Moreover,
the concentration of free PTX required to attain similar cytotoxicity as LHRH-AE105-IONPs-
PTX IONP was 10 times higher [243]. These findings further confirm the significance of
dual-targeted delivery as a powerful method to improve standard drug dosage and thus
the quality of life of cancer patients.

To overcome the challenges associated with Dox chemotherapy, uPAR-targeted dual
drugs co-encapsulated nanoparticles (NPs), carrying Dox and curcumin (CUR), were
constructed to treat lung cancer, using the uPAR-targeting peptide U11 [244,245]. The
in vitro and in vivo antitumor effects of these U11-DOX/CUR NPs ware evaluated in
DOX-resistant human lung cancer cells (A549/ADR) and corresponding cell line-derived
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xenograft mouse models. Both U11-DOX/CUR- and untargeted-NPs had more synergis-
tic cytotoxicity in vitro, enhanced tumor distribution, anticancer efficacy, and tolerability
in vivo than the free drugs alone and their combination [244], suggesting the efficiency of
NP-mediated drug delivery. However, the U11-DOX/CUR-NPs exhibited higher intratu-
moral accumulation (at 72 h post-injection) and cytotoxicity than the non-U11 decorated
counterparts and single-drug loaded NPs. Combined, the results from these studies un-
derline that the targeting effect of uPAR can significantly affect the NP distribution by
increasing intracellular and thus total tumor uptake to a greater extent than the sole passive
delivery due to the enhanced permeability and retention effect (EPR) effect. The present
work also suggests that combination therapy via targeted nanocarriers may provide a
superior therapeutic outcome to the current drug cocktail therapies.

Importantly, the use of uPAR-binding peptides as targeting moieties may prevent some
of the shortcomings associated with ATF (e.g., undesirable agonist effects on vitronectin
mediated cell adhesion and lamellipodia formation, as well as inherent protein-related
drawbacks), as also suggested by Hansen et al. [246]. Recently, AE147 peptide-conjugated
PEGylated liposomes carrying docetaxel (DTX) and linked to the fluorescent dye chlorin
e6 (Ce6) were developed as a theranostic nanoplatform to treat uPAR-overexpressing
metastatic tumors, with promising results [247].

uPAR-targeted theranostic NPs have also been developed to selectively deliver pho-
totherapeutic agents to tumor sites, with a few valuable examples reported in the liter-
ature [248] and reviewed [19]. In this context, a relevant example is provided by uPAR-
targeted indocyanine green-modified gold nanoshells, which were designed as dual-imaging
(computed tomography, CT, and NIR imaging) and photothermal agents for local treatment
of deep-buried pancreatic tumors [249]. After a single treatment, these agents could effec-
tively ablate orthotopic pancreatic tumors, inhibit metastasis, and prolong survival, with
no apparent toxicity, in comparison to the clinical radiotherapy intervention, iodine-125
(125I) interstitial brachytherapy (IBT-125-I), thus exhibiting great translational potential for
effective and safe therapy of unresectable and metastatic pancreatic cancer patients [249].

Overall, the present data, although circumstantial, emphasize the feasibility of devel-
oping multifunctional biocompatible uPAR-targeted nanoparticles as theranostic agents
for combined diagnosis and image-guided therapy of uPAR-overexpressing primary and
metastatic tumor lesions. Further studies on the biodistribution, pharmacokinetic/pharma-
codynamic, and toxicity profile of these agents in vivo will provide essential information
for their potential translation into the clinics.

Table 4. uPAR-targeted nanoparticles and theranostic approaches.

Nanoparticle
Composition

Cytotoxic
Payload

Drug Release
Mechanism

Imaging
Modalities Application Model System Ref.

Amphiphilic
polymer-coated

ATF-PEG-IONPs
Dox pH-sensitive MRI Preclinical Human breast cancer cells [237]

Amphiphilic
polymer-coated NIR-
830-ATF-PEG-IONPs

Dox pH-sensitive MRI and NIR Preclinical
Orthotopic human breast
and pancreatic xenograft

mouse models
[238]

Amphiphilic
polymer-coated

ATF-IONPs
Gem pH- and lysosomal

enzyme-dependent MRI Preclinical

Human pancreatic cancer
cells; orthotopic human

pancreatic xenograft
mouse model

[236]

Amphiphilic
polymer-coated NIR-
830-ATF-PEG-IONPs

Dox; Cis pH-sensitive MRI and NIR Preclinical

Mouse pancreatic cancer
cells; subcutaneous and

orthotopic human
pancreatic xenograft

mouse models;

[239]

Amphiphilic
polymer-coated

Cy5.5-ATF-IONPs
Nos pH-sensitive MRI and NIR Preclinical Human prostate cancer

cells [241]
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Table 4. Cont.

Nanoparticle
Composition

Cytotoxic
Payload

Drug Release
Mechanism

Imaging
Modalities Application Model System Ref.

Amphiphilic
polymer-coated

LHRH-AE105-IONPs
PTX pH-sensitive MRI Preclinical Human prostate cancer

cells [243]

Dual drugs
co-encapsulated

U11-NPs
Dox and Cur pH-sensitive / Preclinical

Human lung cancer cells;
human lung xenograft

mouse model
[219]

AE147-PEG-Lipo DTX n/s FI Preclinical
Human breast cancer cells;
human breast xenograft

mouse model
[247]

Abbreviations: PEG, polyethylene glycol; IONPs, iron oxide nanoparticles; MRI, magnetic resonance imaging; NIR, near infrared; LHRH,
luteinizing hormone-releasing hormone receptor; Lipo, liposomes; FI, fluorescence imaging.

3.4. uPAR: A Novel Target for Cancer Immuno- and Virotherapy

Cancer immunotherapy has now decisively emerged as a novel pillar of cancer care, prov-
ing the power of engaging or modulating the immune system in the fight against cancer [250].
Besides therapeutic antibodies, such as ADCs, described before, immune-checkpoint blockade
and adoptive cell therapy via CAR T-cells have been a breakthrough in the treatment of several
malignant tumors, achieving notable clinical success in recent years [250].

Wang et al. were the first to explore uPAR as a candidate target for CAR T-cells therapy
in ovarian cancer [251] (Table 5). They constructed third-generation anti-uPAR CARs
incorporating ATF as the antigen-binding domain in place of the usual antibody-derived
single-chain variable fragment (scFv) to obtain shorter CAR frameworks with potentially
reduced immunogenicity, a common hurdle for this line of therapy [252,253] (Figure 11a,c).
The resulting ATF-CAR T-cells exhibited dose- and receptor-dependent specific cytotoxicity
against the uPAR-positive cancer cells compared with the untransduced control T-cells
(CT) [251]. Accordingly, cytokine and granzyme release was remarkably higher in the
CAR T- versus the CT- treated group; no statistical difference was observed between CAR
T- and CT-treated groups of receptor-deficient cells, thus confirming the specificity and
efficiency of CAR T-cells. This promising report laid the groundwork for a subsequent
study investigating the use of ATF-CAR T cells to treat senescence-associated disorders
(including cancer) where uPAR is broadly expressed [254]. In vivo, treatment with such
targeted CAR T-cells significantly improved the survival of mice harboring orthotopic
lung adenocarcinomas and strikingly reduced liver fibrosis of different etiologies without
eliciting detectable toxicity at the dosage used [254]. Collectively, these data provide proof
of principle of a potentially broad therapeutic value of uPAR-targeted CAR T therapy in
receptor-positive diseases, including various chronic pathologies, besides cancer. Future
research will establish whether this approach has the required safety profile to be developed
clinically as a cancer treatment or implemented in a combinatorial strategy.

uPAR targeting has also been explored for inducing selective immune-mediated
clearance of uPAR-positive cancer cells via antibody-recruiting small molecules (ARMs)
(Table 5). These synthetic agents consist of covalently linked bifunctional constructs com-
prising a tumor binding module (TBM), interacting with overexpressed cancer-specific
biomarkers, and an antibody binding module (ABM), a hapten able to bind endogenous
antibodies. By virtue of this design, ARMs have the ability to prime and direct downstream
antibody-dependent effector mechanisms, including antibody-dependent cellular phago-
cytosis (ADCP) and cytotoxicity (ADCC), and complement-mediated cytotoxicity (CDP),
toward the target-expressing cancer cells that are not efficiently recognized by the immune
system on its own [255] (Figure 11b,c).

After a first generation ARM-U1 compound, containing uPA itself as the TBM [256],
the authors synthesized a second-generation ARM, named ARM-U2, combining a restruc-
tured analog of IPR-803, a previously identified high-affinity uPAR inhibitor, as the TBM,
and a 2,4-dinitrophenol (DNP) moiety as the ABM, to exploit the naturally occurring anti-
DNP antibodies for cancer cell destruction [257]. In vitro, ARM-U2 induced concentration-
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dependent ADCP of uPAR-expressing A172 glioblastoma cells by IFN γ-activated U937
effector cells (Emax ~100 nM), as well as ADCC. In a subsequent in vivo study performed on
a B16-uPAR mouse allograft model, ARM-U2 suppressed tumor progression, showing com-
parable effectiveness to the standard-of-care agent Dox, but without the substantial weight
loss associated with this treatment, thus indicating an increase in selectivity and potentially
improved side-effect profile, conferred by the active uPAR-targeting [257]. This work under-
scores the exciting promise of combining this class of small molecule immunotherapeutics
with uPAR targeting to provide a potential novel treatment alternative to a broad range of
uPAR-expressing deadly malignancies, which warrants further validation.
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ATF CAR T-cells (upper) form a non-classical immune synapse (IS) with the target cancer cell, which mediates the T-cell 
cytolytic effector functions, including perforin and granzyme release, ultimately leading to selective tumor cell death [258]. 
The simultaneous binding of ARM-U2 to surface uPAR on the target cancer cell (by the TBM) and endogenous anti-DNP 
antibodies (recruited via the DNP moiety, ABM) results in the formation of a ternary complex, which can subsequently 
trigger selective immune-mediated cytotoxicity through different mechanisms. In the complement-mediated cytotoxicity, 
the C1q complement protein binds to the Fc part of the antibodies and activates the complement cascade, which culminates 
in the formation of the membrane attack complex (MAC) on the cancer cell surface and its lysis. Alternatively, the anti-
body’s Fc can also interact with the Fc-receptors expressed on the surface of various immune cells, such as macrophages 
or natural killer cells, followed by target cell phagocytosis (ADCP) or tumor-cell lysis via NK releasing potent oxidizing 
agents and protein toxins, such as granzyme and perforin (ADCC) [255]. Created with BioRender.com. 

Figure 11. Schematic structure and putative mechanism of action of uPAR-directed immunotherapy approaches. (a) Wang
et al. developed third-generation uPAR-targeted CAR T-cells using ATF as antigen recognition domain instead of the
usual antibody-derived single-chain variable fragment (scFv) [251]. Besides the CD3 ζ-signaling domain, third-generation
CARs incorporate endodomains from co-stimulatory molecules, in this case, CD28 and CD137 (also known as 4-1BB), to
deliver the additional signals necessary to fully activate the T-cell, physiologically provided by the antigen-presenting
cells (APC) [258]. (b) ARM-U2 is a uPAR-targeted antibody-recruiting small molecule comprising a derivative of the
high-affinity uPAR inhibitor IPR-803 (bottom box), functioning as the target-binding molecule (TBM, shown in red), and a
2,4-dinitrophenol (DNP) moiety as the antibody-binding domain (ABM, depicted in blue). (c) Putative action mechanisms
of ATF-CAR T cells (upper) and ARM-U2 (bottom). Upon uPAR-recognition and binding, mediated by the ATF domain,
ATF CAR T-cells (upper) form a non-classical immune synapse (IS) with the target cancer cell, which mediates the T-cell
cytolytic effector functions, including perforin and granzyme release, ultimately leading to selective tumor cell death [258].
The simultaneous binding of ARM-U2 to surface uPAR on the target cancer cell (by the TBM) and endogenous anti-DNP
antibodies (recruited via the DNP moiety, ABM) results in the formation of a ternary complex, which can subsequently
trigger selective immune-mediated cytotoxicity through different mechanisms. In the complement-mediated cytotoxicity,
the C1q complement protein binds to the Fc part of the antibodies and activates the complement cascade, which culminates
in the formation of the membrane attack complex (MAC) on the cancer cell surface and its lysis. Alternatively, the antibody’s
Fc can also interact with the Fc-receptors expressed on the surface of various immune cells, such as macrophages or natural
killer cells, followed by target cell phagocytosis (ADCP) or tumor-cell lysis via NK releasing potent oxidizing agents and
protein toxins, such as granzyme and perforin (ADCC) [255]. Created with BioRender.com.
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In addition to cancer immunotherapy, oncolytic virotherapy (OV) is another excit-
ing fast-advancing field, which has exponentially gained interest over the last decade as
evidenced by the growing number of viral platforms undergoing late-stage clinical trials
and one FDA-approved OV in the USA [259]. The multifaceted mechanism of action of
these agents, combining direct oncolysis and indirect activation of host anti-tumor immu-
nity, can turn “cold” tumors (lacking tumor infiltrate) into “hot” by lifting the numerous
immunosuppressive and physical barriers existing in the solid TME. The exceptional abil-
ity to modulate the TME renders OVs ideal combinatorial agents for improving tumor
penetration and therapeutic outcome of immune and standard-of-care therapies in solid
malignancies, as shown by the promising preclinical and clinical results attained by such
combinatorial interventions [259,260]. In this context, the direct targeting of specific stromal
components is one of the strategies being explored, with uPAR representing one of the
emerging targets due to its abundant and ubiquitous expression in the tumor stroma of
most cancer types [2].

Jing Y et al. were the first to investigate the feasibility of this approach. This group
developed novel oncolytic measles viruses (MVs) fully retargeted against human (MV-
h-uPA) or murine (MV-m-uPA) uPAR [261] (Table 5). The constructs were generated by
displaying the ATF of human and murine uPA at the COOH terminus of a mutant MV-H
glycoprotein (HAALS) that lacks the ability to bind its endogenous receptors, CD46 [261].

The availability of such species-specific platforms allowed the assessment of the OV
therapeutic potential, the contribution of the stromal targeting to their anticancer activity,
and, importantly, the relative pharmacokinetic/pharmacodynamic profile in immunocom-
petent syngeneic mouse models, which is typically an obstacle to the clinical development
of oncolytic MVs as they cannot replicate in murine cells [261]. In vitro, MV-h-uPA and MV-
m-uPA efficiently infected, replicated, and induced cytotoxicity in uPAR-expressing tumor
and stromal cells, respectively, cancer-associated fibroblasts (CAFs) and endothelial cells,
compared to the normal counterparts, in a receptor- and species-specific manner [261–263].
Successful species-specific fibroblast to tumor cell viral transfer was also observed [264].
Accordingly, murine CAFs infection by MV-m-uPA inhibited paracrine growth of co-
cultured virus insensitive human cancer cells, which was instead stimulated by uninfected
CAFs [262].

In vivo, systemic administration of both agents confirmed effective tumor targeting
and led to significant cancer growth delay and prolonged survival in primary or metastatic,
xenograft (MV-h-uPA), and syngeneic cancer models (MV-m-uPA), without any treatment-
related toxicities or deaths [261–263]. The human xenograft mouse model used (where
human cancer cells were MV-m-uPA resistant and MV-h-uPA sensitive, and vice versa, the
murine stromal cells) consistently validated both MV-m-uPA direct stromal targeting and
associated antitumoral effects observed in vitro [262]. Correlative studies investigating the
underlying mechanisms showed that besides improved viral tumor entry and delivery to
adjacent cancer cells, and increased tumor cell apoptosis, viral stromal targeting induced
a significant modulation of in vivo tumor-stromal interactions. Notably, while treatment
with MV-h-uPA showed superior tumor control effects to MV-m-uPA, the combination of
both MV-h-uPA and MV-m-uPA outperformed monotherapy [262].

Similar results were obtained in a recent follow-up study by the same group, where
dual-targeted oncolytic MVs able to bind murine stromal (via murine uPAR) and human
cancer (via CD46) cells were engineered and shown to successfully infect and lyse the
target cells in a species-specific fashion, both in vitro and in vivo, in colon (HT-29) cancer
xenografts, leading to improved tumor suppression and overall survival compared to
vehicle CD46-only targeted MVs [264] (Table 5, Figure 12).

In addition to validating uPAR as a biologically relevant target for oncolytic therapy,
and stromal targeting, these encouraging results signify the advantages of targeting the
tumor stroma for therapeutic gain in combinatorial regimens and uPAR-targeted oncolytic
virus as viable anti-tumor and stromal agents, thus supporting their further preclinical
and clinical development. While novel uPAR-targeted OVs continue to be developed [264],
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open questions for future research remain, such as the OVs’ exact mechanism of action or
effects on other relevant pro-cancer uPAR-positive stromal cells such as TAMs, one of the
prominent tumor-promoting stromal cells. Elucidating these aspects will be essential to
optimizing the therapeutic potential of these powerful agents, which may benefit future
cancer patient management.
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Figure 12. Schematic structure and in vivo antitumor effects of dual stromal and tumor-targeted oncolytic MV-CD46-muPA.
(a) MV-CD46-muPA was generated by displaying the ATF of murine uPA as a C-terminal extension of unmodified MV-H
glycoprotein (highlighted in the MV genome and structure) to allow simultaneous binding and infection of human cancer
cells via the MV receptor CD46 and murine cells via murine uPAR. (b) The contribution of stromal and tumor targeting
on MV’s overall anticancer efficacy in vivo was evaluated in human colon cancer xenograft mouse models, comprising
CD46+ human cancer cells and uPAR+ murine stromal cells [264]. Systemically administered oncolytic MV-CD46-muPA
led to improved antitumor effects and outcomes compared to vehicle or CD46 only targeted MVs. These effects resulted
from the mouse uPAR-mediated stromal targeting ability of MV-CD46-muPA, lacking in the monospecific counterpart, and
were associated with increased tumor viral penetration (via stromal-tumor viral transfer), apoptosis, decrease in murine
stromal CAFs and endothelial cells (ECs), and viral-induced modulation of tumor-stroma interactions [264]. Created with
BioRender.com.

Table 5. uPAR-targeted immune- and virotherapy anti-cancer approaches.

Approach Application Model System Ref.

ATF-CAR T cells Preclinical Ovarian cancer cells [251]

ARM-U2 Preclinical Glioblastoma cells;
mouse melanoma allograft model [257]

Oncolytic MV-m-uPA,
MV-h-uPA Preclinical

Murine and human colon and breast cancer cells, CAFs.
HUVECs and murine EC; breast and colon cancer

xenograft models
[261–263,265]

Dual-targeted oncolytic
MV-CD46-muPA Preclinical CD46-positive colon tumor cells, murine

uPAR-expressing CAFs; human colon tumor xenograft; [264]

Abbreviations: CAR, chimeric antigen receptor; ARM, antibody-recruiting small molecule; MV, measles viruses; m, mouse; h, human; CAF,
cancer associated fibroblasts; HUVECs, human umbilical vein endothelial cells; EC, endothelial cells.
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4. Conclusions, Challenges, and Future Perspectives

Research performed over the past three decades has demonstrated the enormous
potential of targeting uPAR for cancer treatment. Delivering a cytotoxic insult to uPAR-
expressing cancer cells is becoming a viable option that may lead to a superior antitumor
effect (tumor eradication) compared to the receptor function inhibition (slow tumor growth),
the first avenue pursued in the field of uPAR targeting.

Although anti-uPAR therapeutic agents are yet to enter the clinics, uPAR offers multi-
ple opportunities for targeted therapy that might be beneficial in cancer and, potentially,
other human diseases, especially those with a paucity of molecular targets. However, the
complexity of tumors renders it arduous to find a univocal solution to target all types of
diseases involving uPAR as for most, if not all, cancer targets. Another existing challenge is
designing and selecting appropriate preclinical animal models that account for the species
specificity of the uPAR targeting agents, most of which recognize human but not mouse
uPAR, thus complicating the interpretation of therapeutic efficacy and safety profile of the
intervention strategies targeting this receptor. Indeed, the baseline expression of uPAR in
healthy organs such as the lungs and kidney raises concerns about potential “on-target
off-tumor” toxicity that may prevent the clinical application of such therapies. Strategies
such as bispecific targeting of uPAR and other cancer targets or interaction partners or
combinatorial therapy involving distinct anticancer approaches are increasingly being
investigated and renew hopes to tackle these issues and optimize the therapeutic profile of
uPAR-directed and targeted anticancer agents, in general. Accordingly, the potential of stro-
mal targeting conferred by uPAR may further boost the antitumor activity in stroma-rich
tumors. More exhaustive preclinical and, especially, clinical investigations in the future will
establish the true efficacy of uPAR-targeted therapy and definitively validate the targetabil-
ity of uPAR in human cancer patients. The availability of clinically tested uPAR-imaging
agents will help speed up this process while favoring the implementation of theranostics
that may improve and tailor the management of uPAR-positive cancer patients.
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