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Abstract: Cancer stem cells (CSCs) are a class of pluripotent cells that have been observed in most
types of cancers. Evolving evidence suggests that CSCs, has the ability to self-renew and initiate
tumors, may be responsible for promoting therapeutic resistance, tumor recurrence and metastasis.
Tumor heterogeneity is originating from CSCs and its progenitors are recognized as major difficulty in
efficaciously treating cancer patients. Therefore, understanding the biological mechanisms by which
CSCs survive chemo- and-radiation therapy has the potential to identify new therapeutic strategies
in the future. In this review, we summarized recent advances in CSC biology and their environment,
and discuss about the potential therapies to prevent therapeutic resistance.
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1. Introduction

Stem cells are a small number of pluripotent cells in tissue that can either mitotically divide
to self-renew and produce more stem cells or differentiate into mature cells of a particular tissue.
There are two types of stem cells-embryonic stem cells (ESC) and adult stem cells. ESC is obtained from
a 3–5 day-old blastocyst, and is capable of giving rise to any type of organ in the body [1]. Adult stem
cells are restricted to a specific tissue and have the ability to self-renewal and produce mature cells
under highly controlled microenvironment [2]. Adult stem cells have two characteristic features. First,
they can self-replicate for long periods of time. Second, they give can rise to mature cell types that have
characteristic morphologies (shapes) and specialized functions. Normally, adult stem cells generate an
intermediate cell called a precursor cell. Precursor cells are usually regarded as tissue-specific stem cells
that are committed to differentiate along a particular cellular development pathway [3]. Until recently,
it was believed that adult stem cells could create only similar types of cells. For instance, it was thought
that stem cells residing in the bone marrow could give rise only to blood cells. However, new data
suggests that adult stem cells are able to create unrelated types of cells. For instance, bone marrow stem
cells may be able to create muscle cells or β islet cells [4,5]. Their primary functions are to maintain the
steady-state functioning of a cell—called homeostasis—and, with limitations, to replace cells that die
because of injury or disease.

2. Key Features of Normal and Cancer Stem Cells

There is evidence to show both normal stem cells (NSCs) and cancer stem cells (CSCs) have
many similarities, including migratory, self-renewal, slow cycling and differentiation properties [6].
Both NSCs and CSCs have the capacity for asymmetric division for self-renewal, which produces stem
cells and progenitor cells, which play a major role in tissue repair or cancer. They both use similar
signaling pathways (Wnt, Notch, Sonic Hedgehog, etc.) for self-renewal [7,8]. In both, life span is
extended by telomeres and telomerase activity [9], and they can be identified based on cell-surface
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markers [10]. Both NSCs and CSCs escapes immune surveillance by reducing the expression of M1
macrophage inhibitors CD200 and CD44 blocking macrophage M2 polarization and phagocytic activity.
In addition, tumor microenvironment (TME), like IL4, IL-6, IL-10, TGF-β, paralyzing the immune
responses [11]. Some of the differences between NSCs and CSCs are: NSCs have extensive self-renewal
capacity, highly regulated self-renewal and differentiation, normal karyotype, quiescent, and can
generate normal progeny with limited proliferative potential. CSCs have indefinite self-renewal
capacity, highly dysregulated self-renewal and differentiation, abnormal karyotype [12,13], mitotically
less active than other cancer cells and have the capacity to produce phenotypically diverse progeny.
CSCs are highly resistant to lack of oxygen compared to NSCs [14]. NSCs use oxidative phosphorylation
(OXPHOS) as a primary source of energy, whereas glycolysis as a main source of energy [15,16]. One of
the major differences between NSCs and CSCs is their degree of dependence on the stem cell niche.
NSC is supported by niche to maintain homeostasis, whereas, CSCs play a major role in deregulation
of the niche by promoting invasion and metastasis [17,18] (Table 1).

Table 1. Distinguishing Characteristics of Normal and Cancer stem cells.

Normal Stem Cells (NSCs) Cancer Stem Cells (CSCs)

Tightly regulated self-renewal capacity Highly dysregulated self-renewal capacity

Generates normal progeny Phenotypically diverse progeny

Normal Karyotype Abnormal Karyotype

Relatively long telomeres Short telomeres

Oxidative phosphorylation Glycolysis

Normal oxygen through blood vessels Highly resistant to lack of oxygen

Niche modifies local environment for immune
protection of NSCs.

Niche modifies local environment for immune
protection of CSCs

Niche maintains homeostasis Deregulated niche promotes invasion and metastasis

3. Identification of Cancer Stem Cells

Proportion of CSCs is low compared to total mass of the tumor(s), cell-surface markers have
proven useful for isolation and enriching CSCs from different cancers (Table 2). For the first time,
it was shown CD34+CD38− stem cells initiated human myeloid leukemia after transplantation into
SCID mice [19]. Breast cancer stem cells identified by CD44+CD24− cells formed tumors into Nod/Scid
mice [20]. CD44 is a transmembrane glycoprotein on the surface of endothelial cells and leukocytes,
which binds to extracellular matrix and activates EGFR and ErbB2 and enhances cell migration and
differentiation [21,22]. CSC cell surface marker CD44 is used as a diagnostic marker for identification in
breast, head and neck, prostate, lung, hepatocellular, pancreatic and squamous-cell carcinoma [23,24].
CD133 (Prominin-1) was originally described as a CSC marker for glioblastoma [25]. Moreover,
glioblastoma tumors in vivo have shown that only the CD133+ cells had the ability to maintain
tumorigenesis and generate heterogeneity [26]. In several cancers, including breast cancer, CD44 and
CD24 cell surface markers have been used to isolate CSCs; however, they should not be regarded
as universal markers. A number of studies have shown that CSCs were found in both the CD44+

CD24− and CD44+CD24+ fractions [27]. A similar story holds true for colorectal cancer in which the
EpCAMhiCD44+ CSC subpopulation shared small overlap with CD133 [28]. However, in pancreatic
cancer, where overlap between the CD133+ and CD44+CD24+ populations varied significantly between
specimens [29]. One of the reasons for limited overlap between the phenotypes of CSCs isolated from
same tumor may be because of the presence of multiple CSC pools or variations arising from different
isolation techniques. In addition, stringent assays to prove self-renewing activity was not applied in
some cases. Identifying CSCs by using the expression of markers is the most popular method today,
hence researchers are trying to identify specific markers for CSCs.
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Table 2. CSCs markers in different cancers.

Type of Tumor Cancer Stem Cell Markers

Acute Myeloid Leukemia CD34+, CD38+

Breast CD44+, CD24−, ALDH1high, CD133+

Colorectal CD133+, CD44+, EpCAMhigh, ALDH1high

Glioblastoma CD133+

Head and neck CD44+, CD24+, ALDH1high, CD271

Liver CD44+, CD90+, CD133+, ALDH1high

Lung CD44+, CD90+, CD133+, ALDH1high

Ovarian CD44+, CD117+, CD133+

Skin CD20+, CD271+

Melanoma CD133+, ABCB5+, ALDH1high

Pancreatic CD44+, CD24+, ESA+, CD133+

Prostate CD133+, CD44+, ALDH1high

4. Immunological Characteristics of Cancer Stem Cells

CSCs have been shown to have immunosuppressive effects like stem cells [30,31]. Previous study
of normal mesenchymal, haemopoietic stem cells was shown to interfere with T cell functions by
impairing IFN-γ production or by releasing large amounts of IL-10 [32,33]. Secretion of interleukins
(IL), such as IL-4, IL-10, IL-13, and TGF-β by CSCs was shown to have immunosuppressive effects
on T cells, antigen-presenting cells, and natural killer (NK) cells [34]. In the aggressive melanoma
cell line A375, it was shown that the immunogenic tumor-associated antigen, melanoma antigen
recognized by T cells (MART-1) was expressed on differentiated melanoma cells, but not on malignant
melanoma initiating cells (MMICs). Therefore, MART-1 specific T cells cannot eliminate MMICs [35].
Similarly, CD44high/CD24low breast CSCs selectively escape from NK cell mediated killing and
trastuzumab-dependent ADCC [36]. The expression of major histocompatibility complex I (MHC I)
is often lower on the surface, and CSCs are more likely to be susceptible to NK cell-mediated
cytotoxicity. However, in brain and breast cancers, CSCs often have a deficiency in NK-activating
ligands, like NKG2D [37]. In addition, breast CSCs and glioblastoma stem cells secrete more
TGF-β as compared to normal tumor cells [38,39]. Colon CSCs secrete higher levels of interleukin
4, which promotes drug resistance and inhibits anti-tumor immune responses [38,40]. This data
suggests both NSCs and CSCs has the ability to regulate diverse membrane-bound and soluble factors,
which enable these cells to modulate immune responses and protect them against immune-mediated
destruction. The question whether or not CSCs are capable of seeding tumors depends on their ability
to escape the immune system. However, most of the studies were done in mouse models lacking
functional T, B, and NK cells, such as the NSG mice [41,42]. While studies are done in a completely
immunodeficient animal model, however, for translational research, this model may not be ideal,
as human subjects are immune-competent. The role of CSCs in tumor progression and tumor immune
escape is best tested in models possessing a functional immune system.

5. Cancer Stem Cell’s Niche

Niches are specialized microenvironments that regulate adult stem cells through cell-cell contacts
and secreted factors. Normal niches are comprised of fibroblastic cells, endothelial and perivascular
cells, extracellular matrix (ECM) components, immune cells, network of cytokines and growth
factors [43]. Niches are a physical anchoring site for stem cells [17]. The niche maintains stem cells
primarily in a quiescent state by providing signals that inhibit cell proliferation and growth as shown
by stem cell’s ability to retain bromodeoxyuridine labeling for a relatively long period of time in the
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hematopoietic, intestinal and hair follicle system [44–46]. The relationship between CSCs and ECM
seems to be bidirectional in most cancers: the niche has the ability to alter the cellular fate of cancer
cells, and conversely; CSCs can alter their microenvironment [47–49]. Previous studies have shown
that CSCs and endothelial cells in the tumor microenvironment can transform normal fibroblasts into
cancer-associated fibroblasts (CAFs) [50]. CAFs stimulate stemness via activation of Wnt and Notch
pathways. Previous studies have shown that Wnt over expression and activation leads to leads to
expression of stem cell markers in epithelial cells [51,52]. Mesenchymal stem cells are multipotent
stromal cells that have been implicated in restoration of CSCs, as they secrete a variety of cytokines that
have both autocrine and paracrine functions in the tumor milieu. Mesenchymal stem cells can promote
cancer stemness through the NF-kB pathway by secreting CXCL12, interleukin-6(IL-6) and IL-8 [53].
To evade immune surveillance, the niche must immunosuppress the cytotoxic function and infiltration
of natural killer cells (NKs) and CD8+T cells. It was recently shown a sub-population of anti-tumor
CD103+ dendritic cells, which can efficiently stimulate CD8+T cells, is masked from tumor antigens
by other tolerating antigen-presenting myeloid cell populations [54]. Tumor-associated macrophages
secrete Transforming growth factor β (TFG-β), which recruits T regulatory cells that also participate
in immunosuppression [55]. Hypoxic CSCs impede CD8+T cell proliferation and activation and
inhibit immunosurveillance [56]. Hypoxia promotes CSC survival through the ROS-induced TGF-β
pathway. Activation of TGF-β as well as Wnt signaling pathways induces stemness by promoting an
undifferentiated state in tumor cells [57,58]. In addition, normal stem cell niches, anchoring stem cells
to the niche through cell-cell contacts, are critical for self-renewal. For example, Notch and Hedgehog
signaling pathways require cell-cell contact. Notch ligands are mostly transmembrane proteins,
particularly Jagged and Delta [59]. A bidirectional conversion between CSCs and non-CSCs can be
triggered by an inflammatory stroma, which is characterized by elevated NF-κB signaling, enhancing
Wnt activation, and inducing dedifferentiation of non-CSCs to CSCs [51]. Thus, the microenvironment
seems to be crucial to maintain the properties of CSCs, preserve their phenotypic plasticity, and protect
them from the immune system.

6. Metastatic Cancer Stem Cells

Metastatic cancer stem cells have the properties of cancer stem cells and ability to invade
leading to metastasis. Both CSCs and cancer cells have the ability to metastasizes [60]. Genome
sequencing studies suggest that primary tumors accumulate most of the mutations vital for metastasis,
showing similarity between metastatic CSCs and primary CSCs [61,62]. In breast cancer, previous
studies have shown CSCs identified by CD44 expression are involved in metastasis [54]. It was
also shown that cancer cells expressing stem cell markers detected in the blood of breast cancer
patients, when inoculated into immunodeficient mice, induced bone, liver, and lung metastasis [63].
In pancreatic cancer, only CD133+CXCR4+ cells, but not CD133+CXCR- cells, demonstrated metastatic
activity, even though both subsets have tumor-promoting capacity [29]. In colorectal cancers, metastasis
was mostly seen in CSCs that exhibited long-term self-renewing capacity [64]. Multiple circulating
CSCs home to the bone marrow and spawn metastases, suggesting that metastatic CSCs enter the
circulation. The metastatic CSC may have evolved from the primary tumor CSC or from a non-CSC
within the tumor by changes induced by niches, EMT changes, etc. [65]. Interestingly, dormancy
plays a major role tumor recurrence and metastatic spread after long lag periods in many cancers,
including breast, melanoma and leukemia [66–68]. Since dormant cells are proliferatively quiescent,
they survive chemotherapy, radiation therapy better than proliferating cells and the surviving cells
eventually regrowth. It is possible that restricted supplies of nutrients and oxygen due to poor
vascularization cause growth arrest and dormancy. Circulating metastatic cells co-express EMT and
stem cell markers [69]. Even though EMT enables migration, it interferes with proliferation and
metastatic growth [70]. Thus, metastatic cells that have undergone EMT may need to reacquire an
epithelial phenotype by mesenchymal-to-epithelial transition (MET) to seed and resume growth at a
metastatic site [71]. Little is known about entering and exiting dormancy at present, so better models are
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needed to understand dormancy. Some studies have shown multiple CSC pools exist within individual
tumors in ovarian, breast, and squamous-cell carcinomas. In these tumors, distinct CSC populations
regenerate the phenotypic and functional heterogeneity of the parental tumor (Figure 1) [27,72,73].
In primary colorectal cancers, three different types of tumor-initiating cells were identified from single
patient’s tumor. These tumor-initiating cells CSCs maintained tumor growth on serial transplantation,
CSCs that are dormant or has partial self-renewal capacity, are activated in secondary or tertiary
transplantation assays [64]. Tumor-initiating cells from PTEN-deficient glioblastoma, showed clonal
heterogeneity, in which a series of phenotypically distinct self-renewing cells was observed in both the
CD133+ and CD133− fractions [74]. In skin squamous cell carcinoma, two CSC subsets located along
the tumor-stromal interface displayed different growth kinetics and could interchange phenotypes [72].
The delineation of functionally distinct pools of CSCs requires cell-tracing studies in vivo in the future.
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Figure 1. Schematic Models of Tumor Heterogeneity: (A) Single CSC pool may be present within
the tumor. (B) Multiple distinct CSC pools with in individual tumors. (C) The CSC can be unstable,
resulting in phenotypic reversion of cell-surface markers and CSC phenotype.

7. Targeting Cancer Stem Cell

Generally, CSCs appear to be resistant to conventional cancer therapies such as chemotherapy and
radiation [42,75]. There is pre-clinical and clinical evidence to show CSCs are resistant to chemotherapy
in a number of solid tumors, including breast [42,76]. A number of different strategies are explored
to target CSCs, including self-renewal pathways, quiescence, CSC-specific cell surface molecules,
stem cell niche, etc. There are many therapeutic agents against CSCs and are actively being evaluated
in pre-clinical and clinical settings of various cancers [77]. Differentiation therapies that specifically
targeted CSCs by exploiting their ability to differentiate can be effective is some cases. This strategy
is successful in inducing cell-cycle progression in acute myeloid leukemia stem cells by G-CSF to
promote sensitivity to chemotherapy [68]. Similarly, mouse glioblastoma stem cells when treated with
BMP4 protein differentiates into Gila, resulting in reduced tumor growth, and tumor initiation capacity
of CSCs upon transplantation [78,79]. Tumor cell plasticity present is a challenge to develop CSC
targeted cancer therapies; a therapeutic eradication of CSCs might be followed by their regeneration
from non-CSCs within the tumor under treatment [80]. Targeted therapies against Wnt, Notch and
Hh pathways that frequently are deregulated in CSCs resulted in marked reduction in tumorigenic
potential [42,81–85]. It was shown that high expression of Hg ligands in stromal plays a major role
in the maintenance of CSCs and their niche. Notch pathway inhibition by a neutralizing antibody
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against the DLL4 ligand was effective in reducing CSC numbers in diverse solid xenograft tumors [86],
whereas inhibition of Notch-4 expression within the CSC largely ablated breast tumor growth [87].
Tumor microenvironment supports CSCs, thus targeting CSC niche factors that regulate plasticity
was shown to be effective in some tumors. Antibodies that abrogate the activation of c-Met by HGF
significantly inhibited xenograft growth of colon tumors [86]. Antibodies against the fibronectin
receptor α4β1 integrin reduced association of tumor cells with metastatic niches [88]. Targeting hypoxia
through HIF-1α and HIF-2α, which promote cell cycle via Myc, was a promising therapy for glioma
patients [89,90]. The biological activities of CSCs are regulated by several pluripotent transcription
factors, such as OCT4, Sox2, Nanog, KLF4, and MYC [91] and these factors have become targets for
cancer treatment [10]. Other therapeutic targets currently being pursued are MicroRNA Mir 34a that was
shown to suppress breast and prostate cancer CSCs and metastasis [92,93]. MicroRNA 199a was shown
to target CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating
cells CD44+/CD117+ [94]. In another study, miR145 was shown to inhibit CSCs by targeting Oct4 and
Sox2 in GBM-CD 133+ and facilitated their differentiation into CD133− non-CSCs [83].

8. Conclusions and Future Directions

An evolving consensus in the field is that under normal circumstances, normal stem cells (NSCs)
maintain a homeostasis and replenish the adult cells while deregulation of NSCs can give rise to
CSCs eventually leading to cancer and metastasis. The most studies show anti-CSC therapies to
date could reduce rather than eradicated solid tumors in preclinical models. In standard clinical
trials, tumor response criteria depend on measurements of tumor size, which largely reflects tumor
responses to chemo- or radiation therapy in the non-CSC bulk tumor. Specific response criteria
that provide a readout to anti-CSC agents in pre-clinical and clinical trials need to be standardized.
An effective cancer therapy can be achieved by targeting the CSCs and bulk of tumor and creating a
harsh microenvironment for the tumor cells to grow and metastasize.
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