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Coherent collective behavior emerges from local interactions between individuals that

generate group dynamics. An outstanding question is how to quantify group coordination

of non-rhythmic behavior, in order to understand the nature of these dynamics at both

a local and global level. We investigate this problem in the context of a small group

of four pedestrians walking to a goal, treating their speed, and heading as behavioral

variables. To measure the local coordination between pairs of pedestrians, we employ

cross-correlation to estimate coupling strength and cross-recurrence quantification

(CRQ) analysis to estimate dynamic stability. When compared to reshuffled virtual control

groups, the results indicate lower-dimensional behavior and a stronger, more stable

coupling of walking speed in real groups. There were no differences in heading alignment

observed between the real and virtual groups, due to the common goal. By modeling the

local speed coupling, we can simulate coordination at the dyad and group levels. The

findings demonstrate spontaneous coordination in pedestrian groups that gives rise to

coherent global behavior. They also offer a methodological approach for investigating

group dynamics in more complex settings.

Keywords: group locomotion, group coordination, cross-recurrence quantification, principal components analysis

INTRODUCTION

Collective behavior in humans and other animals is thought to arise from local interactions
between individuals that are coupled by sensory information. This coupling may be modulated
by factors such as environmental context (e.g., presence of predators, food sources), motivation
(e.g., metabolic state, goals), and cognitive or social constraints (e.g., strategies, group membership,
dominance relations). To understand the emergence of collective behavior, researchers must
characterize both the local coupling between individuals and the global patterns of coordination.
Such an approach calls for a set of analytic tools that can quantify the degree and stability of spatio-
temporal coordination at both the individual and collective levels. The purpose of this paper is
to investigate coordination in human collective behavior, beginning with the analysis of local and
global coordination in small pedestrian groups.
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By way of introduction, consider the flocking behavior of a
murmuration of starlings. Each bird is visually coupled to nearby
neighbors, and this local coupling influences an individual’s
behavior in accordance with a particular set of “rules;” we call
them control laws to emphasize their continuous dynamical as
opposed to logical form. These local interactions give rise to
coordinated behavior between neighbors, which in turn feeds
back to involve more individuals, so the coordination pattern
propagates through the flock. The end result is a self-organized
pattern of global motion that emerges from local interactions.
The exact nature of the control laws that govern these local
interactions and how they generate coherent flocking behavior
is an active area of research (Ballerini et al., 2008; Cavagna et al.,
2010; Hildenbrandt et al., 2010; Lukeman et al., 2010).

It is difficult to infer the local control laws based solely on
the observed global behavior, however. An important theoretical
result is that different sets of interaction rules can generate the
same pattern of coherent flocking (Vicsek and Zafeiris, 2012);
thus, the local control laws are underdetermined by analysis of
the global behavior. This finding implies that direct experimental
study of interactions between individuals is required tomodel the
control laws, which can then be used to simulate coordination
patterns. Therefore, a complete account of collective behavior
demands an approach that combines a local-to-global (bottom-
up) perspective, in which empirically-grounded control laws
are used to predict global behavior, and a global-to-local (top-
down) perspective, in which measurements on global behavior
are analyzed and compared with the predictions (Sumpter et al.,
2012).

We are pursuing this dual approach to understand the
collective behavior of human crowds. The program of research
includes characterizing the control laws by which visual
information guides locomotion, a pedestrian model that
generates locomotor trajectories, and multi-agent simulations
of the emergent crowd dynamics. Warren (2006) proposed
a behavioral dynamics framework that aims to characterize
how stable low-dimensional behavior emerges on-line from
the interactions between an agent and its environment. Goal-
directed behavior such as locomotion is regulated by perceptual
information in accordance with task-specific control laws
(Gibson, 1979; Warren et al., 2001; Warren and Fajen, 2004).
Within this framework, Fajen and Warren (2003, 2007) and
Warren and Fajen (2008) developed a pedestrian model that
successfully characterizes locomotor behavior such as steering
to stationary and moving goals, and avoiding stationary and
moving obstacles. This model has recently been extended from
agent-environment interactions to interactions between pairs of
pedestrians (dyads), including pursuit and evasion, following,
and walking side-by-side (Cohen et al., 2010; Bonneaud and
Warren, 2012; Page and Warren, 2013; Rio et al., 2014).

In certain contexts, two pedestrians may have the goal of
walking together, in which case they visually coordinate their
velocity, i.e., walking speed and direction of travel (heading).
During pedestrian following, Rio et al. (2014) found that
the follower matches the leader’s speed, independent of their
interpersonal distance (1–3 m); this is accomplished by nulling
the optical expansion of the leader (see also Lemercier et al.,

2012; Bruneau et al., 2014). A similar speed-matching strategy
was observed in side-by-side walking, with a similar coupling
strength (Page and Warren, 2013). In addition, Dachner and
Warren (2014) found that pedestrians match the walking
direction of a neighbor, independent of interpersonal distance
(1, 2, 4 m), with a comparable coupling strength in following
and side-by-side walking. They recently proposed that speed
and heading are jointly controlled by nulling both the optical
expansion and the change in bearing direction of the leader
(Dachner and Warren, 2017). These results indicate that
pedestrian dyads utilize visual information to adopt a common
speed and direction over a range of distances and positions.

This research has established a preliminary set of control laws
that govern pedestrian interactions. An outstanding question is
whether they scale from dyads to groups, and ultimately, can
account for the self-organization of collective crowd behavior.
Answering this question requires methods for quantifying
the emergent patterns of coordination at both the local and
global scales. This is a particularly difficult problem given that
pedestrian locomotor trajectories are a continuously evolving,
aperiodic behavior. Accordingly, it requires analysis tools that
can identify the temporal pattern of non-rhythmic coordination
between dyads at a local level, as well as group coherence at a
global level.

As a first step, the systemmust be operationalized. In previous
work, two behavioral variables have been used to describe a
locomotor trajectory: (1) the agent’s direction of heading (Φ),
and (2) the agent’s speed (s), which together define the agent’s
velocity in an allocentric coordinate frame. This operationalizes
a pedestrian as having two degrees of freedom (DoF), which
may be coupled between neighbors. Similarly, Riley et al. (2011)
proposed that behavioral coordination between two agents arises
from the coupling of their DoF. It is believed that agents
couple the DoF of a system via shared information variables, so
that the DoF directly regulate one another. Hence, the control
of behavior at the level of the group emerges via functional,
information-based linkages between the behavioral variables
of individual agents. When framed in terms of behavioral
dynamics, collective behavior can be considered a problem of
informationally coupling the appropriate behavioral variables to
yield a stable solution of the global behavioral dynamics. For the
task of locomotion, each pedestrian is operationalized as a two
DoF system with the state variables Φ and s. Each additional
individual in a group of N pedestrians would add two more state
variables to the collective system, so the total DoF = 2N. Thus,
the state space of the system has 2N dimensions.

Once the behavioral variables are identified, the next step is
to quantify the degree of coordination at the collective level.
From a global perspective, the degree of coordination among
a set of pedestrians would be reflected in a reduction of the
effective DoF of the system to a value between 2N, such that all
individuals move independently, and 2, such that all individuals
move with the identical speed and direction. One way to measure
the reduction in a system’s DoF is to quantify the dimensional
compression of the observed behavior. Principle Components
Analysis (PCA) is a valuable tool in this regard (Riley et al., 2011).
PCA can be used to identify collective variables, or principle
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components, based on the relations among observations in a
high-dimensional state space (cf. Haken and Wunderlin, 1990).
It also indexes the load magnitude of each state variable on the
identified principle components, which can help uncover the
coupling between behavioral variables. The strength of PCA is
its ability to include many variables of a complex system in
a single analysis and to provide an output that quantifies the
degree of relation, or even coordination, between the component
variables. Its limitation is that PCA is a linear analysis, and
therefore assumes linear relations among the system’s variables.
PCA provides the first part of the analysis by quantifying group
coherence at the global level.

At the local level, the next step is to quantify the degree of
coordination between pairs of individuals in a group, to reveal
the coupling strength as a function of variables such as neighbor
distance and position. One approach is to compute the linear
cross-correlation between the time series of speed (or heading)
for two pedestrians. The limitation of this analysis is that it
assumes that individuals are coupled at a single time-scale and
that behavior is stationary (i.e., a constant delay). It therefore
has limited utility in analyzing more complex systems, such as
bidirectional coupling at multiple time-scales and non-stationary
behavior that evolves over time.

Cross-recurrence quantification (CRQ), is well-suited to
the latter type of data and has proven useful in analyzing
interpersonal coordination (cf., Shockley et al., 2003; Richardson,
D. C. et al., 2007; Ramenzoni et al., 2012). CRQ is a non-linear
analysis that indexes repeating patterns in a pair of time series
at multiple temporal scales (Webber and Zbilut, 1994; Shockley
et al., 2002). In particular, the output measure “cross-maxline”
(CML) has proven to be a reliable estimate of the temporal
stability of coordination, associated with coupling strength,
between two movements (Richardson, M. J. et al., 2007; Page
andWarren, 2013). However, these local analyses are limited to a
pairwise comparison of dyads in a group.

Finally, to determine whether a model of the local coupling
can account for the observed patterns of coordination, agent-
based simulation methods can be used to try and reproduce the
data. In particular, we investigate the mechanism of coordination
by testing whether our model of the local “rule” for speed
matching, derived from data on pairs of pedestrians, generalizes
to coordination in a group, and can explain the adoption of a
common collective speed and heading.

Our goal in the present paper is to measure the degree
of coordination in pedestrian groups at the global and
local levels, and to model the local coupling that generates
such coordination. Establishing the emergence of coordinated
behavior is prerequisite to modeling the informational control
laws, characterizing the conditions for the emergence of such
behavior, and eventually investigating the roles of other cognitive
and social variables. In the present experiment, groups of four
pedestrians walked toward one of three goals, while the group’s
initial density (interpersonal distance) was varied on each trial
(see Figure 1). The role of density is important due to its
potential contribution to self-organization: if coupling strength
is distance-dependent, higher densities would create stronger
local interactions and promote coherent crowd formation.

Previous results have shown that, for an individual pedestrian,
the coupling to obstacles decays exponentially with distance,
asymptoting at 3–4m (Fajen and Warren, 2003), but on the
other hand, the coupling between pairs of pedestrians appears to
be independent of distance, at least up to 3–4m (Dachner and
Warren, 2014; Rio et al., 2014). In the present experiment, we
explored interpersonal distances of 0.5–2.5m within groups of
four people.

As described above, we analyzed two behavioral variables: the
walking speed s and walking direction Φ for each agent. This
resulted in a total of eight state variables, or DoF, for the four-
agent system. To determine whether the observed coordination is
a consequence of the informational coupling between individuals
and is not due to other task constraints, we compared the real
groups with virtual groups that were constructed by randomly
sampling the same four pedestrians from four different trials.
At the global level, we hypothesized that the real groups would
exhibit dimensional compression in all conditions, compared to
the virtual groups. We also investigated whether dimensionality
would be reduced more in the higher density conditions. At
the local level, we hypothesized that the coupling strength
would be greater between real dyads than virtual dyads, and we
asked whether it would increase as a function of group density.
Finally, we tested whether Rio et al.’s (2014) speed-matching
model generalizes to the observed speed coordination between
individuals in a group and can explain the emergence of a
common speed.

METHOD

Participants
Five groups of four participants (N = 20; M age 23.57 ±

0.93 years; 12 female, 8 male), students at Brown University,
were compensated $15 for their participation. Participants had
normal or corrected-to-normal vision and no history of cognitive
deficits, lower extremity injury, or neuromuscular disorders that
would inhibit normal locomotor activity. This study was carried
out in accordance with the recommendations of the Brown
University Institutional Review Board with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the Institutional Review Board.

Materials and Apparatus
The experiment was conducted in the VENLab at Brown
University, a 12 × 14m open room. The head position of each
participant was tracked with a MicroTrax inertial tracker affixed
atop a lightweight bicycle helmet on the head. Each tracker
communicated with an IS-900 ultrasonic overhead grid tracking
system (InterSense, Billerica MA, USA) and provided 6 DoF
position (4 mm RMS error) and orientation (0.1◦ RMS error)
data at 60 Hz. Three cardboard goal poles (∼2m tall and 0.5m
in diameter) were placed at an initial distance of 8m from the
“trigger line” for the front two participants, and spaced 2m apart,
with goal 2 straight ahead, goal 1 to the left, and goal 3 to
the right (see Figure 1). Colored tape was used to mark four
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FIGURE 1 | The four possible starting positions for each of the four possible starting densities (left). Note the dotted “trigger” line 1m from the midpoint between the

front two participants that represents when the experimenter “goal” command was given. The visual couplings of the six possible dyads (center) with double arrows

indicating bi-directional vs. unidirectional (single arrow) coupling. The six dyads are highlighted in the right pane.

possible starting positions in a square configuration, with initial
interpersonal spacing of 0.5, 1.0, 1.5, or 2.5m on a side.

Design and Procedure
Each group completed eight trials in each of 12 conditions (see
Figure 1), with four densities (interpersonal distances of 0.5, 1.0,
1.5, 2.5 m) crossed with three goal positions (left, straight, right).
This resulted in a total of 96 trials, presented in a random order,
in each experimental session. Goal position was manipulated in
order to vary the heading direction between trials, and thus was
not included as a factor in the statistical analyses.

At the beginning of each trial the four participants
were randomly assigned to the four positions in the square
configuration: (1) front right, (2) front left, (3) back right, or
(4) back left (Figure 1). Once they were standing in the correct
location, an experimenter gave a verbal “go” signal and the group
began to walk straight ahead. As the last participant crossed a
notional “trigger line” 1m after the starting line, the experimenter
gave a verbal command of goal 1, 2, or 3. The only instruction
given to the participants was to walk to the specified goal at a
comfortable pace without stopping. Participants were not told to
stay together as a group or to maintain their initial configuration.
Each trial lasted∼6–8 s.

Data Reduction and Analysis
The tracking system recorded the medial-lateral and anterior-
posterior head position (x- and z-coordinates, respectively) of
each participant at a sampling rate of 60 Hz. The raw (unfiltered)
position data were used to compute the participant’s s andΦ from
the displacement between successive samples, according to the
following equations:

si =

(

(xi − xi−1)
2 + (zi − zi−1)

2
)0.5

1t
, (1)

φi = tan−1

(

xi − xi−1

zi − zi−1

)

, (2)

where xi and zi are the head position on the ith frame, in room
coordinates. The Φ and s time series were used for all subsequent
analyses.

Virtual Group Construction
Certain aspects of the procedure—such as a common goal, a
simultaneous go signal, a simultaneous goal command, and
walking at preferred speed—may have yielded correlations
between participants that were not due to the visual coupling.
To isolate the effect of the coupling from these task constraints,
the data from real groups were compared with control data from
constructed virtual groups that were not visually coupled. For
each real group trial, a paired virtual group trial was created by
randomly selecting a time series for the same four participants
in the same condition, but from four different trials. Thus, all
task constraints were matched, except that the participants in the
virtual group were not perceptually coupled with each other. The
four randomly selected time series were temporally aligned based
on the goal command, and their lengths equated by cropping the
beginning and/or end of the time series, to match the length of
the shortest time series (a requirement of both PCA and CRQ
analysis). This resulted in four randomly selected time series
of equal length that were aligned by the goal command. Using
these virtual groups as a control ensured that any significant
coordination between participants was due to the perceptual
coupling, not the task constraints.

Principal Components Analysis (PCA)
PCA identifies linear relationships within multi-dimensional
datasets and then maps the original data into a newly defined
space, with the principal components as its axes. The principal
components represent the dataset’s primary dimensions of
variation, but do not necessarily map directly onto the original
dimensions of the actual measurement. The end result is a
representation of potentially new, important collective variables
that best account for the variance within the observed system.

In the context of the present experiment, eight variables of
interest representative of the 8 DoF of the observed system
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(i.e., Φ and s for each of the four participants in each group)
were submitted to a single PCA. The data were normalized
using a z-score transform prior to analysis. PCA was performed
in Matlab using the princomp function and the results were
examined in a similar fashion to Ramenzoni et al. (2012).
First, the number of components that together account for 90%
or more of the variance in the data set was determined. To
investigate dimensional compression in the real vs. virtual group,
a 4 × 2 mixed-model ANOVA was conducted on number of
components, with initial density as a within-subjects factor and
group (real vs. virtual) as a between-subjects factor, averaged
across goal position. Next, the amount of variance accounted
for by the first principal component (PC) in the real vs. virtual
group was compared using an identical mixed-model ANOVA.
The analysis was limited to the first two PCs because (a) the
subsequent components were dependent on the first PC, and (b)
the second PC provides additional context about the subsequent
loadings. Greater variance accounted for by the first PC in the
real group indicates dimensional compression, and thus greater
coherence, in the visually coupled system. Finally, the mean
correlation coefficient (r) for the loading of each behavioral
variable on the first PC was examined to investigate which of
the eight variables were most influential in characterizing the
group’s behavior. The r-values were transformed using a Fisher’s
z’ transform and submitted to a 4× 8× 2 mixed-model ANOVA
with initial density and agent position as within-subjects factors,
and group as a between-subjects factor, again averaged across
goal position for PC1. The aim of this analysis was to examine
whether the speed or heading of an agent in a particular position
more strongly influenced the group’s behavior and whether this
influence depended on density.

Cross-Correlations
At the local level, linear cross-correlation was used to measure
the strength of the relation and the time delay between pairs of Φ
time series (and, separately, pairs of s time series) for each of the
six dyads in a group (illustrated in Figure 1, right). On each trial,
the cross-correlation between the two time series for each dyad
was computed, varying the time delay from−2,000 to+2,000 ms
(where positive delays imply that the back participant lags behind
the front participant, or the left participant lags behind the right
participant in side-by-side dyads). For statistical comparisons,
mean r-values for each participant were computed using Fisher’s
z transform to correct for non-normality and submitted to a 4 ×
6× 2mixed-model ANOVA (density× dyad× group); the mean
z-values were transformed back into the mean r-values reported
below. A similar ANOVAwas performed on the optimal delay for
each pair of time series.

Cross-Recurrence Quantification (CRQ)
A non-linear, two-dimensional CRQ analysis was used to
quantify the time-correlated activity between pairs of Φ time
series (and pairs of s time series) for each dyad in a
group. Referring to Figure 2, a CRQ analysis is conducted
by first embedding the pair of normalized time series in a
multidimensional, time-delayed phase space (see Webber and
Zbilut, 1994; Shockley et al., 2002; Marwan et al., 2007). Because

not all variables that make up the behavior in a dynamical system
are necessarily knowable a priori, phase space reconstruction
allows for the behavior of these potentially “hidden” variables in
the dynamical system to be evaluated via their interaction with,
or influence on, the known variable (in this case the Φ or s time
series). Hence, the structure of the reconstructed phase space
can reveal the underlying dynamics of the dynamical system
as a whole. Specifically, the “neighborliness” of points within
some tolerance or radius in phase space can indicate recurrent
points in the two time series. These points represent states in
one time series that closely correspond to previous, current or
future states in the other time series, and can illustrate behavioral
patterns of coordination in the observed system. The recurrent
points are identified and represented in a cross-recurrence plot
(see Figure 2, bottom), from which a suite of measures can be
computed to quantify these patterns (see Shockley et al., 2002;
Marwan et al., 2007 for a review of analysis procedures).

The present experiment focused on cross-maxline (CML):
specifically, the longest diagonal line of consecutive recurrent
points on a cross-recurrence plot. This provides a measure of
the longest time interval that the heading (or speed) of two
participants was coupled (i.e., the two participants maintained
the same direction of travel or walking speed, as specified by a
predetermined threshold viz. radius) during a given trial, and
this interval could occur at any point during a given trial.
CML is known to be sensitive to the temporal stability of
coordination between two time series, associated with coupling
strength. The parameters used for CRQ were as follows: for
Φ, embedding dimension = 6; delay = 4 data points; radius
within which points are counted as recurrent = 0.7% of
the actual distance separating points in reconstructed phase
space, and for s embedding dimension = 5; delay = 3 data
points; radius within which points are counted as recurrent =
1.0% of the actual distance separating points in reconstructed
phase space.

RESULTS

Principal Components Analysis
See Figure 3 for sample biplots—a representation of both the
observations and variables—of PC coefficients for a real group
(left panel) and a virtual group (right panel). The clustering of
the speed variables along the positive x axis of the real group (left)
indicates a consistent, positive loading of those variables on PC1,
as contrasted with the virtual group (right) where the variables
exhibit greater variance around both the positive x (PC1) and
positive y (PC2) axes.

Number of Components
The number of components required to account for 90% of the
variance was significantly lower in real groups (M = 3.61 ±

0.12) compared to virtual groups (M = 6.18 ± 0.07), F(1, 8) =
583.95, p < 0.001, η2 = 0.99 (see Figure 4). Thus, the external
task constraints appear to reduce the group DoF from 8.0 to
6.18, and the perceptual coupling between participants further
reduced the DoF to 3.61, consistent with the emergence of global
coordination. There was a significant interaction between group
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FIGURE 2 | A schematic of the steps in the CRQ analysis. For each trial, the speed time series of one agent (FR = top left) and a second agent (BR = top right) are

unfolded separately into a shared reconstructed phase space via time-delayed copies of each measured time series, denoted as sFR,BR (center, left). Recurrent points

within a given radius and strings of recurrent points are identified with respect to each point in phase space and represented in a cross-recurrence plot (center, right),

in which each axis represents the sFR and sBR time series at each time step. Each pixel indicates a recurrent point on a recurrence plot (bottom), and the diagonal line

structures indicate the length of a string of recurrent points, or the co-evolution of the two time series at different time delays. The longest diagonal line, cross-maxline

(CML), was computed for each dyad in the group.

and density, F(3, 24) = 3.46, p = 0.032, η2 = 0.30; post-hoc tests
revealed that this was driven by the group difference with the
real groups exhibiting a lower number of components needing
to account for 90% of the variance. No other main effects of dyad
or density were found (p > 0.05).

PC1
The first principal component accounted for significantly more
variance in real groups (M =59.29% ± 0.79) than in virtual
groups (M =31.47% ± 0.45), F(1, 8) = 142.60, p < 0.001, η2

= 0.95. This result confirms dimensional compression in group
behavior due to the visual coupling. There was also nomain effect
of initial density on the variance accounted for by PC 1, and no
interactions.

Contribution of Variables to PC1
The composition of the first principal component was further
examined to determine the relative contribution of each of the
eight behavioral variables, by computing the loading (r) of each
variable on PC1. Overall, the s and Φ variables for all agent
positions in the real group exhibited a stronger correlation with
PC1 than they did in the virtual group (M = 0.36± 0.006 andM
= 0.31 ± 0.008), F(1, 8) = 31.23, p < 0.001, η2 = 0.78, suggesting
that the behavior of real groups was more coherent than that of
virtual groups. There was also a main effect of position, F(7, 56)
=52.27, p = 0.000, η2 = 0.867. Follow-up t-tests (Bonferroni
corrected p≤ 0.01) indicated that across all agent positions, the s
variable was more strongly correlated with PC1 in the real groups
than in the virtual groups (all p < 0.001), whereas there were no
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FIGURE 3 | Sample biplots of PC coefficients for a real group trial (Left) and a virtual group trial (Right). These offer a representation of both the observations and

variables of PC coefficients with the proximity of each trend line corresponding to the coefficient values for that particular variable.

group differences for the Φ variable (all p > 0.01). Within the
real groups, the s variable had a higher correlation than the Φ

variable (p < 0.001), whereas in the virtual groups, s and Φ did
not significantly differ (all p >0.01). Greater group coordination
was, therefore, primarily due to the visual coupling of walking
speed; in contrast, individual headings were generally aligned
whether or not participants were visually coupled, presumably
due to the presence of a common goal. See Figures 5A,C for the
distribution of correlation coefficients for the loading of speed
on PC1 in the real and virtual groups, and Figures 6A,C for the
corresponding distributions for heading. The descriptive values
of skewness, kurtosis and variance for all coefficients loading on
PC1 appears in Table 1.

PC2
The second principal component was also examined to determine
the amount of variance accounted for in each group. The results
indicated that PC2 accounted for significantly more variance in
real groups (M =20.23% ± 0.68) compared to virtual groups (M
=17.81%± 0.68), F(1, 8) = 21.88, p= 0.002, η2 = 0.73. There was
no main effect of density nor significant interaction effects (p >

0.05).

Contribution of Variables to PC2
Negative correlation coefficients were prevalent for PC2. Because
of this, analyses were limited to qualitative observations and
descriptive characteristics of the distribution of coefficients and
skewness, kurtosis, and variance. The distribution of correlation
coefficients for speed as it loaded on PC2 exhibited a negatively
skewed, unimodal distribution for the real group compared
to a somewhat biomodal distribution with almost no skew in
the virtual group (See Figures 5B,D for the distribution of
coefficients for speed in the real and virtual group, respectively).
Similarly, the distribution for heading as it loaded on PC2
exhibited a bimodal distribution with less skew than the virtual
group (see Figures 6B,D for the distribution of coefficients

FIGURE 4 | The amount of variance accounted for by each component

beginning with PC1.

for heading). See Table 1 for skewness, kurtosis, and variance
descriptive values for all coefficients loading on PC2.

Cross-Correlations
Speed (s)
ANOVA on transformed r revealed a main effect of group,
F(1, 8) = 57.76, p < 0.001, η2 = 0.88, such that the real group
was more strongly coupled than the virtual group (M = 0.832 ±
0.021 vs. 0.358± 0.166, respectively). There was also a significant
group× density× dyad interaction, F(9, 72) = 2.88, p= 0.006, η2

= 0.22. Bonferroni-corrected t-tests revealed that all real group
dyads had a significantly higher correlation compared to the
virtual group dyads (p < 0.001). No other comparisons were
significantly different. ANOVA on the optimal delay revealed a
group × dyad interaction, F(3, 24) = 3.02, p = 0.05, η2 = 0.22,
with follow-up tests indicating that the optimal delay for the real
group back side-to-side dyad was significantly lower (M= 0.00±
0.00 s) compared to the corresponding virtual group dyad (M =
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FIGURE 5 | The probability distribution of PC coefficients (r) for the speed variable: (A) Real group PC1, (B) Real group PC2, (C) Virtual group PC1, (D) Virtual group

PC2.

0.04 ± 0.07 s). No other significant differences were found with
respect to group, density or dyad.

Heading (Φ)
ANOVA on r revealed no significant effects of group, dyad,
density or interactions between/among these factors. ANOVA on
delay revealed a significant main effect of dyad, F(3, 24) = 3.16,
p= 0.04, η2 = 0.24; however, Bonferroni corrected post-hoc tests
did not reveal any significant differences between the various
dyads. No other effects of group, density or dyad were observed.
As mentioned above, because all participants turned to walk to a
common goal, their heading directions were highly correlated in
the virtual group as well as the real group.

Cross Recurrence Quantification
Cross-Maxline for s
Representative cross-recurrence plots for speed from a trial with
a real dyad (Figure 7, left) and virtual dyad (Figure 7, right).
Prior to inferential analyses a log10 transform was conducted to
correct for positive skewness in the data. A significant main effect
of group was observed on CML, F(1, 8) = 87.90, p < 0.001, η2

= 0.917. Specifically, the real group exhibited an average CML
(M = 111.13 ± 10.92 samples) more than twice as long as the
virtual group (M = 48.78± 2.79 samples), irrespective of dyad or
initial density. This result demonstrates that the speed coupling

is significantly more stable in the real than the virtual groups.
There were no main effects of density or dyad, but a significant
density × dyad × group interaction was found, F(9, 72) = 3.16, p
= 0.003, η2 = 0.283. Follow-up t-tests (Bonferroni corrected p≤
0.01) indicated that the real groups were more strongly coupled
than the virtual groups for all densities and dyads, but no other
effects were significant (see Figure 8). These results imply that the
speed coupling is equally stable at high and low densities, and for
leader-follower and side-by-side dyads.

MODELING

Given that speed coordination was significantly greater in real
than virtual groups, whereas heading coordination was not,
we proceeded to simulate speed coordination in real groups
based on Rio et al.’s (2014) model of the local coupling. A
dyad was simulated by using the time series of speed for one
participant (the “leader”) as input, and computing the time series
of acceleration for a model “follower,” according to Equation (1):

ẍf = c ·
[

ẋl − ẋf
]

(3)

where ẋl is the leader’s speed, ẋf is the follower’s speed, and c is a
gain parameter.We adopted c= 1.87, the best-fit parameter value
from Rio et al. (2014), and the initial speeds of the leader and
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FIGURE 6 | The probability distribution of PC coefficients (r) for the heading variable: (A) Real group PC1, (B) Real group PC2, (C) Virtual group PC1, (D) Virtual group

PC2.

TABLE 1 | Descriptive properties of the Φ and s PC coefficient distributions for

PC1 and PC2.

Variable Real Group Virtual Group

Skewness Kurtosis Variance Skewness Kurtosis Variance

Φ–PC1 −1.44 5.18 0.01 −1.03 3.73 0.04

Φ–PC2 −2.35 10.02 0.04 0.21 1.95 0.12

s–PC1 0.33 2.45 0.01 −2.39 9.94 0.03

s–PC2 2.58 12.62 0.01 0.28 1.78 0.12

follower were zero. The simulation was evaluated by comparing
the time series of the model “follower” with that of the human
“follower.”

Simulations were performed for each dyad on each trial. The
six dyads were classified into three dyad types: front-back, side-
by-side, and diagonal (see Figure 1). Front-back dyads were
symmetrical relative to the group’s walking direction, so they
were analyzed together; the same held for diagonal dyads. By
contrast, the side-by-side dyads were fundamentally different
from one another; pedestrians in the front side-by-side dyad were
visually coupled only to each other, while those in the back side-
by-side dyad could potentially receive visual information from all
three neighbors in the group. For this reason, the front side-by-
side and back side-by-side dyads were analyzed separately.

For front-back and diagonal dyads, the front participant
served as the “leader” and the back participant as the modeled
“follower;” side-by-side dyads were simulated twice, with the left
(right) participant as the “leader” and the right (left) participant
as the modeled “follower.” Performance was evaluated by
computing the correlation coefficient (Pearson’s r) between the
simulated “follower” time-series and the observed time-series
of the human “follower” on each trial; root-mean-squared-error
(RMSE) between the two time series was also analyzed.

Simulations of Speed Coordination
Sample time series of the simulated and observed “follower”
acceleration (both in red), together with the observed “leader”
acceleration (in blue), for four dyads appear in Figure 9. The
mean correlation for the front-back dyads was r = 0.89 ± 0.33
(RMSE = 0.26 m/s2), for the diagonal dyads was r = 0.87 ±

0.01 (RMSE = 0.26 m/s2), for the front side-side dyad was r
= 0.79 ± 0.30 (RMSE = 0.29 m/s2), and for the back side-
side dyad was r = 0.74 ± 0.30 (RMSE = 0.28 m/s2; Figure 10
top). A two-way ANOVA on transformed r revealed a main
effect of dyad, F(3, 64) = 8.00, p < 0.001, η2 = 0.27. Post-hoc
comparisons with Bonferroni correction indicated that themodel
performs significantly better on front-back dyads and diagonal
dyads than on the back side-by-side dyad (p < 0.001 and p <

0.01, respectively), probably because back dyads are less strongly
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FIGURE 7 | Sample cross-recurrence plots for speed time series from a real (Left) and a virtual (Right) leader-follower dyad. Note the presence of a main diagonal

line (i.e., line of synchronization) and the additional diagonal lines that are visible in the cross-recurrence plot for the real dyad. These are indicative of a temporally

stable speed coupling between agents.

FIGURE 8 | CML values for real compared to virtual groups for each of 4 densities and 6 dyads. All real group conditions were significantly greater than virtual group

conditions (Bonferroni corrected p ≤ 0.01). XS = 0.5m apart, S = 1m apart, W = 1.5m apart, XW = 2.5m apart.

coupled to each other and influenced by the front dyad. Post-hoc
comparisons with Bonferroni correction showed no significant
pairwise differences in correlation (p > 0.05) as a function of
density.

A similar pattern of results holds for statistical tests on RMSE
of speed (see Figure 10, bottom). A two-way ANOVA revealed
a main effect of dyad on RMSE, F(3, 64) = 6.86, p < 0.001,
η2 = 0.24, and a main effect of density, F(3, 64) = 6.81, p <

0.001, η2 = 0.24, but no interaction, F(6, 48) = 0.48, p > 0.05.
Bonferroni-corrected post-hoc comparisons confirmed that the
model performs better on front-back dyads and diagonal dyads
than on both side-by-side dyads (p < 0.05).

In sum, the speed-matching model generalizes from pairs of
pedestrians to small groups. It provides a close approximation of
the local speed coupling, and successfully explains both pairwise
coordination and an emergent group speed.
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FIGURE 9 | Sample time series of the simulated and observed “follower” acceleration (both in red), together with the observed “leader” acceleration (in blue), for front

side-to-side (A), leader-follower diagonal (B), leader-follower (C), and back side-to-side (D) dyads.

DISCUSSION

The present experiment investigated the degree of coordination
in pedestrian groups during goal-directed walking, with the aim
of analyzing the effects of a visual coupling, group density,
and neighbor position on collective behavior. We analyzed the
behavioral variables heading Φ and speed s in a four-pedestrian
group, yielding an eight DoF system. We then submitted the
behavioral variables to a global (collective) analysis: (1) PCA to
index the dimensional compression of group behavior; and to
local (pairwise) analyses: (2) linear cross-correlation to estimate
the coupling strength between dyads in a group, and (3) non-
linear CRQ tomeasure the dynamic stability of the local coupling.

Our main finding is that most analyses yielded evidence of
spontaneous coordination in walking speed due to the visual
coupling in real groups, compared to reshuffled virtual groups.
It is important to point out that the external task constraints
in this experiment (common goal, simultaneous go signal,
simultaneous goal command, similar preferred walking speeds)
by themselves induced similar behavior across individuals, which
we estimated using the shuffled virtual groups. We expect that
emergent heading and speed coordination would be observed
in less restricted contexts, and research is under way to study
spontaneous coordination in both heading and speed.

At the global level of analysis, the PCA indicated that visually
coupled pedestrian groups exhibited significant dimensional
compression across all experimental conditions. Note that the
external task constraints accounted for a reduction of ∼2.2 DoF

(from 8 to 6.2) in the virtual groups, a 23% reduction in DoF.
Yet the visual coupling produced a further reduction of ∼2.6
DoF (from 6.2 to 3.6) in the real groups, or an additional 33%
reduction inDoF. This is indicative of a functional reorganization
of DoF via the informational coupling of behavioral variables,
consistent with the emergence of collective coordination. These
results are similar to those of Ramenzoni et al. (2012), who
demonstrated dimensional compression in an interpersonal
supra-postural task, and support the reduction of DoF in
interpersonal coordination proposed by Riley et al. (2011).

The analysis of the composition of PC1 offers preliminary
evidence of a new collective variable underlying the emergence
of group coordination in the context of the current task. The
loading of behavioral variables on PC1 suggests that speed
coordination is a primary contributor to the collective behavior,
whereas heading coordination was no greater in the real than
the virtual group. Further, the analysis of the composition of
PC2 demonstrated that the heading and speed loading is not
simply dichotomous, as evidenced by the bimodal distribution
for the heading coefficients in the real group (Figure 5B) and the
negatively skewed unimodal distribution of the speed coefficients
(Figures 6B). This indicates that the heading behavioral variable
was a relatively weak contributor to the first two PCs overall.
Thus, the remaining discussion focuses on the analysis and
modeling of speed coordination.

At the local level of analysis, the cross-correlations for speed
indicated a high visual coupling strength within the groups.
Specifically, a significantly higher mean correlation was found for
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FIGURE 10 | Bar graphs of simulation results for mean correlations between

real dyads (Top), and RMSE between real dyads (Bottom). Duncan grouping

specifies significant differences.

the real group (r= 0.84) compared to the virtual group (r= 0.36),
independent of dyad. This can be explained similarly to the PCA
results, in that the visual coupling increased the speed correlation
for all dyads. It appears that local coupling strengths can be
reliably estimated by pairwise linear correlations. However, the
pairwise cross-correlations did not reveal a significant difference
between types of dyads. This could be due, in part, to the
possibility that back participants were influenced by more
than one neighbor at a time. We are currently developing a
neighborhood model that allows us to estimate the combined
influence of multiple neighbors.

The non-linear CRQ analysis provided further evidence
regarding the strength and stability of the local coupling.
Speed coordination exhibited a longer CML in real groups
than in virtual groups, indicating that the visual coupling was
dynamically stable. Specifically, real dyads were stably coupled
for almost two full seconds (i.e., 111.13 samples at 60Hz), at some
point in each 6–8 s trial.

Taken together, the PCA, cross-correlation, and CRQ results
indicate that the global coordination in the present task is
due in large part to the local coordination of speed, which
in turn emerges from the visual coupling between individual
pedestrians. Finally, we tested whether an empirical model of the
local speed coupling could reproduce the observed coordination
patterns. The simulation results supported this interpretation,
for the coordination of dyads in a group is reproduced by the

speed-matching model. The simulation results show that the
speed-matching model generalizes from pairs of pedestrians to
pedestrian groups, and imply that the local coupling is sufficient
to explain the adoption of a common speed. We conclude that
the local visual coupling can account for the pattern of global
coordination.

Somewhat to our surprise, we did not observe a consistent
effect of density on the degree of coordination. In fact, no
measures yielded significant density effects, consistent with
our previous finding that speed coordination in following is
independent of interpersonal distance over 1–3m (Rio et al.,
2014). It is possible that the range of densities tested (0.5–2.5m
spacing) was insufficient to reveal an effect, or that the external
task constraints, combined with a short walking distance, limited
the degree of variation in the data. Research is in progress
to test a wider range of densities (up to 4m spacing) over
longer walking distances, without a common goal or timing
signals.

Finally, we would like to mention that we also performed an
uncontrolled manifold (UCM) analysis on the eight-dimensional
Φ and s data (Scholz and Schöner, 1999), as another way to
estimate the reduction in effective DoF. This approach was
unsuccessful, and it is instructive to consider why that was the
case. A UCM analysis depends on the existence of reciprocal
compensation between two or more behavioral variables in the
system, which is considered a signature of motor synergies.
But in retrospect, there is no reason to expect reciprocal
compensation in collective group behavior: the acceleration of
one agent would not be expected to produce a compensatory
deceleration by a coupled agent to maintain the mean speed, but
rather a coordinated acceleration; similarly, a change in heading
direction by a subset of agents would not be expected to yield
compensatory heading changes in the other direction, but a
coordinated turn by the group. This observation suggests that
reciprocal compensationmay not be a general characteristic of all
forms of interpersonal coordination in human groups (cf. Riley
et al., 2011).

The present work is a starting point for understanding
collective behavior in pedestrian groups. We began by analyzing
the local coupling in dyads, on the hypothesis that this generic
coordination mechanism would scale up to small groups, large
crowds, and even flocks or schools in other species. Expanding
the methodological framework of interpersonal coordination
(Riley et al., 2011; Ramenzoni et al., 2012) to the behavior of small
groups, we obtained evidence of dimensional compression and
speed coupling. The present framework provides a foundation
for the analysis and modeling of local and global coordination
in future research. It is likely that other factors may also
constrain group coordination. For example, cognitive processes
such as decision-making and motivation, and social factors
such as group membership, dominance relations, and social
communication, may influence the selection of goals, neighbors,
walking speeds, and control laws and shape the emergent crowd
dynamics. The present experiment evaluates ways of quantifying
local and global coordination in many of these contexts,
and offers an approach to characterizing emergent collective
behavior.
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