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INTRODUCTION

Pharmacological, physical and cognitive treatments reduce pain by addressing all pain dimensions.
Nonetheless, drugs may be ineffective, and physical activity is not always viable. In contrast,
cognitive therapies have usually good outcomes, a wide range of applicability and no side effects.
Their efficacy, however, is influenced by cognitive and psychophysiological traits. In this Opinion
article hypnotizability is used as a model to support the view that specific psychophysiological traits
and cognitive strategies can not only reduce pain, but also modulate the pain-related autonomic
and immune activity, induce cortical plasticity relevant to pain control, and assist in the choice of
the most appropriate treatment.

Hypnotizability, or hypnotic susceptibility, is a multidimensional trait stable through life
(Piccione et al., 1989) and measured by validated scales (Elkins et al., 2015) classifying highly
(highs), medium (mediums), and low hypnotizable subjects (lows). It is associated with brain
morpho-functional peculiarities (Landry et al., 2017; Picerni et al., 2019) and displays correlates in
the sensorimotor (Ibáñez-Marcelo et al., 2019; Santarcangelo and Scattina, 2019), cardiovascular
(Jambrik et al., 2004a,b, 2005; Santarcangelo et al., 2012) and cognitive-emotional domain
(Diolaiuti et al., 2019). Both highs and lows represent about 15% of the population which consists
mainly of mediums (70%).

In healthy subjects the ability to control pain through suggestions for analgesia is linearly
correlated with hypnotizability scores (Fidanza et al., 2017). Hypnotic treatments, however, are
particularly important for patients with neuropathic and musculo-skeletal pain (Castel et al., 2007;
Carli et al., 2008; Jensen et al., 2009a,b; Jensen and Patterson, 2014), which are seldom responsive
to pharmacological treatments. They have been found more effective than any other psychological
intervention (Jensen et al., 2020), although high hypnotizability predicts better outcomes also in
patients, owing to the highs’ greater high proneness to modify their bodily condition according
to suggestions, and, thus, to relax (De Benedittis et al., 1994), to their peculiar imagery abilities
(Ibáñez-Marcelo et al., 2019), and to their attitude to be deeply absorbed in their ownmental images
(Vanhaudenhuyse et al., 2019).

SUGGESTIONS FOR ANALGESIA

The suggestions for analgesia are requests to imagine that the experienced pain is out of the body
or limited to a small part of it, or that a glove prevents one to perceive any nociceptive stimulation.

They are effective on acute/procedural, post-surgery and chronic pain (Jensen and Patterson,
2014; Facco, 2016) and, as most suggestions (Green and Lynn, 2011; Santarcangelo, 2014), can be
efficaciously administered in the ordinary state of consciousness, thus not necessarily following
the induction of the hypnotic state (Derbyshire et al., 2009; Paoletti et al., 2010; Santarcangelo
et al., 2012). In highs, suggestions-induced analgesia, which can be focused on the sensory and/or
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emotional dimension of pain, is not accompanied by release of
endogenous opiates, but is sustained by the modulation of the
activity and connectivity of the pain matrix (Faymonville et al.,
2006; Casiglia et al., 2020).

Interestingly, the suggestions for analgesia have been found
effective also in healthy mediums undergoing nociceptive
stimulation (Fidanza et al., 2017) and in chronic pain patients
independently from hypnotizability (Elkins et al., 2007; Jensen,
2011; Jensen and Patterson, 2014; Mazzola et al., 2017; Facco
et al., 2018; Sandvik et al., 2020). This can be accounted for
by expectation of/motivation to analgesia (Milling et al., 2005;
Krystek and Kumar, 2016; Montgomery et al., 2018; Perri et al.,
2020) leading to placebo responses (Benedetti, 2013) which can
reduce pain and pain-related psychological symptoms in the
general population (Liossi et al., 2006; Brugnoli, 2016; Wortzel
and Spiegel, 2017; Rousseaux et al., 2020). Thus, suggestions
may induce non opioid analgesia in highs, opioid placebo
responses in lows and, probably, mixed reactions in mediums.
It is particularly interesting, in this respect, that, during hypnotic
sessions, oxytocin – the hormone promoting social relationships
and acquiescent behavior - is released in the hypnotist and
the client and that, in the latter, the lower the hypnotizability
score the larger the OXT release. A further contribution to the
hypnotist-client relation could be the level of intimacy which
has been associated with the polymorphism of the serotonin
transporter 5-HTTLPR gene. Its variant associated with greater
efficiency is not significantly associated with hypnotizability but
may enhance the experience of “rapport” independently from
it (Katonai et al., 2017). In brief, suggested analgesia occurs in
the general population, although through different mechanisms
(Santarcangelo and Consoli, 2018). In addition, in contrast to
“constructive imagery” (inducing sensory experiences in the
absence of actual stimulations), obstructive suggestions such as
analgesia and anesthesia aimed at reducing the perception of
actual sensory stimulations can be experienced also by lows if
they report mental images as vivid as highs do (Santarcangelo
et al., 2010). Thus, in lows, imagery and placebo responses could
co-operate in the response to suggestions for analgesia.

NEUROTRANSMITTERS

In the absence of explicit suggestions for analgesia,
hypnotizability related differences in pain thresholds (Hilgard,
1967; Agargün et al., 1998; Santarcangelo et al., 2013; Kramer
et al., 2014) and perceived pain intensity (Santarcangelo
et al., 2010) have been seldom reported. Several studies,
however, describe hypnotizability-related differences in genetic
polymorphisms and brain neurotransmitters content which may
be relevant to pain control in the presence of suggestions and/or
to the choice of pain treatments. In fact:

a. highs display the variant of OPMR1 receptors (A118G,
rs1799971) characterized by low sensitivity to opiates, high
consumption of opioids for post-surgery and cancer pain and
low placebo responsiveness more frequently than lows, with
mediums displaying intermediate frequencies (Santarcangelo

and Consoli, 2018). Thus, opioid treatments are not the most
appropriate in highs.

b. the Fatty-Acids- Amino-Hydrolase (FAAH) C385A
polymorphism (rs324420) responsible for endocannabinoids
(eCBs) degradation is not significantly different between
hypnotizability groups but the polymorphism frequencies
indicate a trend to higher degradation efficiency from lows
to highs (Presciuttini et al., 2020). We may hypothesize that
small differences in the eCBs content could be amplified by
the eCBs interactions with nor-adrenegic (Scavone et al.,
2013) and dopaminergic pathways (Di Filippo et al., 2008).
Thus, a contribution of the FAAH polymorphism to the highs’
ability to control pain by suggestions for analgesia should not
be excluded.

c. oxytocin (OXT), which modulates the sensory and emotional
components of pain (Poisbeau et al., 2018), can contribute to
the highs’ suggestions induced analgesia through activation
of the endogenous opioid system and by regulating the eCBs
production (Russo et al., 2012). In fact, the polymorphism
of the OXT receptor gene associated with high sensitivity
(rs53576) is more frequent in highs than in the general
population (Bryant et al., 2013).

d. brain nitric oxide (NO) promotes the release of brain
dopamine and noradrenaline (Ghasemi et al., 2019), which
are involved in pain control. According to post-occlusion
flow mediated dilation (FMD), the endothelial NO release
at peripheral level is reduced in lows and in the general
population, but not in highs (Jambrik et al., 2004a,b; Jambrik
et al., 2005). If confirmed at brain level, a continuous release
of endothelial NO might amplify the availability of nor-
adrenaline and dopamine in highs.

AUTONOMIC AND IMMUNE ACTIVITY

The autonomic and immune activity are strictly related to each
other (Pavlov et al., 2018; Walters, 2018; Blake et al., 2019;
Elkhatib and Case, 2019; Iovino et al., 2020) in that the former
modulates the immune activity (Elenkov et al., 2000; Jänig, 2014;
Martelli et al., 2014) and the latter can regulate the function of
brain autonomic centers (Elsaafien et al., 2019).

The mechanisms controlling acute inflammation and the
associated pain are quite different from those controlling
chronic inflammation and chronic pain. In particular, the pro-
inflammatory cytokines produced in response to an acute body
lesion excite the central nervous system by the activation of vagal
afferents and, after penetration through the blood brain barrier,
of brain structures which, in turn, generate anti-inflammatory
responses. The networks involved in the inflammatory inhibition
are: (a) the parasympathetic circuit, limited to vagal afferents and
efferents; (b) the parasympathetic-neuroendocrine circuit, which
is responsible for the release of corticosteroids; (c) the cytokine-
vagal-sympathetic circuit, involving noradrenergic pathways and
adrenal epinephrine (Pavlov et al., 2018). In the latter circuit, the
mechanisms inhibiting acute inflammation and pain are distinct,
triggered by specific contextual/environmental stimuli in animals
and by psychological interventions in humans (Bassi et al., 2018).
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High hypnotizability is associated with pre-eminent
parasympathetic control of heart rate during relaxation in
the awake condition with respect to lows (Santarcangelo
et al., 2012), with a further shift toward parasympathetic
tone after hypnotic induction (De Benedittis et al., 1994),
and with greater proneness to reduce sympathetic activation
during suggestions of unpleasant experiences associated with
instructions for relaxation and well-being (Sebastiani et al.,
2007). In contrast, and at variance with cortical and somatic
correlates (Santarcangelo and Consoli, 2018), the findings
of hypnotizability-related reduction of sympathetic activity
associated with suggestion-induced analgesia in healthy
subjects are inconsistent (De Pascalis et al., 2001; Paoletti
et al., 2010; Santarcangelo et al., 2013). Theoretically, however,
the autonomic peculiarities of high hypnotizable individuals
– parasympathetic prevalence - should be associated with
a more effective immune activity. Hypnotic treatments, in
fact, upregulate the expression of immune-related genes in
lymphocytes (Kovács et al., 2008), reduce salivary cortisol
(Thompson et al., 2011) and immunoglobulin A in surgical
patients with breast cancer (Minowa and Koitabashi,
2014), regulate auto-immune disorders (Torem, 2007),
human papillomavirus (Barabasz et al., 2010), and pro-
inflammatory/anti-inflammatory cytokines in elders (Sari et al.,
2017).

CORTICAL PLASTICITY

An ambitious target for chronic pain treatments should be
counteracting the disadvantageous cortical plasticity associated
with chronic pain, consisting of alteration in the brain gray
matter volume (Xiong et al., 2017; McCarberg and Peppin, 2019;
Yin et al., 2020) and in long-term potentiation in the anterior
cingulate cortex and insular cortex (Zhuo, 2020).

In chronic pain patients Transcranial Magnetic Stimulation
(TMS) and electrical direct Transcranial Stimulation (dTCS)
are efficaciously used to modulate the activity of pain-related
circuits (Klein et al., 2015; Dos Santos et al., 2018; Meeker
et al., 2020) together with vagal stimulation (Costa et al., 2019).
Theoretically, imaginatively induced analgesia could influence

cortical plasticity (Kleim and Jones, 2008) mimicking the effects
of TMS and dTCS by suggestions aimed at modulating the
activity of the pain matrix (Casiglia et al., 2020) and enhancing
the action of descending antinociceptive pathways (Beltran
Serrano et al., 2020). The highs’ stronger functional equivalence
between imagery and perception/action (Ibáñez-Marcelo et al.,
2019) and their greater cortical excitability (Spina et al., 2020), in
fact, allow them to experience pleasant situations able to buffer
the activity of the pain matrix, thus promoting the cognitive re-
appraisal of their pain condition. In addition, the activity of the
pain matrix itself can be reduced by suggestions (Faymonville
et al., 2006; Casiglia et al., 2020) and co-operate to promote
long-lasting effects. Suggestive treatment of pain, in fact, induces
long-lasting analgesic effects addressing all pain dimensions
(Dillworth and Jensen, 2010; Jensen et al., 2014). Of note, cortical
long-lasting plasticity is induced also by neutral hypnosis that is
the state experienced by highs after hypnotic induction in the
absence of specific suggestions (Jiang et al., 2017).

CONCLUSIONS

The pain matrix structure, activity and connectivity (Legrain
et al., 2011) are influenced by acute and chronic pain. Our
opinion is that that pain experience and physiology are
modulated by the physiological correlates of hypnotizability, and
that hypnotic assessment may assist in the choice of the most
appropriate pharmacological treatments (a); the suggestions for
analgesia are effective in both wakefulness and hypnosis and
can control pain in a large majority of the general population,
although through different mechanisms (b); hypnotizability is an
advantageous factor in the control of pain-related autonomic and
immune functions (c); hypnotizability-related cortical plasticity
may counteract the effects of chronic pain on the structure and
function of the pain matrix (d). In conclusion, suggestions for
analgesia should be considered for any pain patient and not only
after unsuccessful pharmacological treatments.
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