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THE BIGGER PICTURE Being able to track the intricate movements of a spider, a cat, or any other animal
does not mean we understand its behavior. Behaviors should be studied from the animal’s perspective,
yet for now, we can offer only our own anthropocentric interpretations. Trying to understand animals is
like trying to do machine translation of a new language when we do not even know what letters make up
the words; however, we do have some clues. For example, adjacent movements or movement patterns
with similar outcomes are probably more related than others. A different approach is to focus on animal per-
sonalities. Personality drives behavior, and it was recently shown to be a property that can be automatically
and objectively measured. Moreover, as a mediator between genes and behavior, personality is more
straightforward to translate between species. New ways of interpreting behavior will improve our ability to
understand animals, but potentially also change how we study and practice human psychology.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

We can now track the position of every fly’s leg or immerse a tiny fish inside a virtual world by monitoring its
gaze in real time. Yet capturing animals’ posture or gaze is not like understanding their behavior. Instead, be-
haviors are still often interpreted by human observers in an anthropomorphic manner. Even newer tools that
automatically classify behaviors rely on human observers for the choice of behaviors. In this perspective, we
suggest a roadmap toward a "human-free" interpretation of behavior. We present several recent advances,
including our recent work on animal personalities. Personality both underlies behavioral differences among
individuals and is consistent over time. A mathematical formulation of this idea has allowed us to measure
mouse traits objectively, map behaviors across species (humans included), and explore the biological basis
of behavior. Our goal is to enable “machine translation” of raw movement data into intelligible human con-

cepts en route to improving our understanding of animals and people.

INTRODUCTION

A colleague once told me that she would rather spend 3 months
writing an algorithm for animal tracking than "waste" 2 weeks on
annotating her data by hand. This statement came at a time in
which practically everyone engaged in studying animal behavior
had to build specialized systems and write their own code. In our
case, for example, even though we wanted to work with an animal
as common as the house mouse, we could not use commercially
available tools. At the time, these tools could handle only one an-
imal at a time, while we wanted groups (Figure 1; see Shemesh
et al."). At roughly the same time, fittingly, another lab just one
floor down from us was busy building their own slightly modified
system. The main difference between our two approaches was
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that we used hair dyes to label the mice, while they employed ra-
dio-frequency identification (RFID) for identification.?

A seminal step in animal behavior science of recent years has
been the release of DeepLabCut.® This deep neural network pro-
vides a way to estimate the frame-by-frame posture of any animal
from video data using a relatively small annotated training set.
Although tracking pose was previously possible for mice, flies,”
worms,” or fish,® and others, DeepLabCut made it easy to track
any animal, in different environments, without requiring stringent
technical skills or a great deal of tweaking (Figure 1C). Additional
tools that followed, such as LEAP” and DeepPoseKit,® provide a
different take on the same idea, while others, like idtracker.ai,’
focus on tracking the position of animals within large groups, alto-
gether eliminating the need to tag the animals.
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nized behaviors such as chases, approaches, exploration, etc.
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Figure 1. Tracking groups of animals under
naturalistic conditions within the lab

(A) Our experimental setup tracked the behavior of
freely behaving mice in groups of four inside an
enriched arena. The mice were marked using a
distinct hair dye to identify each individual. The
arenas included two feeders, two water bottles, a
closed nest, two ramps, an S-shaped wall, and a
small shelter.

(B) The mice spent at least 4 days inside the arenas,
while their positions and behavior were automati-
cally tracked. The trajectories of the mice’s centers
of mass during their first 5 min in the box are shown.
Based on these trajectories, the computer recog-

Posture

(C) Using deep learning tools, such as DeepLabCut, we determined each mouse’s posture, including the head direction and exact tail position.

The ability to track animal movement has improved consider-
ably, and not only in the video domain. Global navigation satel-
lite systems (such as GPS and BDS, for example'®) and “reverse
GPS” systems like the ATLAS project,'" as well as RFID bea-
cons,’? have all gotten smaller, cheaper, and easier to use,
and have the battery life needed to track large groups of animals
over large distances. Recently, and after some delay, the ICA-
RUS initiative, which is a specialized receiver positioned on
the international space station, started collecting data from
lightweight transmitters mounted on animals all over the
world."®

These new tracking tools not only allow us to measure more
complex data, but also enable the design of novel experiments.
For example, real-time eye tracking of zebrafish larvae
(measuring approximately 12 mm in length) made it possible to
place freely behaving animals within a virtual world'®. Unlike
the headsets used in most virtual-reality experiences in humans
and, occasionally, other animals,'® this system works by projec-
ting images directly to the animal’s vicinity, taking into account
its field of view. In this way, the animals were exposed to expe-
riences such as a dynamic environment or social encounters
with one or more virtual fish.

The driving force behind all these innovations is the hope
that an improved data flow will enhance our understanding
of behavior. Yet, it is essential to keep in mind that what we
actually measure are movements and poses, which do not
necessarily map into meaningful behaviors. Behavior is orga-
nized in a hierarchical structure, wherein simple actions are
nested within more complex actions and so on across multiple
scales.'® We usually refer to a behavior as "ethologically rele-
vant" when it is meaningful from the animal’s perspective.
Peacock spiders, for example, occasionally display complex,
well-orchestrated action sequences that involve leg move-
ments, fang wiggling, and abdomen wagging while exposing
their elaborate colored patterns.'” Although each pose is
unique, it can also be considered part of just one complex
behavior: a mating ritual (or at least that is what we assume,
as it often leads to procreation).

Although there are many ways to assign a behavioral interpre-
tation to movements, recently, several tools that can do it auto-
matically were developed. Most of these tools can recognize
only a predefined set of species-specific behaviors."'®° In
contrast, the system developed in Kabra et al.?" uses machine
learning to train a classifier from a small set of user-annotated
behaviors. Either way, all these tools rely on human observers
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to define the behaviors to be tracked, often resulting in a biased
and anthropocentric viewpoint.

Making sense of movements or postures can also be achieved
by applying various computational approaches that eliminate
subjective interpretation. Many of these approaches rely on the
assumption that body postures occurring in adjacent time
frames are more closely related than ones happening at unre-
lated times.?>*® Based on this assumption, we can define a
mapping function that takes instantaneous postures and maps
them into points in some low-dimensional space, and use this
to cluster similar behaviors or segment behaviors in time. The
motion-sequencing method (or MoSeq; see Wiltschko et al.??),
for example, uses temporal sequencing to detect sub-second
motion primitives that the authors refer to as syllables. This
method was recently used to capture the unique behavioral
mark of various neuro- and psychoactive drugs.?* In Stephens
et al.®, an analysis of the shape of C. elegans revealed that just
four principal components account for 95% of the worm’s shape
variability. These so-called "eigen-worms" are responsible for
different modes of motion: the first and second components
are primarily related to crawling, the third component to turning,
and the fourth accounts for head and tail movements relating to
foraging and navigation behaviors.

But rather than breaking behavior down into its components, a
different approach altogether is to try to capture the processes
that drive behavior. One type of such a process is well known
from human psychology, namely personality.”® The prevalent
model for human personality is the big-five personality model,
which, as the name suggests, describes an individual’s person-
ality using five continuous factors.® These five factors are usu-
ally determined by a self-report questionnaire, precluding its
use in animal studies.

The challenge of measuring animal personality

Considerable controversy surrounds the concept of animal per-
sonality. From an evolutionary perspective, we know that re-
sponding differently to similar cues in a consistent manner has
its benefits. Yet for animals, the definition of personality is still
disputed, as reflected by the multitude of interpretations and
names it is referred to by, including temperament, behavioral
syndrome, coping style, or simply predisposition.”’ ' Beyond
the terminology problem, many studies still end up relying on
just a small set of behaviors (sometimes as few as one), subjec-
tively chosen and measured under a limited and often artificial
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set of conditions. Moreover, the choice of personality traits is
also mostly based on an anthropomorphic perspective.

So we end up measuring boldness, for example, by the
average distance of a fish from its shelter,*” the movement pat-
terns of a cow in an unfamiliar room,>® or the number of head
pokes a mouse makes toward a brightly lit portion of its arena.®*
In doing so, apart from the issues mentioned above, we are also
ignoring the fact that a behavior is potentially affected by multiple
traits; for instance, baseline fear levels and curiosity are two in-
dependent traits that may have opposite effects on what we
measure as boldness.

In addition, reductionist approaches may, at times, lead us to
utterly misunderstand animals. For example, a standard model
for anxiety has been three lines of mice, which were selectively
bred according to differences in their risk-assessment behavior.*®
The mice were labeled as exhibiting either high-anxiety behavior,
normal-anxiety behavior, or low-anxiety behavior, according to
their performance in the classical elevated-plus-maze para-
digm.®® Many studies based their conclusions on these lines,
yet recent work revealed that the mice considered as exhibiting
low anxiety actually suffer from full retinal blindness, which could
explain their seemingly fearless demeanor in the maze.*”

We have recently demonstrated a computational approach to
measuring personality, starting from groups of mice.*® Personal-
ity is defined as being consistent and stable across time and
contexts while varying among individuals. We have used high-
dimensional behavioral data, consisting of 60 distinct behaviors
(including chasing, approaching, and exploring), measured auto-
matically under naturalistic conditions®® and tracked across mul-
tiple days to infer personality traits subjectively. Our primary
motivation was to take the "textbook definition" of personality
and turn it into a mathematical equation that can be accurately
measured, which we refer to as identity domains (IDs;
Figure 2A). The code, as well as all the data used for this work,
is available online.*®
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Figure 2. From behavior to personality

(A) Personality can be defined as an optimization
problem for identifying traits that differentiate in-
dividuals while also remaining stable over time and
context. We ended up with an equation similar to

linear discriminant analysis, which is solvable and
has a unique solution.

(B) Solving this optimization problem for 168 mice in
42 groups leads to four significant traits. We refer to
the traits obtained in this way as identity domains, or
IDs for short. The IDs were labeled according to their
order of statistical significance, from ID1 to ID4. We
show here the correlation between the IDs and a
representative subset of the 60 measured behav-
jors.

(C) The most statistically significant identity domain,
ID1, predicts each mouse’s social rank. We
measured social status based on the number and
directionality of aggressive interactions using Da-
vid’s score. (n =168 individuals, R®>=0.72, F(1,

166) = 434.65, P = 3.19 x 10749)

DISCUSSION

Identity domains capture traits that

are stable over time, age, and

context

Based on the assumption that personality

is unique to each animal in addition to be-
ing consistent over time and context, we end up with the
following formulation for it:

—~T —
W)p = argmax tr (M>

—T — "

w x,w

w

Here, Wp is the set of vectors that span the personality traits
space, obtained by maximizing the ratio between X, the behav-
ioral variability between mice, and X,,, the mean variability over
time for each mouse (see Forkosh et al.*® for further details).
The resulting projection matrix Wjp is of dimensions n x d, where
n is the number of personality traits and d is the total number of
measured behaviors (60, in our case). Although the motivation for
this formulation was purely behavioral, we ended up with an
expression equivalent to the linear discriminant analysis decom-
position. The traits for each mouse are computed by projecting
its behaviors using the computed projection matrix Wp.

We refer to the set of traits obtained in this way as IDs to avoid
confusion with previous methods. To test it, we monitored 168
mice in 42 groups for 4 days and ended up with four significant
traits (Figure 2B). These traits were stable across time, develop-
mental stages, and social contexts.*® Yet, the four IDs should be
regarded as a lower bound to the actual number of traits mice
might have; more traits might become statistically significant
once we increase the number of tests or include other behaviors
in the analysis.

A streamlined approach to the biology of behavior and
personality

A major advantage of measuring personality in this way is that it
simplifies the process of uncovering the biology of behavior.
Because behavior and biology (whether genetics, proteomics,
etc.) are mediated by personality, the relation between them
can be broken into two, practically independent, questions: first,
what is the connection between behavior and personality? And
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Figure 3. Personality space reveals three behavioral archetypes
Taking the two most significant identity domains for all the mice yields a per-
sonality space that is triangularly shaped and defined by the three archetypes
in its vertices. These archetypes seem to correspond to three behavioral
strategies that mice are known to exhibit in nature: commensal, non-
commensal, and non-territorial (which we fondly refer to as “city mice,”
“country mice,” and “subordinate mice,” respectively). Each individual’s ID
scores are represented by a trapezoid, with scores on each day marking the
four vertices (three vertices if the fourth point falls inside the shape). Each
trapezoid was colored according to its distance from all of the archetypes. The
triangle and archetypes were found using minimal volume simplex analysis (t
ratio test, p = 0.006). Other ID combinations and different archetype numbers
did not yield significant results.

second, what is the dependency of personality on the biology of
individuality? In simple mathematical forms, this idea can be
translated to a Markovian chain such that:

P(blg.e)=) P(blp,e)P(plg).

i.e., the probability of observing a specific behavior b given the
environment e and genetics g of the animal (or any other factor)
can be reformulated as two separate terms by adding the per-
sonality p of the animal. Although we mostly focused on the first
question, P(b|p, e), we also touched upon the second one,
P(plg), by measuring the single-cell transcriptomics in three
brain regions of 32 mice.*® We found that the personality traits
captured the differences in the transcriptomes of these mice
significantly. In addition, it provided us with several candidate
genes that proved to be related to a specific trait (such as the
growth factor BDNF and ID4) and therefore associated with a
limited set of behaviors.

The problem of labeling and its relation to the structure
of personality space

One of the biggest challenges in behavioral science is how to
classify behaviors without using manual labeling and without
making prior assumptions. This challenge can be thought of as
equivalent to building a machine translator that takes raw behav-
iors and translates them into language. In our study, we tried to
circumvent the labeling issue by not assigning labels to any mu-
rine personality traits. Even though some of the IDs we found
seemed to have a clear interpretation (for example, ID1 in
Figure 2C), we chose to keep them labeled only according to
their order of statistical significance, from ID1 to ID4. However,
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this approach does have its shortcomings, and not all of them
are due to pressure from reviewers and collaborators.

That said, the particular structure of personality space pro-
vides a unique way to interpret the IDs and, as a result, behavior
too. We found the personality space spanned by ID1 and ID2 to
be triangularly shaped (Figure 3). This triangle is partially due to a
mathematical property of dimensionality reduction, but, as a pre-
vious study suggests, it might also be related to evolutionary
challenges.”’ Either way, this triangle’s vertices represent
extreme behavioral strategies, which we refer to as behavioral
archetypes. The three archetypes we found here can be associ-
ated with three known forms of social behavior in mice:
commensal, non-commensal, and non-territorial. Like with ID1
and hierarchy, these associations should not be regarded as la-
bels, but as guides to help decipher each archetype’s role.

We did not find similar archetypes when looking at ID3 or ID4.
By definition, these IDs are less stable than the first IDs, as we
sorted the traits by statistical significance. This instability might
be entirely due to a technical reason—the result of our choice
of behaviors that favors certain traits. It is also possible that
different IDs have different timescales, making them either
more or less dynamic. In both cases, finding clear archetypes
in the higher IDs might simply require a larger dataset.

Doing similar personality analysis for other species, such as
the so-called rock-paper-scissor lizards,*” or humans (both
works in preparation), we find a very similarly shaped personality
space: a triangle with a notch at its base. Mapping the vertices,
or archetypes, between the different species may provide a new
way of interpreting personality from a top-down and cross-spe-
cies perspective.

CONCLUSION

Research in artificial intelligence has influenced many fields, and
the study of animals is no exception. One of the biggest chal-
lenges to this field is the ability to decipher animal behavior,
regardless of species, in a genuinely unsupervised manner
from end to end; that is, to use machines to transcribe move-
ments and postures into our own words. To some extent, this
idea is not unlike the "universal translator" concept portrayed
in many works of fiction. However, as animals faced similar
evolutionary challenges, we expect them to share behavioral
commonalities, which can help realize a behavioral translator.
And a possible starting point for this realization is using person-
ality traits to link biology and behavior.

Because there might be aspects of an animal’s experience
beyond human language, the idea of an animal behavior trans-
lator may be restrictive. Animals may have emotions, moods,
and feelings that are so different from ours that we lack the
adequate words to describe them, or, as the philosopher Ludwig
Wittgenstein phrased it: "limits of my language mean the limits of
my world." Whether we could ever grasp what it is to be or feel
like an animal is yet to be seen.

Automatic methods for tracking behavior and personality also
provide an opportunity to change the way we study humans radi-
cally. To a large extent, current research in human psychology
relies on self-report questionnaires. Despite their proven useful-
ness in numerous studies, they have several limitations, due to
“wishful thinking” (social desirability effects) or lack of self-
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knowledge, and are also time-consuming and often tedious. Em-
ploying tracking devices like cell phones*®>“* with the tools we
develop for studying animal psychology can offer new insights
into the human brain. These new approaches are especially use-
ful when considering less-verbal individuals, such as children or
people with disabilities. Yet, because of exactly that, these new
approaches also raise several ethical questions. Apart from pri-
vacy issues, these approaches might soon allow computers to
understand us better than we could.

Data and code availability

The personality code, as well as all the data used for this work, is
available online at https://github.com/OrenForkosh/Identity
Domains. The tracking algorithm, arena design, and behavioral
analysis are stored here: https://github.com/OrenForkosh/
CheeseSquare.
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