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Abstract: Many terminal sliding mode controllers (TSMCs) have been suggested to obtain exact
tracking control of robotic manipulators in finite time. The ordinary method is based on TSMCs
that secure trajectory tracking under the assumptions such as the known robot dynamic model
and the determined upper boundary of uncertain components. Despite tracking errors that tend
to zero in finite time, the weakness of TSMCs is chattering, slow convergence speed, and the need
for the exact robot dynamic model. Few studies are handling the weakness of TSMCs by using the
combination between TSMCs and finite-time observers. In this paper, we present a novel finite-time
fault tolerance control (FTC) method for robotic manipulators. A finite-time fault detection observer
(FTFDO) is proposed to estimate all uncertainties, external disturbances, and faults accurately and
on time. From the estimated information of FTFDO, a novel finite-time FTC method is developed
based on a new finite-time terminal sliding surface and a new finite-time reaching control law.
Thanks to this approach, the proposed FTC method provides a fast convergence speed for both
observation error and control error in finite time. The operation of the robot system is guaranteed
with expected performance even in case of faults, including high tracking accuracy, small chattering
behavior in control input signals, and fast transient response with the variation of disturbances,
uncertainties, or faults. The stability and finite-time convergence of the proposed control system
are verified that they are strictly guaranteed by Lyapunov theory and finite-time control theory.
The simulation performance for a FARA robotic manipulator proves the proposed control theory’s
correctness and effectiveness.

Keywords: fault tolerant control; fault detection observer; terminal sliding mode control; finite-time
control theory; robot manipulators

1. Introduction

Robot manipulators are widely used in the industrial manufacturing and service
industries due to their persistence in operation, repetitive works, flexibility, heavy jobs, as
well as requirements of high accuracy. Safety and high tracking performance are expected
for many tasks that are a challenge in robot operation. The main challenges that interfere
with the safety and operation of the robot can be included complex system dynamics,
nonlinearities, frictions, external disturbances, uncertainties, faults, etc. For conventional
control methods, they can provide the expected performance and safety under the influence
of uncertainties when no faults occur in the system. Once faults occur, safety is seriously
affected and control performance is reduced, leading to system instability. These affect the
quality of the product, increasing the danger in the work environment with the presence of
people. Recently, fault diagnosis (FD) and fault-tolerant control (FTC) have attracted a lot of
attention for detecting faults and maintaining the expected performance of Markovian jump
systems [1], nonlinear systems [2], or robot manipulators in the existence of multiple faults.
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In recent years, the FD/FTC methods of robot manipulators have been extensively
investigated [3–7]. Those methods have also achieved remarkable results. Unfortunately,
the existing FD/FTC methods have drawbacks that need to be handled. The FTC systems
can develop from two following types, including active FTC (AFTC) [6,8] and passive FTC
(PFTC) [9,10].

For PFTC, it provides a fast response to the effects of disturbances/faults. This
method doesn’t demand feedback information of disturbances/faults from FD. However,
it needs to be known their upper bound value. In comparison with PFTC, AFTC provides
outstanding performance when feedback information of faults from the FD is provided
correctly. Therefore, some observers have been proposed for fault diagnosis to obtain
higher exact information of the faults, such as high-gain observers [11,12], neural network
observers [13,14], sliding mode observers (SMOs) [15,16], higher-order sliding mode ob-
servers (HOSMOs) [17–19], fuzzy logic observers [20,21], disturbance observers [22–25], etc.
To provide accurate and timely fault information, the convergence of observers needs to be
ensured within finite time. Among them, SMOs and HOSMOs obtain better performance
than the remaining observers. However, SMOs generate chattering. HOSMO is capable to
provide finite-time convergence and chattering reduction can also be achieved. Therefore,
the advantages of HOSMO have been inherited in this paper to construct a finite-time
fault diagnosis observer. Thus, external disturbances or faults can be identified by an
observer. The next goal is to reconstruct a suitable controller from the information of the
faults or external disturbances to resolve the instability caused by the influences of faults
or disturbances while maintaining the desired performance for the system.

We always know that the robot is a nonlinear system; it is difficult for the fundamental
methods such as inverse dynamic control [26], PID [27], or the computed torque control
(CTC) [28], to achieve high accuracy and low sensitivity to external disturbances. In this
case, the nonlinear controllers seem to be more suitable than the linear ones. The prominent
nonlinear controller widely used in practice is sliding mode control (SMC) [29,30].

Nowadays, SMC has had its application extended to FTC systems [31,32]. SMC is
designed to exhibit robust control performance under bounded disturbances, uncertainties,
or faults. Unfortunately, SMC only gradually reaches the equilibrium point when the
convergence time tends to infinity. As with SMO, SMC also generates a lot of unexpected
chattering [33].

To increase the convergent rate of SMC, terminal sliding mode (TSM) controllers
were introduced [34–36] and extended to FTC systems [37–39]. TSM control obtains finite-
time stability caused by its nonlinear sliding surface, which provides lower control errors
and a higher convergence rate than those of conventional linear sliding mode (LSM)
control. The advantages of TSM control have been confirmed in many applications of FTC
systems [6,19,38,40,41]. Nevertheless, excessively fast convergence is associated with more
serious chattering, which is dangerous and corrupting for a real application. Furthermore,
the weakness of TSMC is that the convergence time will be greatly increased when the
initial values of the system states are far from the origin. This is also one of the motivations
for us to design a new sliding surface to overcome the slow convergence in the above case.

Many studies have been performed to explore approaches in reducing the chattering
that happens in SMC and TSMC. Usage of the saturation function instead of the sign
function can reduce chattering significantly. However, the tracking accuracy would also
be reduced in this case [42]. A few intelligent controllers have been adopted to effectively
solve chattering problems [43–45]. The application of intelligent methods into controlling
is also not easy, since they often need a lot of parameters or complex tuning methods
for the parameters. Therefore, it increases the computation burden. The application of a
disturbance/perturbation observer as HOSMO is also effective in reducing chattering and
increasing tracking accuracy, as discussed above.

From the above discussion, it is really necessary to develop the FTC system for the
robot. The FTC system is a combination of a finite time observer and advanced TSMC.
The system can improve the slow convergence of the conventional TSMC when the initial
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values of the system states are far from the origin. The proposed control system guarantees
a fast convergence rate for both observation error and control error in finite time. It exhibits
high control precision and robustness against disturbance, uncertainties and maintains
the desired performance for the system in case of faults. In addition, the occurrence of
chattering in the control input has been significantly minimized. In summary, the stability
of the new FTC system is strictly guaranteed in finite time, and it is reinforced by the
Lyapunov stability theory. The simulation and comparison performance among some
state-of-art methods for a FARA robotic manipulator proves the proposed control theory’s
correctness and effectiveness.

The rest of this article is organized as follows. Section 2 of this article presents problem
statements and notations. In Section 3, the proposed control design procedure and stability
analysis are described. Simulation results that demonstrate the effectiveness of the new
proposed controller are discussed in Section 4. Finally, the remarkable conclusions of this
study are presented in Section 5.

2. Notations and Problem Statements
2.1. Notations

A symbol list is provided in Table 1 to convenience the reader as follows

Table 1. List of symbols.

Notation Description

Rn n-dimensional real vector space
Rn×n n× n matrix whose entries are real numbers
|·| absolute value of
θ vector of joint angular position, θ ∈ Rn
.
θ vector of joint angular velocity,

.
θ ∈ Rn

..
θ vector of joint angular acceleration,

..
θ ∈ Rn

M(θ) matrix of actual inertia, M(θ) = M̂(θ) + ∆M(θ) ∈ Rn×n

C
(

θ,
.
θ
)

matrix of the actual centrifugal and Coriolis force, C
(

θ,
.
θ
)
= Ĉ

(
θ,

.
θ
)
+ ∆C

(
θ,

.
θ
)
∈ Rn×n

G(θ) vector of actual gravity, G(θ) = Ĝ(θ) + ∆G(θ) ∈ Rn

M̂(θ) estimated matrix of M(θ), M̂(θ) ∈ Rn×n

Ĉ
(

θ,
.
θ
)

estimated matrix of C
(

θ,
.
θ
)

, Ĉ
(

θ,
.
θ
)
∈ Rn×n

Ĝ(θ) estimated matrix of G(θ), Ĝ(θ) ∈ Rn

∆M(θ) estimation error matrix of M(θ), ∆M(θ) ∈ Rn×n

∆C
(

θ,
.
θ
)

estimation error matrix of C
(

θ,
.
θ
)

, ∆C
(

θ,
.
θ
)
∈ Rn×n

∆G(θ) estimation error vector of G(θ), ∆G(θ) ∈ Rn

F
( .

θ
)

vector of the friction force, F
( .

θ
)
∈ Rn

Td(t) vector of external disturbance, Td(t) ∈ Rn

τ vector of the control input torque, τ ∈ Rn

σ(t− TF) matrix of fault time profile, σ(t− TF) ∈ Rn×n

TF vector of the time when the faults occur, TF ∈ Rn

`i the developing rate coefficient of the ith fault
Γ
(

θ,
.
θ,τ
)

matrix of the unexpected fault, Γ
(

θ,
.
θ,τ
)
∈ Rn

P(x) lumped nominal part of the robot, P(x) ∈ Rn

B(x) a smooth function, B(x) ∈ Rn×n

D the whole uncertainties, external disturbances, and faults, D ∈ Rn

Ω1, Ω2 the bounded values of D and
.
D, Ω1 and Ω2 are positive constants

x̂1 the estimated value of the position x1
x̂2 the estimated value of the velocity x2
D̂ the estimated value of the whole uncertainty and fault D
x̃1 estimation error of position x1
x̃2 estimation error of velocity x2
D̃ estimation error of the whole uncertainty and fault D

ϕ, ψ, ρ positive matrices
J bounded valued of the estimation error of the whole uncertainty and fault D̃, J > 0
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Table 1. Cont.

Notation Description

θdi
,

.
θdi

desired position and desired velocity at ith joint
x1i , x2i the actual position and actual velocity at ith joint
xei , xdei tracking position error and the tracking velocity error at ith joint

si sliding mode surface of ith joint
λi, ηi, ωi, σi,

αi, βi, γi

parameters of sliding mode surface of ith joint, λi > 0, ηi > 0, ωi > 0, σi > 0,
αi > 1, 0 < βi < 1, γi = (ωi/λi)

1/(αi−βi)

Ri, pi,Ki, qi,
mi, ni, ζi

parameters of reaching control law of ith joint,Ri > 0, pi > 0, Ki > 0, qi > 0
mi > 1, 0 < ni < 1, ζi = (Ki/Ri)

1/(mi−ni)

Kp, Kd parameters of CTC-based FTC, Kp and Kd are positive diagonal matrices
c, δ, ς parameters of SMC-based FTC, c and δ are positive diagonal matrices, ς > 0

λi, ωi, αi, βi, ς parameters of FTSMC-based FTC, λi > 0, ωi > 0, αi > 1, 0 < βi < 1, ς > 0
xd, yd, zd the desired trajectory of the robot’s end-effector in XYZ-space

EX , EY , EZ the root-mean-square errors of the robot’s end-effector in XYZ-space
E1, E2, E3 the root-mean-square errors of the robot’s joints

The functions which are utilized in the subsequent content are defined as follows:

sign(qi) =


1 if qi > 0
0 if qi = 0
−1 if qi < 0

(1)

sign(q) =
[

sign(q1), . . . , sign(qn)
]T (2)

sig(qi)
σi = |qi|σi sign(qi) (3)

d
dt
(
sig(qi)

σi
)
= σi|qi|σi−1 .

qi (4)

sig(q)σ =
[
|q1|σ1 sign(q1), . . . , |qn|σn sign(qn)

]T (5)

diag(q) =


q1 0 0 0
0 q2 0 0

0 0
. . . 0

0 0 0 qn

 (6)

q =

√
n

∑
i=1
|qi| (7)

2.2. Problem Statements

The dynamic model of an n-degree-of-freedom robotic manipulator is written as follows:

M(θ)
..
θ+ C

(
θ,

.
θ
) .

θ+ G(θ) + F
( .

θ
)
+ Td(t) = τ−σ(t− TF)Γ

(
θ,

.
θ,τ
)

(8)

where θ,
.
θ,

..
θ ∈ Rn are angle position, angular velocity, and angular acceleration of the

joints, respectively. M(θ) = M̂(θ) + ∆M(θ) ∈ Rn×n is the actual inertia matrix, C
(

θ,
.
θ
)
=

Ĉ
(

θ,
.
θ
)
+ ∆C

(
θ,

.
θ
)
∈ Rn×n is the actual centrifugal and Coriolis force matrix, G(θ) =

Ĝ(θ) + ∆G(θ) ∈ Rn is the vector of actual gravity, F
( .

θ
)
∈ Rn is the vector of friction

force, Td(t) ∈ Rn is the vector of external disturbance, τ ∈ Rn is the vector of control
input torque. M̂(θ), Ĉ

(
θ,

.
θ
)

, and Ĝ(θ) are the estimated matrices of M(θ), C
(

θ,
.
θ
)

, and

G(θ), respectively. ∆M(θ), ∆C
(

θ,
.
θ
)

, and ∆G(θ) are the estimation error matrices of the
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dynamic model. Γ
(

θ,
.
θ,τ
)
∈ Rn represents the unexpected fault influencing the robotic

manipulator. σ(t− TF) ∈ Rn×n is the time profile of the faults, and TF is the time when
the faults occur.

The time profile of fault is configured as a diagonal matrix as the following form:

σ(t− TF) = diag{σ1(t− TF1), . . . , σn(t− TFn)} (9)

where σi represents the effect of fault on ith state equation and it is defined by

σi(t− TFi) =

{
0 if t < TFi
1− exp

(
−`i
(
t− TFi

))
if t > TFi

(10)

in which `i is the developing rate coefficient of the ith fault.
Let x1 = θ and x2 =

.
θ, the dynamic model in Equation (8) is transformed into the

second-order state-space model as follows:{ .
x1 = x2.
x2 = P(x) +B(x)u +D (11)

where x =
[

xT
1 xT

2
]T is a system state vector, P(x) = M̂(θ)−1

(
−Ĉ
(

θ,
.
θ
) .

θ− Ĝ(θ)
)

,

B(x) = M̂(θ)−1, u = τ is a vector of control input torque, D = M̂(θ)−1(−∆M(θ)
..
θ−

∆C
(

θ,
.
θ
) .

θ− ∆G(θ)− F
( .

θ
)
− Td(t)−σ(t− TF)Γ

(
θ,

.
θ,τ
)
) represents the whole of uncer-

tainties, external disturbance, and fault which is constructed by robot’s dynamic model
uncertainties (∆M(θ), ∆C

(
θ,

.
θ
)

, ∆G(θ)), friction force (F
( .

θ
)

), external disturbance (Td(t)),

and fault (Γ
(

θ,
.
θ,τ
)

).

Assumption 1: The whole uncertainty components and its time derivative are bounded by:{
||D|| ≤ Ω1

||
.
D|| ≤ Ω2

(12)

where Ω1 and Ω2 are positive constants.

From Equation (11), we can see that the dynamic model of the system contains un-
certainty, external disturbance, and fault. Thus, achieving stability in a finite time while
maintaining the desired performance under fault conditions remains a major challenge.
Therefore, this paper designs a fault-tolerant controller to overcome the mentioned chal-
lenge.

3. The Proposed Control Design Procedure

In this section, we present a new FTC method, which provides a finite convergence
time, high trajectory accuracy, significantly reduces chattering behavior in the control input
signals, and achieves strong stability for the robotic manipulator system.

First, a fault diagnosis observer (FDO) based on HOSMO [17] is developed, which
can approximate the uncertainties as well as the external noise, and faults within finite
time. Therefore, it can provide accurate information into the control system in a timely and
accurate manner. Second, a novel fast terminal sliding mode (FTSM) control is proposed
based on a novel FTSM surface which enhances the advantages of FTSM surface, and a
novel fast-reaching control law (FRCL). Finally, the finite-time stability of the whole control
system is proved by Lyapunov criteria.
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3.1. Design the FDO

Based on the robotic system in Equation (11), an FDO is designed to estimate the
whole uncertainties and faults as follows:

x̃1 = x1 − x̂1
.
x̂1 = x̂2 +ϕsig(x̃1)

2
3

.
x̂2 = D̂ +P(x) + B(x)u +ψsig(x̃1)

1
3

.
D̂ = ρsign(x̃1)

(13)

where x̂1 is estimated value of the position x1, x̂2 is estimated value of velocity x2, D̂ is
estimated value of the whole uncertainties and faults D, ϕ = diag{ϕ1, . . . , ϕn}, ϕi > 0,
ψ = diag{ψ1, . . . , ψn}, ψi > 0, ρ = diag{$1, . . . , $n}, $i > 0.

By subtracting Equation (13) from Equation (11), we can obtain the estimation errors
as follows: 

.
x̃1 = −ϕsig(x̃1)

2
3 + x̃2

.
x̃2 = −ψsig(x̃1)

1
3 + D̃

.

D̃ = −ρsign(x̃1) +
.
D

(14)

where x̃2 = x2 − x̂2, D̃ = D − D̂.

Assumption 2: Assume that the estimation error of the whole uncertainty and fault is bounded by:

D̃ ≤ J , (15)

where J is a positive constant.

Equation (14) is finite-time stable, which has been already proved in [46,47]. Therefore,
by choosing appropriate gains ϕ, ψ, and ρ (the readers can refer to the existing study [48]),
we can determine that x̃1, x̃2, and D̃ will converge to zero in finite time t > To = max

1≤i≤n
{T2i }.

It can be observed that after a finite time To, x̂1 = x1, x̂2 = x2 and D̂ = D.

3.2. Design of Novel Finite-Time FTSM Surface

We define the tracking position error, and the tracking velocity error as follows:

xei = x1i − θdi

xdei
= x2i −

.
θdi

, i = 1, . . . , n
(16)

where θd =
[
θd1 , . . . , θdn

]T ∈ Rn,
.
θd =

[ .
θd1 , . . . ,

.
θdn

]T
∈ Rn with θdi

and
.
θdi

respectively

are desired position and desired velocity at ith joint. And x1 =
[
x11 , . . . , x1n

]T ∈ Rn,
x2 =

[
x21 , . . . , x2n

]T ∈ Rn with x1i and x2i respectively are actual position and actual
velocity at ith joint.

The FTSMC concept first introduced in [49] can be presented as follows:

si = xdei
+ λisig(xei )

αi + ωisig(xei )
βi , i = 1, . . . , n (17)

where λi > 0, ωi > 0, αi > 1, 0 < βi < 1.
From Equation (17), when si = 0 (i = 1, . . . , n), the sliding motion formula is given by:

xdei = −λisig(xei)
αi −ωisig(xei)

βi , i = 1, . . . , n (18)

Equation (18) shows that the first term plays an important role when xei is far away
from 0. The second term plays an important role when xei is near 0.
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To further enhance the performance of the FTSMC, an innovated sliding mode surface
is proposed as follows:

si = xdei
+ λ∗i sig(xei )

αi + ω∗i sig(xei)
βi , i = 1, . . . , n (19)

where λ∗i = 2λi
1+exp(−ηi(|xei |−γi))

, ω∗i = 2ωi
1+exp(σi(|xei |−γi))

, λi > 0, ηi > 0, ωi > 0, σi > 0,

αi > 1, 0 < βi < 1, γi = (ωi/λi)
1/(αi−βi).

When si = 0 (i = 1, . . . , n), then the sliding motion equation is formulated as:

xdei
= −λ∗i sig(xei )

αi −ω∗i sig(xei )
βi , i = 1, . . . , n (20)

Equation (20) differs from Equation (18) in that the coefficients of the sliding surface
(λ∗i , ω∗i ) are dynamically changed with |xei |.

Remark 1: When|xei | ≥ γi the first term of Equation (20) plays the main role, and the remaining
term of Equation (20) plays the secondary role. On contrary, when |xei | < γi the first term of
Equation (20) plays a smaller role, and the second term of Equation (20) plays the main role. Overall,
this approach aims to strengthen the effect of the term that has a major role, while weakening the
effect of the term that has a minor role, which will improve the transient response performance of the
control system.

Lemma 1. Consider a scalar differential equation as follows:

xdei
= −λ∗i sig(xei )

αi −ω∗i sig(xei )
βi (21)

where λ∗i = 2λi
1+exp(−ηi(|xei |−γi))

, ω∗i = 2ωi
1+exp(σi(|xei |−γi))

, λi > 0, ηi > 0, ωi > 0, σi > 0,

αi > 1, 0 < βi < 1, γi = (ωi/λi)
1/(αi−βi). Then, the system (21) is a globally finite time-stable,

and the convergence time Tsi is bounded by

Tsi =
1

λi(−αi + 1)

(
|xei (0)|

−αi+1 − γ
−αi+1
i

)
+

1
ωi(−βi + 1)

|γi|−βi+1 (22)

Proof: Select the Lyapunov function V2i = 0.5x2
ei
(i = 1, . . . , n), then the time derivative

of V2i is
.

V2i = xei xdei
= xei

(
−λ∗i sig(xei )

αi −ω∗i sig(xei )
βi
)

= −λ∗i |xei |
αi+1 −ω∗i |xei |

βi+1 < 0
(23)

It can be shown that V2i > 0 and
.

V2i < 0. Therefore, the state variables xei and xdei
can

converge to the equilibrium point. When |xei(0)| > γi, the sliding motion is divided into
two stages: xei(0)→ |xei | = γi and |xei| = γi → 0 . Consequently, the setting time can be
calculated as follows.

Stage 1: xei (0)→ |xei | = γi . The first term of Equation (21) plays the main role:∫ ts1i
0 dt =

∫ γi
xei (0)

1
−λ∗i |xei |

αi−ω∗i |xe i |βi
d(|xei|)

<
∫ xei (0)

γi
1

λi|xei |
αi d(|xei|) =

[
|xei |

−αi+1

λi(−αi+1)

]xei (0)

γi

= 1
λi(−αi+1)

(
|xei (0)|

−αi+1 − γ
−αi+1
i

) (24)

Stage 2: |xei | = γi → xei = 0 . The second term of Equation (21) plays the main role:∫ ts2i
0 dt =

∫ 0
γi

1
−λ∗i |xei |

αi−ω∗i |xe i |βi
d(|xei|)

<
∫ γi

0
1

ωi |xe i |β
d(|xei|) =

[
|xe i |−βi+1

ωi(−βi+1)

]γi

0
= 1

ωi(−βi+1) |γi|−βi+1
(25)
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Thus, the sum of the convergence time is calculated as:

Tsi = ts1i + ts2i =
1

λi(−αi + 1)

(
|xei (0)|

−αi+1 − γ
−αi+1
i

)
+

1
ωi(−βi + 1)

|γi|−βi+1 (26)

The proof is completed. �

From Lemma 1, the convergence time of the system (20) is calculated as:

Ts = max
1≤i≤n

{Tsi } = max
1≤i≤n

{
1

λi(−αi + 1)

(
|xei (0)|

−αi+1 − γ
−αi+1
i

)
+

1
ωi(−βi + 1)

|γi|−βi+1
}

(27)

3.3. Design of Proposed Controller

To obtain the control laws for FTC of robot manipulators, the control design procedure
is performed below.

Computing the time derivative of the proposed sliding surface in Equation (19) yields
.
si =

.
xdei

+ 2λiαi
1+exp(−ηi(|xei |−γi))

|xei |
αi−1xdei

+
2λiηi exp(−ηi(|xei |−γi))

(1+exp(−ηi(|xei |−γi)))
2 |xei |

αi xdei

+ 2ωi βi
1+exp(σi(|xei |−γi))

|xei |
βi−1xdei

− 2ωiσi exp(σi(|xei |−γi))

(1+exp(σi(|xei |−γi)))
2 |xei |

βi xdei
, i = 1, . . . , n

(28)

The vector form of Equation (28) is rewritten as:

.
s =

.
xde + M =

.
x2 −

..
xd + M (29)

where M =
[

M1 . . . Mn
]T ∈ Rn, Mi = 2λiαi

1+exp(−ηi(|xei |−γi))
|xei |

αi−1xdei
+

2λiηi exp(−ηi(|xei |−γi))

(1+exp(−ηi(|xei |−γi)))
2 |xei |

αi xdei
+ 2ωi βi

1+exp(σi(|xei |−γi))
|xei |

βi−1xdei
− 2ωiσi exp(σi(|xei |−γi))

(1+exp(σi(|xei |−γi)))
2

|xei |
βi xdei

, i = 1, . . . , n.
Substituting Equation (11) into Equation (29), we obtain

.
s = P(x) +B(x)u +D − ..

xd + M (30)

To obtain a faster convergence for the system trajectory state to the designed sliding
surface, a novel finite-time FRCL is proposed as

.
s = −Rsig(s)m −Ksig(s)n −J sign(s) (31)

where R = diag
{

2R1
1+exp(−p1(|s1|−ζ1))

, . . . , 2Rn
1+exp(−pn(|sn |−ζn))

}
∈ Rn×n, Ri > 0, pi > 0,

K = diag
{

2K1
1+exp(q1(|s1|−ζ1))

, . . . , 2Kn
1+exp(qn(|sn |−ζn))

}
∈ Rn×n, Ki > 0, qi > 0, m and n are

parameter vectors with the element as mi > 1, 0 < ni < 1, ζi = (Ki/Ri)
1/(mi−ni).

It is seen that when |si| ≥ ζi or |si| < ζi the role of each term in Equation (31) plays
the same role as stated in Remark 1. Thus, the system could quickly reach the surface in
finite time.

Based on the output of the observer in Equation (13), substituting Equation (30) into
Equation (31), a novel FTC law is designed as follows:

u = B−1(x)
(

ueq + ur − D̂
)

ueq =
..
xd −P(x)−M

ur = −Rsig(s)m −Ksig(s)n −J sign(s)
(32)

The block diagram of the proposed control method is illustrated in Figure 1.
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Figure 1. The block diagram of the proposed control method.

The control design procedure can be summarized in the following theorem.

Theorem 1. Consider the robot system stated in Equation (11) if the proposed control laws are
constructed as in Equation (32) which is formed from data of observer in Equation (13), the proposed
sliding surface in Equation (19), and a novel finite-time reaching control law in Equation (31), then
the system is globally finite-time stable.

Proof of Theorem 1. Substituting the control input in Equation (32) into Equation (30),
we gain

.
s = D − D̂ −Rsig(s)m −Ksig(s)n −J sign(s) (33)

An element of the vector in Equation (33) is represented as
.
si = Di − D̂i −

2Ri
1 + exp(−pi(|si| − ζi))

sig(si)
mi − 2Ki

1 + exp(qi(|si| − ζi))
sig(si)

ni −J sign(si) (34)

To investigate the finite-time stability of the control system, the Lyapunov candidate
is selected as

V3i = 0.5s2
i (35)

Then, taking the time derivative of V3i and using Equation (34), we can obtain as
.

V3i = si
.
si

= si

(
Di − D̂i − 2Ri

1+exp(−pi(|si |−ζi))
sig(si)

mi − 2Ki
1+exp(qi(|si |−ζi))

sig(si)
ni −J sign(si)

)
≤
(
D̃i −J

)
|si| − 2Ri

1+exp(−pi(|si |−ζi))
|si|mi+1 − 2Ki

1+exp(qi(|si |−ζi))
|si|n+1

≤ − 2Ri
1+exp(−pi(|si |−ζi))

|si|mi+1 − 2Ki
1+exp(qi(|si |−ζi))

|si|n+1

(36)

We can see that, V3i > 0 and
.

V3i < 0 has been satisfied according to Lyapunov
theory, so the control system is globally stable. To prove the control system that is globally
finite-time stable, Equation (36) is rewritten as follows:

si
.
si ≤ −

2Ri
1 + exp(−pi(|si| − ζi))

|si|mi+1 − 2Ki
1 + exp(qi(|si| − ζi))

|si|n+1 (37)

From Equation (37), when |si(0)| > ζi, the reaching phase is divided into two stages:
si(0)→ |si| = ζi and |si| = ζi → 0 . As a result, doing the same procedure with the sliding
phase in Equations (24) and (25), the reaching time is calculated as:

Tr = max
1≤i≤n

{
tr1i + tr2i

}
= max

1≤i≤n

{
1

Ri(−mi + 1)

(
|si(0)|−mi+1 − ζi

−mi+1
)
+

1
Ki(−ni + 1)

ζi
−ni+1

}
(38)
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Therefore, the control system is globally finite-time stable and the total convergence
time for the system (11) is calculated by

Tc = To + Tr + Ts (39)

where To is convergence time of FDO.
The proof is completed. �

4. Simulation Results and Discussion

To verify the effectiveness of the proposed controller, we applied it to a FARA ROBOT
AT2 3-DOF robotic manipulator [8]. To present the simulation results briefly, the robot
system only simulated the first three links, the last three links of the robot were locked.
We used MATLAB/SIMULINK software for all simulations. The configuration of the
SIMULINK environment was set under a fixed-step (ODE5 dormand-prince) with 0.001 s
system cycle time. All mechanical parts of the robotic manipulator were designed on
SOLIDWORK software, then embedded into MATLAB/SIMULINK environment through
the SIMSCAPE MULTIBODY LINK tool. Therefore, the simulation model of the robotic
manipulator is the same as the actual mechanical model. External disturbances components
and friction forces have been added to the robot system. Figure 2 shows the mechani-
cal model of FARA ROBOT AT2 3-DOF in SOLIDWORK software and its geometrical
dimensions, and Table 2 shows the design parameters of the robot system.

Figure 2. FARA ROBOT AT2 3-DOF robotic mechanical model in SOLIDWORK and its geometrical
dimensions.

Table 2. The designed parameters of the FARA robot system.

Link 1 Link 2 Link 3

Length (m) 0.15 0.255 0.3

Weight (kg) 37.985 21.876 16.965

Center of Mass (mm)
lcx 68.067 95.045 71.496
lcy −1.185 5.399 −72.007
lcz 64.931 −0.002 −1.004

Inertia (kg·m2)
Ixx 0.252 0.359 0.306
Iyy 0.395 0.623 0.853
Izz 0.356 0.319 0.306

To verify the superiority of the proposed control system, its control performance
is compared with other FTC methods including CTC-based FTC, SMC-based FTC, and
FTSMC-based FTC in the aspects of convergence speed, position tracking control accuracy,
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and control inputs signals. To call shortened names of compared control methods, “CTC-
based FTC” is replaced by “CTC”, “SMC-based FTC” is replaced by “SMC”, and “FTSMC-
based FTC” is replaced by “FTSMC”.

The control input of CTC-based FTC is expressed as follows [36]:

u = b−1( ..
xd −P(x)−Kpe−Kd

.
e
)

(40)

where Kp = diag
{

Kp1 , . . . , Kpn

}
, Kpi > 0, Kd = diag

{
Kd1 , . . . , Kdn

}
, Kdi

> 0.
The control input of SMC-based FTC is stated as follows [50]:{

s =
.
e + ce

u = b−1( ..
xd −P(x)− c

.
e− (Ω1 + ς)sign(s)− δs

) (41)

where s is the linear sliding mode surface, c = diag{c1, . . . , cn}with ci is a positive constant,
δ = diag{δ1, . . . , δn} with δi is a positive constant and ς is a small positive constant.

The control input of FTSMC-based FTC is described as follows [49]:{
s =

.
e + λsig(e)α +ωsig(e)β

u = b−1( ..
xd −P(x)− Z− (Ω1 + ς)sign(s)− δs

) (42)

where s is an FTSM surface, λ = diag{λ1, . . . , λn}, λi > 0, ω = diag{ω1, . . . , ωn},
ωi > 0, α and β are parameter vectors with the element as αi > 1, 0 < βi < 1, δ =
diag{δ1, . . . , δn} with δi is a positive constant, ς is a small positive constant, and Z =

[Z1, . . . , Zn] with Zi = αiλi|ei|αi−1 .
ei + βiωi|ei|βi−1 .

ei.
The robot’s end-effector is controlled to follow the desired trajectory, as described below xd

yd
zd

 =

 0.43 + 0.01 sin
( t

4
)

0.006 sin
( t

4
)

0.26 + 0.006 cos
( t

8
)
(m) (43)

The friction forces are modeled by

F
( .

θ
)
=

 2
.
θ1 + 0.01sign(

.
θ1)

2
.
θ2 + 0.01sign(

.
θ2)

2
.
θ3 + 0.01sign(

.
θ3)

 (44)

The external disturbances are added to the system as follows:

τd =

 −5(1− exp(−0.4t))− 0.3 sin(0.8t)
−3(1− exp(−0.4t)) + 0.1 sin(0.5t)
−1.8(1− exp(−0.4t))− 0.1 sin(1.6t)

 (45)

The uncertainty components of the dynamic model are assumed as:
∆M = 0.15M
∆C = 0.15C
∆G = 0.15G

(46)

The root-mean-square errors (RMSEs) are given as:

EX =

√
1
K

K
∑

i=1

(
xdi
− xi

)2, EY =

√
1
K

K
∑

i=1

(
ydi
− yi

)2, EZ =

√
1
K

K
∑

i=1

(
zdi
− zi

)2,

E1 =

√
1
K

K
∑

i=1

(
θd1i
− θ1i

)2, E2 =

√
1
K

K
∑

i=1

(
θd2i
− θ2i

)2, E3 =

√
1
K

K
∑

i=1

(
θd3i
− θ3i

)2

(47)
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where K is the number of samples to be considered in this calculation. xdi, ydi
, zdi and

xi, yi, zi represent the desired trajectory and the real trajectory of end-effector in XYZ-
directions at the time index i, respectively. θd1i, θd2i, θd3i and θ1i , θ2i , θ3i stand for the
desired joint angle and the real joint angle of three-joints at the time index i, respectively.

The selected parameters of the controllers are shown in Table 3.

Table 3. The selected parameters of three controllers.

Controller Symbol Value

CTC Kp, Kd diag{200, 200, 200}, diag{40, 40, 40}
SMC c,δ, Ω1, ς diag{10, 10, 10}, diag{20, 20, 20}, 5.5, 0.01

FTSMC λi, ωi, αi, βi,δ, Ω1, ς 5, 1.01, 5, 0.8, diag{20, 20, 20}, 5.5, 0.01

Proposed Method
λi, ηi, ωi, σi, αi, βi

ϕi, ψi, $i
Ri, pi, Ki, qi, mi, ni,

5, 1.1, 5, 2.2, 1.01, 0.8
5.604, 16.645, 24.2

10, 1.1, 10, 1.1, 1.8, 0.7, 0.1

Note: i = 1, 2, 3.

To facilitate the evaluation of tracking errors, RMSEs are calculated according to
Equation (47) over a period of 2nd to 40th s. The results are presented in Tables 4 and 5.

Table 4. RMSEs of four controllers in the first case.

Controller Ex
(X-Direction)

Ey
(Y-Direction)

Ez
(Z-Direction)

E1
(Joint 1)

E2
(Joint 2)

E3
(Joint 3)

CTC 0.0030 0.0054 0.0011 0.0121 0.0127 0.0106

SMC 4.9770× 10−5 8.9695× 10−5 1.9887× 10−5 2.0411× 10−4 2.1125× 10−4 1.7078× 10−4

FTSMC 1.2499× 10−5 2.2562× 10−5 5.9538× 10−6 5.1323× 10−5 5.3539× 10−5 4.2223× 10−5

Proposed
Method 1.4083× 10−8 2.6478× 10−8 2.3604× 10−8 6.1299× 10−8 5.5757× 10−8 5.5795× 10−8

Table 5. RMSEs of four controllers in the second case.

Controller Ex
(X-Direction)

Ey
(Y-Direction)

Ez
(Z-Direction)

E1
(Joint 1)

E2
(Joint 2)

E3
(Joint 3)

CTC 0.0056 0.0108 0.0055 0.0247 0.0234 0.0234

SMC 0.0019 0.0031 0.0020 0.0072 0.0078 0.0076

FTSMC 0.0011 0.0018 0.0013 0.0042 0.0045 0.0045

Proposed
Method 4.4172× 10−8 7.7403× 10−8 6.7581× 10−8 1.7940× 10−7 1.6488× 10−7 2.3066× 10−7

To prove the validity of the proposed system, simulations have been performed in the
two cases below.

Case 1: This simulation considers the robot in normal operating conditions. Therefore,
the robot system is only affected by the uncertainty components such as friction force,
uncertainties of the dynamic model, and external disturbance. There is no fault occurrence
in this case.

The main target of the proposed FDO is used to detect and estimate the whole uncer-
tainty components. The time history of assumed uncertainty components and the outputs
of the proposed FDO are shown in Figure 3a. We can clearly see in Figure 3a that, the
proposed FDO provided a high precision estimation of the uncertainty components. In
addition, we can see from Figure 3b that the proposed FDO also provided a highly accurate
estimate of the velocities of the joints. From the accurately estimated information of the
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proposed observer, the performance of the control system is greatly improved in increasing
tracking accuracy and reducing chattering.

Figure 3. (a) The assumed value of uncertainty and its estimated value at joints; (b) the real velocity value and its estimated
value at joints.

Figure 4 shows the path tracking performances of the end-effector under four con-
trollers. From Figure 4, we can see that CTC provided a poor tracking performance when
the system was heavily influenced by uncertain components. Due to the robustness to the
uncertainty components of SMC and FTSMC, we can see that SMC and FTSMC provided a
good tracking performance. From the correct information of the proposed FDO, the pro-
posed controller provided a good position tracking performance, as shown in Figure 4. For
a more detailed analysis of the tracking performance, the tracking errors were presented in
Figure 5 and Table 4.

Figure 5a,b, respectively, show the tracking error of the end-effector in XYZ-space and
the angle tracking error at the joints. From Figure 5 and the results in Table 4, we can clearly
see that CTC provided the worst tracking error among the four controllers. CTC’s position
tracking errors in XYZ-space are 0.0030, 0.0054, and 0.0011, and its angle tracking errors at
joints are 0.0121, 0.0127, and 0.0106, respectively. As we can expect, the SMC provided a
smaller tracking error than the CTC due to its robustness to uncertainty components. XYZ-
space position tracking errors of SMC are 4.9770× 10−5, 8.9695× 10−5, and 1.9887× 10−5,
whereas its joint angle tracking errors are 2.0411× 10−4, 2.1125× 10−4, and 1.7078× 10−4,
respectively. Nevertheless, the tracking error of SMC is worse than that of FTSMC. As
shown in Table 4, the FTMC has position tracking errors of 1.2499× 10−5, 2.2562× 10−5,
and 5.9538× 10−6 in XYZ-space and angle tracking errors of 5.1323× 10−5, 5.3539× 10−5,
and 4.2223 × 10−5 at joints. We can easily see that the proposed controller offered a
superior tracking performance among the four controllers. The proposed controller’s
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position tracking errors in XYZ-space are 1.4083× 10−8, 2.6478× 10−8, and 2.3604× 10−8,
and its angle tracking errors at joints are 6.1299× 10−8, 5.5757× 10−8, and 5.5795× 10−8,
respectively. Furthermore, we can see in Figure 5 that the proposed controller provided the
fastest convergence rate.

Figure 4. The reference trajectory and real trajectory of the end-effector under four controllers.

The angular velocity error at the joints under the four controllers is shown in Figure 6.
It is remarkable that the proposed control method provides the smallest velocity control
error and the fastest convergence speed compared to the remaining controllers.

The control torques at the joints generated by the four controllers were illustrated in
Figure 7. We can clearly see that the SMC and FTSMC provided discontinuous control
signals since both controllers were applied a large sliding gain (Ω1 + ς) in the reaching
control term ((Ω1 + ς)sign(s)) to counteract the influences of uncertainty components. The
CTC provided a continuous control signal since there is no sign(·) function in its control
input. Particularly, the proposed controller provided a smooth control signal, as illustrated
in Figure 7. Since the entire uncertainty component was estimated by the proposed observer.
Therefore, only a small value of the sliding gain in the reaching control term (ur) was used
to compensate for the observer’s estimation error.
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Figure 5. (a) The tracking errors of end-effector in X, Y, and Z direction; (b) the tracking errors of joint 1, joint 2, and joint 3.

Figure 6. The tracking velocity errors of joint 1, joint 2, and joint 3.
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Figure 7. The control input torques at joints of four controllers.

Case 2: The robot system is affected not only by the uncertainty components as in
case 1 but also by faults.

A fault function is supposed to illustrate the effect of the fault in the robot system
as follows:

Γ
(

θ,
.
θ,τ
)
=

 (1− exp(−(t− 15)))(5− 0.5 sin(2(t− 15))τ1) t ≥ 15
(1− exp(−(t− 20)))(3− 0.4 sin(1.5(t− 20))τ2) t ≥ 20
(1− exp(−(t− 25)))(2− 0.1 sin(2.2(t− 25))τ3) t ≥ 25

 (48)

Equation (48) shows that a fault (1− exp(−(t− 15)))(5− 0.5 sin(2(t− 15))τ1) will oc-
cur in the first joint at time t ≥ 15 s, other faults (1− exp(−(t− 20)))(3−
0.4 sin(1.5(t− 20))τ2), (1− exp(−(t− 25)))(2− 0.1 sin(2.2(t− 25))τ3) which are assumed
to respectively occur in the second joint and third joint at the times t ≥ 20 s and t ≥ 25 s.

From Figure 8a, we can see that the proposed observer also provided a very high
accuracy estimation of uncertainty and fault components as in case 1. By utilizing the pro-
posed FDO’s accurate fault information, the control system performance was significantly
improved when the faults occur in the robot system. Furthermore, the velocity values at
the joints were also accurately estimated as illustrated in Figure 8b.
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Figure 8. (a) The assumed value of uncertainty and fault, and its estimated value at joints; (b) the real velocity value and its
estimated value at joints.

The tracking performance in the cartesian space and the tracking errors are respec-
tively exhibited in Figures 9 and 10. As shown in Figures 9 and 10, the CTC exhibits its
powerlessness against the effect of fault, and it was unable to maintain desired tracking per-
formance when faults occur. As reported in Table 5, CTC’s RMSEs in XYZ-space are 0.0056,
0.0108, and 0.0055, and its RMSEs at joints are 0.0247, 0.0234, and 0.0234, respectively. It
can be easily seen that the SMC provided better fault tolerance and transient response than
the CTC, whereas the FTSMC offered better fault tolerance and transient response than the
SMC. However, SMC and FTMSC do not provide a good tracking performance when faults
appear seriously, as shown in Figure 10. The results in Table 5 clearly demonstrate that the
tracking performance of SMC and FTSMC decreases significantly when a sufficiently large
fault occurs. Specifically, SMC’s RMSEs in XYZ-space are 0.0019, 0.0031, and 0.0020, and its
RMSEs at joints are 0.0072, 0.0078, and 0.0076, respectively, whereas FTSMC’s RMSEs in
XYZ-space are 0.0011, 0.0018, and 0.0013, and its RMSEs at joints are 0.0042, 0.0045, and
0.0045, respectively. By using precisely estimated fault information from the proposed FDO,
the proposed control algorithm provided superior fault tolerance and transient response
compared to the three remaining controllers. We can easily see from Figures 9 and 10
and Table 5 that the proposed controller was able to maintain good tracking performance
despite the occurrence of the fault. The RMSEs of the proposed controller in XYZ-space are
4.4172× 10−8, 7.7403× 10−8, and 6.7581× 10−8, and its RMSEs at joints are 1.7940× 10−7,
1.6488× 10−7, and 2.3066× 10−7, respectively.
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Figure 9. The reference trajectory and real trajectory of the end-effector under four controllers.

Figure 10. (a) The tracking errors of end-effector in X, Y, and Z direction.; (b) The tracking errors of joint 1, joint 2, and
joint 3.
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Figure 11 illustrates the angular velocity error at the joints under the four controllers.
We can easily see that the proposed controller also provides superior velocity control
accuracy and the fastest convergence among the four controllers in case of fault occurrence.

Figure 11. The tracking velocity errors of joint 1, joint 2, and joint 3.

A summary of the control input torques at the joints of four controllers is illustrated
in Figure 12. It is seen that the CTC provided a continuous control signal, whereas the
SMC and the FTSMC provided a discontinuous control signal, as discussed in case 1.
It is noteworthy that the proposed control method provided a smooth control signal in
both cases.

From the results presented in the two cases above, we can conclude that the proposed
control strategy provided outstanding performance in terms of tracking error accuracy, fast
convergence speed, smooth control torque, and strong fault-tolerant ability compared to
the three remaining controllers.

Remark 2: From the theoretical analysis and comparative simulation results, we can see that the
advantages of the proposed FTC over conventional FD/FTC such as CTC-based FTC, SMC-based
FTC, and FTSMC-based FTC in the aspects of convergence speed, position tracking control accuracy,
and control input signals are given as:

• The proposed control system provides a faster convergence rate for both observation error and
control error and guarantees convergence in finite time.

• The proposed control method provides higher control precision and stronger against disturbance,
uncertainties, and faults. Thus, it can maintain the desired performance for the system in case
of faults.

• The proposed controller provides smoother control signals compared to conventional SMC
and conventional FTSMC with a significant reduction of chattering behavior. This minimizes
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friction between moving mechanical components and reduces heat generation in the power
circuit. As a result, it prolongs the life of devices.

Figure 12. The control input torques at joints under four controllers.

5. Conclusions

In this paper, an FTC system has been developed based on the combination of a finite
time observer and advanced TSMC for robot manipulators. The proposed FTC system
provided a fast convergence rate for both observation error and control error in finite time.
The stability and finite-time convergence of the proposed control system have been verified
such that they have been always strictly guaranteed by Lyapunov theory and finite-time
control theory.

Through the obtained results from the theory of control design and the comprehen-
sive comparisons with some different FTC methods for a FARA robotic manipulator, the
proposed FTC has been confirmed that it is capable of detecting, approximating, and elimi-
nating the influence of some faults occurring in the robot. The operation of the robot system
has been always guaranteed with expected performance and maintained that performance
even in case of faults, including high tracking accuracy, small chattering behavior, and fast
transient response with a variation of disturbances, uncertainties, or faults.

In this paper, data such as angular position or angular velocity from the measuring
sensors are assumed to be unaffected by measurement noise or faults when the proposed
FTC method was designed. The mentioned problems will be fully considered in our
subsequent studies.
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