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Identifying Sepsis Subtypes from Routine Clinical Data

The heterogeneity of sepsis is often cited as a key factor impeding
the identification of new treatments (1). By lumping diverse patients
with sepsis together in clinical trials, it is reasoned, we may fail
to identify the benefit of therapies that help only a subset of
patients (1). As a result, there is growing interest in identifying
subgroups of patients with sepsis who may respond differently to
treatments.

Recent studies have identified subtypes of patients with sepsis,
defined by leukocyte genome-wide expression profiles, some of
which are associated with differential response to hydrocortisone
treatment (2). However, the optimal method to subtype patients
with sepsis remains unclear, and different approaches may be
necessary to identify responders to corticosteroids versus other
therapies.

In this issue of the Journal, Bhavani and colleagues (pp. 327–
335) sought to identify meaningful subtypes of infected patients on
the basis of a readily available clinical parameter: temperature
trajectory in the first 72 hours after hospital presentation (3).
Hypothermia is known to be associated with sepsis mortality,
whereas fever is protective (4). However, temperature is recorded

repeatedly in nearly all hospitalized patients, and dynamic
assessment may provide additional prognostic and theranostic
information.

The study examined a cohort of 12,413 patients hospitalized
for infection at the University of Chicago. Patients had a
median of 20 temperature measurements during the 3-day study
period, and abnormal temperatures were common. A total of 38% of
patients were febrile, and 81% were hypothermic on at least one
occasion.

To identify subgroups with different temperature trajectories,
the authors used group-based trajectory modeling. This method
is an extension of cluster analysis and identifies subgroups (or
classes) based on changes in a characteristic over time. In contrast to
hierarchical or growth curve models that estimate a mean trajectory
and then measure variation around this mean, group-based
trajectory models identify subpopulations, each with a different
trajectory (5). These are not necessarily biologically distinct
subgroups but, rather, a convenient way to describe the variation of
trajectories seen in a population (5). Group-based trajectory
models also assume that all variation is explained by the subgroups,
and that there is no variation in trajectories among individuals
within the same subgroup (5). However, this assumption is
routinely violated in practice.

Group-based trajectory modeling was first developed to
study developmental trajectories (6) (e.g., trajectories of antisocial
behavior during adolescence and early adulthood), but has
recently been applied to critical care research. The technique has
been used to study functional trajectories before and after critical
illness (7), quick Sepsis-related Organ Failure Assessment trajectory
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in sepsis (8), and intracranial pressure trajectories in traumatic
brain injury (9).

One of the most challenging and controversial aspects of
group-based trajectory modeling is determining the optimal
number of subgroups. Bhavani and colleagues tested models with
up to four classes, and found that the four-class model best described
their data (3).

The cohort was classified as 33% normothermic; 29%
hypothermic; 23% hyperthermic, fast resolving; and 15%
hyperthermic, slow resolving. In sensitivity analyses excluding
patients who died or were discharged before 3 days, results were
similar. Furthermore, the authors validated their findings in a
separate cohort of 19,053 patients treated at Loyola University
and found similar percentages of patients assigned to the four
classes.

Clinical characteristics, processes of care, and hospital
mortality differed across the temperature trajectory subgroups.
Hyperthermic patients were younger with fewer comorbidities,
whereas hypothermic patients were older with more
comorbidities. Hyperthermic patients received antibiotics faster,
whereas hypothermic patients were more likely to receive
steroids and vasopressors.

In the derivation cohort, hospital mortality was lowest in
the hyperthermic, fast resolvers (2.9%) and highest among
patients in the hypothermic subgroup (9.5%). In the validation
cohort, mortality was likewise lowest among hyperthermic, fast
resolvers (3.0%), but was greatest among hyperthermic, slow
resolvers (10.2%). Subgroup assignments remained associated with
hospital mortality after adjusting for age, comorbidities, quick
Sepsis-related Organ Failure Assessment score, and time to
antibiotics.

The ultimate utility of temperature trajectory subgroups
remains unclear and will need to be confirmed in future studies.
Because the trajectories included 72 hours of data, they would not
be useful for guiding initial management. However, most patients
survive the acute phase of sepsis, so the bulk of sepsis-related
mortality in occurs in the later phases of hospitalization (10)
or posthospitalization (11) periods. One driver of these later
sepsis-related deaths is secondary infection, which may occur,
at least in part, as a result of persisting immune dysregulation
after sepsis (12).

Hypothermia during the first day of sepsis has been associated
with persistent lymphopenia, a feature of sepsis-induced immune
suppression (13). And although 81% of patients in this study were
hypothermic at some point, only 29% of patients were assigned to
the hypothermic trajectory. It is possible that a hypothermic
temperature trajectory may be a more specific marker of immune
suppression. If so, it could help identify patients at increased risk
for re-infection and enrich future studies of immune modulation in
the later phases of sepsis.

In summary, Bhavani and colleagues show that four general
temperature trajectories exist among patients hospitalized for
infection, and that these trajectories are associated with mortality.
The widespread availability of temperature measurements makes
this an appealing means of subgrouping (particularly if physician
assessment of temperature trajectory proves to be an accurate
surrogate), and it also increases the feasibility of extending and
validating these findings. Future studies are needed to determine

both whether these findings extend to other populations (e.g.,
patients with sepsis in lower-income countries) and whether
patients with different temperature trajectories respond differently
to particular treatments. n
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