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Abstract: Anaplastic lymphoma kinase (ALK) sequencing can identify resistance mechanisms and
guide next-line therapy in ALK+ non-small-cell lung cancer (NSCLC), but the clinical significance
of other rebiopsy findings remains unclear. We analysed all stage-IV ALK+ NSCLC patients with
longitudinally assessable TP53 status treated in our institutions (n = 62). Patients with TP53 mutations
at baseline (TP53mutbas, n = 23) had worse overall survival (OS) than patients with initially wild-type
tumours (TP53wtbas, n = 39, 44 vs. 62 months in median, p = 0.018). Within the generally favourable
TP53wtbas group, detection of TP53 mutations at progression defined a “converted” subgroup
(TP53mutconv, n = 9) with inferior OS, similar to that of TP53mutbas and shorter than that of patients
remaining TP53 wild-type (TP53wtprogr, 45 vs. 94 months, p = 0.043). Progression-free survival (PFS)
under treatment with tyrosine kinase inhibitors (TKI) for TP53mutconv was comparable to that of
TP53mutbas and also shorter than that of TP53wtprogr cases (5 and 8 vs. 13 months, p = 0.0039). Fewer
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TP53wtprogr than TP53mutbas or TP53mutconv cases presented with metastatic disease at diagnosis
(67% vs. 91% or 100%, p < 0.05). Thus, acquisition of TP53 mutations at progression is associated
with more aggressive disease, shorter TKI responses and inferior OS in ALK+ NSCLC, comparable to
primary TP53 mutated cases.

Keywords: anaplastic lymphoma kinase positive (ALK+) non-small cell lung cancer (NSCLC); tumor
protein p53 gene (TP53) mutation; tyrosine kinase inhibitor; progression-free survival; overall survival

1. Introduction

Anaplastic lymphoma kinase (ALK) gene fusions are driver genetic alterations in approximately
5% of non-small-cell lung cancers (NSCLC) [1]. A breakthrough in their treatment was the development
of several ALK tyrosine kinase inhibitors (TKI), which in sequential administration have pushed
median patient survival to over five years [2]. Analysis of TKI failure has therefore become a main
focus of research efforts, because its prediction, mechanistic dissection and individualized treatment is
of key importance for further therapeutic advances.

Recent studies combining state-of-the-art molecular profiling with detailed clinical annotation
have identified two molecular risk factors associated with TKI failure in ALK-driven NSCLC:
echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion variant V3 [3–5] and the presence
of tumor protein p53 gene (TP53) mutations at initial diagnosis [6–8]. They occur independent
from each other in about 30–40% and 20% of patients, respectively, have synergistic effects and
are both associated with shorter progression-free survival (PFS) after treatment with first- and
second-generation ALK TKI and with worse overall survival (OS) [8].

Furthermore, molecular workup of a follow-up tissue or liquid biopsy at the time of TKI failure
is gaining importance for the management of ALK+ NSCLC, since it can reveal patient-specific
resistance mechanisms and guide subsequent therapeutic decisions [9–11]. In particular, detection of
ALK resistance mutations can be useful for the selection of suitable next-line TKI based on in vitro
sensitivity data [12]. However, the clinical importance of other molecular findings in tumor rebiopsies
remains unclear.

Here, we examine the significance of TP53 mutations detected at the time of disease progression
in ALK+ NSCLC patients with TP53 wild-type status at initial diagnosis.

2. Results

ALK+ NSCLC patients with tumour TP53 mutations at baseline (TP53mutbas) had a worse
overall survival (OS) from the diagnosis of metastatic disease than patients with initially wild-type
TP53 tumours (TP53wtbas, 44 vs. 62 months in median, p = 0.0182, Figure 1A). Within the generally
favourable TP53wtbas patient group, detection of TP53 mutations in a subsequent tissue or liquid biopsy
performed at disease progression identified an unfavourable, TP53 “converted” patient subgroup
(TP53mutconv, Table 1) with OS comparable to that of TP53mutbas patients and shorter than that of
patients retaining TP53 wild-type status after progression (TP53wtprogr, 45 vs. 94 months in median,
p = 0.0343, Figure 1B). These comprised 23% (9/39) of initially TP53 wild-type (TP53wtbas) cases in our
cohort. The newly acquired TP53 mutations resided in exons 5–10 of TP53 (Supplementary Table S1),
i.e., in genetic regions that had already been tested as wild-type at initial diagnosis, because they
were included in the NGS panel of both methods used in this study. All of them were pathogenic
and resulted in loss-of-function (Supplementary Table S1). The time-to-next-treatment (TNT) for
patients treated with TKI after the reassessment of TP53 status, was significantly shorter for cases
with a positive (TP53mutconv) than for cases with a negative (TP53wtprogr) result (9 vs. 23 months in
median, p = 0.0013, Figure 2A). In addition, PFS under treatment with ALK TKI across treatment lines
for patients with secondary detection of TP53 mutations at progression (TP53mutconv) was comparable
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to that of patients with TP53 mutations at baseline (TP53mutbas), and also shorter than that of patients
retaining TP53 wild-type status (TP53wtprogr, 5 and 8 vs. 13 months in median, p = 0.0039, Figure 2B).
In contrast, there was no significant difference in the PFS under chemotherapy across treatment lines
between patients of the three groups according to TP53 status (7 and 5 vs. 8 months in median,
respectively, p = 0.60, Supplementary Figure S1).

Analysis of initial clinical presentation revealed that patients retaining TP53 wild-type status after
disease progression (TP53wtprogr) had featured a lower rate of metastatic disease at initial diagnosis
than patients with TP53 mutations either at baseline (TP53mutbas, 67% vs. 91%, p = 0.034, Table 1) or at
disease progression (TP53mutconv, 67% vs. 100%, p = 0.045, Table 1). The OS from initial diagnosis
was also similar between patients with TP53 mutations detected either at diagnosis (TP53mutbas) or at
disease progression (TP53mutconv) and worse than that of patients retaining TP53 wild-type status
(TP53wtprogr, 44 and 45 months in median vs. not reached, p = 0.0012, Supplementary Figure S2).
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Figure 1. Overall survival of patients with metastatic anaplastic lymphoma kinase-positive (ALK+)
non-small cell lung cancer (NSCLC) according to TP53 status at baseline and progression. (A) The
median overall survival (OS) was 44 months for patients with TP53 mutations at baseline (TP53mutbas)
vs. 62 months for patients without TP53 mutations at baseline (TP53wtbas logrank p = 0.0182). (B) The
median OS was 45 months for patients with initially wild-type status and detection of TP53 mutations
in a subsequent biopsy (TP53mutconv) vs. 94 months for patients without subsequent detection of
TP53 mutations (TP53wtprogr, logrank p = 0.0343). Treatment details are given in Table 1.
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Table 1. Patient characteristics and details of treatment.

All Study Patients (N = 62) TP53wtbas (n = 39)
TP53mutbas (n = 23)

TP53wtprogr (n = 30) TP53mutconv (n = 9)

Age (median; IQR) 51; 17 63; 20 65; 19

Sex (male/female) 15/16 5/4 12/11

ECOG PS at diagnosis of stage IV (median; IQR) 0; 0 0; 0 1; 0

Histology adenocarcinoma 1 29/30 9/9 23/23
ALK status positive all cases by inclusion criteria

EML4-ALK V3 2 8/24 5/9 8/20
Stage IV NSCLC at initial diagnosis 20/30 * 9/9 21/23

M1a 7/20 1/9 5/21
by relapse of M0 NSCLC 10/30 0/9 2/23

TP53 assessment at baseline + at progression 3

method FFPE at BL +FFPE at PD 4 8/30 (neg + neg) 2/9 (neg + pos)
See Table S1FFPE at BL +ctDNA at PD 11/30 (neg + neg) 7/9 (neg + pos)

FFPE at PD 4 6/30 (neg)
only ctDNA at PD 5/30 (neg)

TKI line (start) at 2nd assessment (median; IQR) 2; 1 2; 1
treatment line at 2nd assessment (median; IQR) 2; 3 4; 1
- days after diagnosis of stage IV (median; IQR) 702; 1056 752; 600

ALK TKI treatment, next-line

crizotinib 14 2
ceritinib 7 4
alectinib 6 1
brigatinib 2 -
- no. of patients 5 29/30 (97%) 7/9 (78%)
- no. of patients with CBDP 15/30 4/7

ALK TKI treatment, all lines (1–8)

crizotinib 23 9 19
ceritinib 12 9 5
alectinib 14 4 10
brigatinib 4 0 3
lorlatinib 3 1 1
- no. of patients 5,6 29/30 (97%) 9/9 (100%) 22/23 (96%)

Chemotherapy, all lines (1–8)

platin-doublets 15 8 7
monotherapy 6 4 6
- no. of patients 14/30 (47%) 8/9 (89%) 8/23 (35%)

Summary of the complete treatment

no. of treatment lines (mean; SD) 3.0; 1.5 4.0; 1.7 2.4; 1.6
no. of TKI treatment lines (mean; SD) 1.9; 1.2 2.6; 1.0 1.7; 1.1
patients with additional radiotherapy 18/30 (60%) 6/9 (67%) 12/21 (57%)
patients with additional surgical treatment 7 5/30 (17%) 1/9 (11%) 5/21 (24%)

Follow-up in months (median (25th–75th percentile)) 36 (28–94)

TP53wtbas: TP53 wild-type at baseline; TP53wtprogr: TP53 wild-type at baseline and after disease progression;
TP53mutconv: TP53 wild-type at baseline with detection of TP53 mutations at progression; TP53mutbas: TP53
mutated at baseline; IQR: interquartile range; neg: negative; SD: standard deviation; PS: performance status; BL:
baseline; PD: disease progression; no.: number; CBDP: continuation of treatment beyond disease progression due
to ongoing clinical benefit; * p < 0.05 compared to TP53mutconv and p < 0.05 compared to TP53mutbas. 1 1/30
TP53wtprogr patients had an EML4-ALK V2 (E20;A20)+ large-cell neuroendocrine lung carcinoma. 2 The ALK fusion
could be typed in 53/62 cases. 3 For 3/30 TP53wtprogr cases, TP53 wild-type status at progression was evaluated
by analysis of ctDNA samples obtained 24, 29 and 37 months later. 4 For 7/8 TP53wtprogr cases, also ctDNA at
PD (neg); for 5/6 TP53wtprogr cases, also ctDNA at PD (neg). 5 One TP53wtprogr patient received definitive local
treatment for oligometastatic disease and is still in remission without exposure to TKI; 2/9 TP53mutconv patients
did not receive next-line treatment after reassessment of TP53 status due to rapid clinical deterioration (they had
received TKI in previous lines). 6 One TP53mutbas patient has ongoing stable disease 18 months after first-line
chemotherapy without initiation of next-line treatment. 7 Excluding video-assisted thoracoscopy and pleurodesis
for pleural effusion.
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Figure 2. Progression-free survival (PFS) of patients with metastatic anaplastic lymphoma
kinase-positive (ALK+) non-small cell lung cancer (NSCLC) under treatment with tyrosine
kinase inhibitors (TKI) according to TP53 status at baseline and progression. (A) The median
time-to-next-treatment (TNT) under TKI for patients with initially wild-type TP53 tumours after
reassessment of TP53 status was 9 months for cases with a positive result (TP53mutconv) vs. 23
months for cases with negative result (TP53wtprogr, logrank p = 0.0013). Treatment details including
continuation of treatment beyond disease progression are given in Table 1. (B) The median PFS under
TKI treatment across all treatment lines was 8 months for patients with TP53 mutations at baseline
(TP53mutbas) vs. 5 months for patients with initially wild-type status and detection of TP53 mutations
in a subsequent biopsy (TP53mutconv) vs. 13 months for patients without subsequent detection of TP53
mutations (TP53wtprogr, logrank p = 0.0039); ns: not significant.

3. Discussion

The results presented here extend the findings of recent studies that demonstrated the major
clinical significance of baseline TP53 mutational status in ALK+ NSCLC [6–8] As in a previous report [8],
presence of TP53 mutations in our patients at initial diagnosis was associated with shorter PFS under
TKI (Figure 2B) and worse OS (Figure 1A), but did not apparently affect benefit from chemotherapy
(Supplementary Figure S1).

The main novel finding of this study is that secondary detection of TP53 mutations at disease
progression in patients with wild-type TP53 at baseline has a similar negative impact. Both PFS under
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TKI treatment and OS were shorter for initially wild-type patients with TP53 mutations detected later
in the course of the disease (TP53mutconv), when compared to patients retaining the TP53 wild-type
status (TP53wtther, Figures 2B and 1B, respectively). Thus, among the generally favourable group
of initially TP53 wild-type ALK+ tumours, acquisition of TP53 mutations identifies an unfavourable
subgroup with a clinical course similar to that of primarily TP53 mutated cases. Emergence of TP53
mutations at the time of disease progression was observed in 23% (9/39) of initially TP53 wild-type
patients in our cohort (Table 1). Of note, a similar percentage (20–24%) of metastatic ALK+ NSCLC
has been reported to harbor TP53 mutations at baseline in two recent series [7,8], which adds up to
TP53 mutations being detectable in approximately 40–50% of TKI-refractory ALK+ NSCLC patients,
as had already been noted in an earlier study [12]. It should also be mentioned here, that TP53
mutations are overrepresented among the baseline samples of the current study, because all cases with
detectable TP53 mutations at diagnosis were included, but several initially TP53 wild-type tumours
had to be excluded, because no TP53 reassessment was available. Acquisition of TP53 alterations with
disease progression has also been noted in various hematologic malignancies, like chronic lymphocytic
leukemia [13] and multiple myeloma [14], in which it is also associated with worse outcome.

The comparable prognostic and predictive role of TP53 mutations in TP53mutbas and TP53mutconv

ALK+ NSCLC suggest a similar adverse biology in these tumours, regardless of the time-point and
context of TP53 mutation detection. One possibility is that other, more basic and still unidentified
biologic alterations in TP53 mutated tumours might exert an even more important influence on clinical
course, and that these could be active already before TP53 mutations become detectable, which may
have implications for the ongoing efforts to target mutant TP53 with novel drugs [15]. At the same
time, it cannot be excluded that due to intratumour heterogeneity, a tumour might initially be tested
as TP53 wild-type on a TP53 wild-type region of the neoplasm, despite having a similar overall
TP53 mutation load as tumours with readily detectable TP53 mutations. Indeed, analysis of surgical
specimens has shown that TP53 sequencing results can be variable between different regions of the
same tumour [16,17].

A noninvasive strategy to overcome the impact of intratumour heterogeneity could be to
perform liquid biopsies (ctDNA assays) in addition to tissue biopsies in cases when a more accurate
determination of TP53 status is needed, e.g., for purposes of prospective molecular risk stratification.
The similarly adverse role of initially and subsequently detected TP53 mutations in our patients
(Figures 1 and 2), in combination with the predominance of ctDNA over tissue (i.e., FFPE DNA)
assays among TP53 assessments under therapy in our study (Table 1, including footnote 4, and
Supplementary Table S1) support the feasibility of this approach. Even though sensitivity of liquid
biopsies for the detection of mutations is lower than 100%, for example it was determined as 60–70%
regarding EGFR T790M in a recent study [18], we detected a TP53 mutation in the baseline ctDNA
sample of a patient with wild-type TP53 in the respective biopsy (Supplementary Table S1), but cannot
estimate the frequency of this constellation, because we lack baseline ctDNA samples for the majority
of our patients.

In summary, the results of this study extend the picture of adverse clinical outcome associated with
TP53 mutations in ALK+ NSCLC, and demonstrate the great potential of ctDNA assays for molecular
profiling and longitudinal monitoring in ALK+ NSCLC beyond detection of ALK resistance mutations.

4. Materials and Methods

This study included all patients treated at our institution for histologically confirmed, ALK-driven
NSCLC with TP53 status assessment at baseline and/or after disease progression after informed
consent and approval by the Heidelberg University ethics committee (S-296/2016). Characteristics of
study patients are summarized in Table 1. Biosamples were provided by BioMaterial Bank Heidelberg
(BMBH) in accordance with its regulations and after approval by the Heidelberg University ethics
committee. Clinical data were collected through a review of patient records and radiological images
with chest CT and brain MRI-based restaging every 6–12 weeks. PFS was evaluated according to
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RECIST v1.1 [19]. The presence of an ALK translocation was ascertained by positive results in at least
two of the following assays: ALK immunohistochemistry (D5F3 clone, Roche, Mannheim, Germany),
ALK fluorescent in situ hybridisation (ZytoLight SPEC ALK probe, ZytoVision, Bremerhaven, Germany)
and RNA-based next-generation sequencing (NGS, ThermoFisher Lung Cancer Fusion Panel, Waltham,
MA, USA), as published previously (details are given in the Supplements) [5,20,21]. TP53 status was
determined either on formalin-fixed paraffin-embedded (FFPE) tissue samples by DNA-based NGS
using a proprietary Lung Cancer Panel that covers the entire TP53 exons 4, 5, 6, 7, 8, 9, 10, as published
previously [8,21,22], and/or by plasma DNA genotyping using the AVENIO ctDNA Targeted kit that
covers the entire TP53 exons 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, according to the manufacturer’s instructions
(Roche, Mannheim, Germany; details are given in the Supplementary Files under supplementary
Methods S1–S4). Baseline TP53 status was either directly determined by analysis of tumour samples
obtained before treatment start in 51/62 cases or inferred as wild-type based on a negative TP53 result
in an assessment performed at the time of disease progression in the remaining cases (Table 1 and
Supplementary Table S1). TP53 status under therapy was determined by analysing tissue and/or
blood (ctDNA) samples obtained after disease progression (Table 1 and Supplementary Table S1).
Patients with detection of TP53 mutations at disease progression, but unknown baseline status, as well
as patients with wild-type baseline TP53 status without reassessment after progression, were excluded
from this analysis. In contrast, all patients with TP53 mutations at baseline were included. Survival
data were analysed according to Kaplan–Meier and compared between patient subgroups with the
logrank test. Median follow-up time was calculated by the reverse Kaplan–Meier method. Categorical
data were compared with the chi-square test. Statistical calculations were performed with SPSS version
24 (IBM, Armonk, NY, USA) and plots generated with GraphPad Prism version 7 (GraphPad Software,
La Jolla, CA, USA).

5. Conclusions

This study shows that detection of TP53 mutations in tissue of liquid rebiopsies at the time of
disease progression in previously negative patients is associated with more aggressive clinical course,
shorter TKI responses and inferior OS in ALK+ NSCLC, comparable to primary TP53 mutated cases.
These results extend the picture of adverse clinical outcome associated with TP53 mutations in ALK+

NSCLC, and demonstrate the great potential of ctDNA assays for molecular profiling and longitudinal
monitoring in ALK+ NSCLC beyond detection of ALK resistance mutations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/1/124/s1,
Figure S1: Progression-free survival of patients with metastatic ALK+ NSCLC under treatment with chemotherapy
according to TP53 status at baseline and under therapy; Figure S2: Overall survival of study patients from
initial diagnosis; Table S1: TP53 mutations of the study patients; Supplementary Method S1: RNA- and
DNA-next-generation sequencing (NGS); Method S2: RT-PCR; Method S3: fluorescence in situ hybridisation
(FISH); Method S4: ctDNA analysis.
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