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Prediction of lymph node
metastasis in patients with
breast invasive micropapillary
carcinoma based on machine
learning and SHapley Additive
exPlanations framework

Cong Jiang †, Yuting Xiu †, Kun Qiao, Xiao Yu,
Shiyuan Zhang* and Yuanxi Huang*

Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
Abstract: Background and purpose: Machine learning (ML) is applied for outcome

prediction and treatment support. This study aims to develop different ML models

to predict risk of axillary lymph node metastasis (LNM) in breast invasive

micropapillary carcinoma (IMPC) and to explore the risk factors of LNM.

Methods: From the Surveillance, Epidemiology, and End Results (SEER)

database and the records of our hospital, a total of 1547 patients diagnosed

with breast IMPC were incorporated in this study. The ML model is built and the

external validation is carried out. SHapley Additive exPlanations (SHAP)

framework was applied to explain the optimal model; multivariable analysis

was performed with logistic regression (LR); and nomograms were constructed

according to the results of LR analysis.

Results: Age and tumor size were correlated with LNM in both cohorts. The

luminal subtype is the most common in patients, with the tumor size <=20mm.

Compared to other models, Xgboost was the best ML model with the biggest

AUC of 0.813 (95% CI: 0.7994 - 0.8262) and the smallest Brier score of 0.186

(95% CI: 0.799-0.826). SHAP plots demonstrated that tumor size was the most

vital risk factor for LNM. In both training and test sets, Xgboost had better AUC

(0.761 vs 0.745; 0.813 vs 0.775; respectively), and it also achieved a smaller Brier

score (0.202 vs 0.204; 0.186 vs 0.191; 0.220 vs 0.221; respectively) than the

nomogram model based on LR in those three different sets. After adjusting for

five most influential variables (tumor size, age, ER, HER-2, and PR), prediction

score based on the Xgboost model was still correlated with LNM (adjusted

OR:2.73, 95% CI: 1.30-5.71, P=0.008).

Conclusions: The Xgboost model outperforms the traditional LR-based

nomogram model in predicting the LNM of IMPC patients. Combined with

SHAP, it can more intuitively reflect the influence of different variables on the

LNM. The tumor size was themost important risk factor of LNM for breast IMPC
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patients. The prediction score obtained by the Xgboost model could be a good

indicator for LNM.
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Introduction

Invasive micropapillary carcinoma (IMPC), a special

subtype of invasive breast cancer, was classified as a new

histological type by the World Health Organization (WHO) in

2003 (1). Since Fisher et al. (2) first reported invasive papillary

carcinoma with morula-like morphologic changes in 1980, there

have been different reports on the pathological diagnostic

criteria of IMPC. In all invasive breast cancers, the reported

incidence of IMPC varies greatly from 2.0% to 8.0% (1), which is

mainly because IMPC is most often part of invasive ductal

carcinoma morphology, rather than the entirety of cancer.

Unlike invasive ductal carcinoma, patients with IMPC have

a higher incidence of lymph node metastasis (LNM) and a

shorter survival time (3–5). It has been known that LNM is

correlated with a worse prognosis for breast cancer patients (6).

Preoperative assessment of axillary lymph node metastasis can

help physicians to implement some interventions such as

neoadjuvant chemotherapy in advance, so that patients could

benefit from individualized regimens. Regrettably, only core

needle biopsy can provide the most direct evidence of lymph

node metastasis, but it is expensive and time-consuming.

Therefore, it is vital to develop an accurate and convenient

model to evaluate the status of axillary lymph node metastasis.

Recently, Ye et al. constructed a nomogram to predict

preoperative lymph node involvement of breast IMPC (7), but

this LR-based model can only give low area under curve (AUC)

of 0.735. Besides, the absence of external validation and the

comparison of different models limit the application of the

nomogram model. For the past few years, machine learning

(ML) has drawn wide attention and has been applied to solve

various medical problems, including outcome prediction and

treatment support (8–10). Although ML has also been used to

predict axillary lymph node metastasis in breast cancer (11, 12).

it has not been used in IMPC. Besides, even with huge samples,

these ML models lacked concrete explanations and intuitional

understanding, limiting their wider applications. To solve the

problem, SHapley Additive exPlanations (SHAP) framework,

which was firstly proposed by Lundberg et al. (13) and is able to

evaluate the contribution of each explanatory variable in any ML

models (14), was introduced into this study.
02
This study aims to develop different ML models to predict

axillary lymph node metastasis of breast IMPC and compare the

predictive ability of different models. Furthermore, the SHAP

framework was applied to intuitively explain the performance of

the optimal model. Besides, the risk factors of LNM were also

been explored.
Methods and patients

Patient selection

In this retrospective analysis, a total of 1405 patients

diagnosed with breast IMPC ((ICD-O-3 8507) from

Surveillance, Epidemiology, and End Results (SEER) database

from 2010 to 2015 were incorporated for ML models

construction; and 142 patients diagnosed with breast IMPC

from Harbin Medical University Cancer Hospital between 2010-

2015 were included for the external validation of the optimal ML

model. In every state of the United States, cancer is a reportable

disease, so no informed patient consent was required to release the

SEER database. The ethics committee of Harbin Medical

University Cancer Hospital approved this study. It complies

with the World Medical Association Declaration of Helsinki in

1964 and subsequently amended versions. An informed consent

form was signed prior to undergoing treatment.

Inclusion criteria (1): pathologically confirmed breast IMPC

((ICD-O-3 8507) (2); unilateral breast IMPC (3); patients

diagnosed between 2010-2015; and (4) all patients in the

external validation cohort underwent surgery in our hospital.

Exclusion criteria (1): bilateral, single primary breast IMPC;

and (2) breast subtype record not available or unknown.

The flow chart for patient selection is shown in Figure S1.
Study outcome

The primary endpoint of this study was axillary lymph node

metastasis. If the pathologist examines one or more axillary

lymph nodes to be positive, then the axillary lymph node

metastasis is confirmed.
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Feature selection and data preprocessing

The method of KNNImputer was applied to variables with a

missing age percentage of less than 30% (15). Features

statistically correlated with LNM in univariable analysis were

selected to develop ML models (Table 1). Notably, because the

external validation cohort lacked male samples, gender features

were excluded for model stability. Besides, other features,

including estrogen receptor (ER), progesterone receptor (PR),

human epidermal growth factor receptor2 (HER-2) and

laterality (16–20), which had been proved to be related with

LNM, were incorporated for model construction.
The development of ML models

We introduced seven ML algorithms using clinical and

pathological data to predict axillary LNM, and these

algorithms are LR, support vector machine (SVM), k-nearest
Frontiers in Oncology 03
neighbor (KNN), random forest (RF), Light Gradient Boosting

Machine (lightGBM), adaptive boosting (AdaBoost) and

extreme gradient boosting (XGBoost). LR models are

commonly used to study the impact of trait variables on a

binary classification variable (21). Based on hyperspace, SVM

is often used to classify things with multidimensional properties

into two categories (22). The KNN system, one of the most

commonly used nonparametric classification techniques, works

on the premise that if the k-nearest samples in the vicinity of a

sample mostly belong to a certain class in the feature space, they

must also belong to the same category (23). A classifier that uses

multiple trees for training and predicting samples is known as

the RF, which reduces training variance and improves

integration and generalization (24). The Microsoft LightGBM

is an ensemble algorithm that implements gradient boosting

efficiently (25). AdaBoost, a powerful ensemble method, is an

ensemble of weak learners that improves generalization ability

(26). XGBoost is a machine learning technology that can

efficiently and flexibly process missing data and build accurate
TABLE 1 Clinical and pathological characteristics of different cohorts.

Variable SEER Cohort External Validation Cohort

Non-LNM LNM p Non-LNM LNM p
N=1405 (%) n=687 (%) n=718 (%) N=142 (%) n=47 (%) n=95 (%)

Age 62 [52, 71] 64 [55, 73] 59 [49, 69] <0.001 52.69 (10.22) 56.13 (9.69) 50.99 (10.10) 0.004

Sex 0.027 NA

female 1378 (98.1) 680 (99.0) 698 (97.2) 142 (100.0) 47 (100.0) 95 (100.0)

male 27 (1.9) 7 (1.0) 20 (2.8) NA NA NA

Laterality 0.905 0.332

left 690 (49.1) 339 (49.3) 351 (48.9) 81 (57.0) 30 (63.8) 51 (53.7)

right 715 (50.9) 348 (50.7) 367 (51.1) 61 (43.0) 17 (36.2) 44 (46.3)

Subtype 0.134 0.888

luminal A 1042 (74.2) 526 (76.6) 516 (71.9) 51 (35.9) 16 (34.0) 35 (36.8)

luminal B 242 (17.2) 111 (16.2) 131 (18.2) 91 (64.1) 31 (66.0) 60 (63.2)

HER-2 OE 64 (4.6) 29 (4.2) 35 (4.9) NA NA NA

TNBC 57 (4.1) 21 (3.1) 36 (5.0) NA NA NA

ER 0.061 1

negative 128 (9.1) 52 (7.6) 76 (10.6) 3 (2.1) 1 (2.1) 2 (2.1)

positive 1277 (90.9) 635 (92.4) 642 (89.4) 139 (97.9) 46 (97.9) 93 (97.9)

PR 0.837 0.426

negative 274 (19.5) 136 (19.8) 138 (19.2) 17 (12.0) 4 (8.5) 13 (13.7)

positive 1131 (80.5) 551 (80.2) 580 (80.8) 125 (88.0) 43 (91.5) 82 (86.3)

HER-2 0.238 0.951

negative 1099 (78.2) 547 (79.6) 552 (76.9) 122 (85.9) 41 (87.2) 81 (85.3)

positive 306 (21.8) 140 (20.4) 166 (23.1) 20 (14.1) 6 (12.8) 14 (14.7)

Tumor Size <0.001 0.003

<=20 mm 793 (56.4) 532 (77.4) 261 (36.4) 73 (51.4) 33 (70.2) 40 (42.1)

20-50 mm 469 (33.4) 142 (20.7) 327 (45.5) 67 (47.2) 14 (29.8) 53 (55.8)

>50 mm 143 (10.2) 13 (1.9) 130 (18.1) 2 (1.4) 0 (0.0) 2 (2.1)
frontiers
LNM, lymph node metastasis; HER2, human epidermal growth factor receptor2; TNBC, triple negative breast cancer; ER, estrogen receptor; PR, progesterone receptor. The bold values/
numbers mean: p value < 0.05. NA, Not Available.
in.org

https://doi.org/10.3389/fonc.2022.981059
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.981059
prediction models with weak prediction models (27). All the

patients were randomly divided into two groups (training set

and test set) in a ratio of 7:3. The MLmodel hyperparameters are

optimized with ten-fold CV grid search. The training set was

applied to construct ML models. The test set cohort was applied

to evaluate the performance of different ML models. In order to

avoid over-fitting and improve the prediction ability of the

model, the hold-out method was applied. External validation

cohort was used to validate the performance of the optimal ML

model (Figure 1).
The interpretability of optimal ML model

ML models are often regarded as ‘black boxes’ because it is

difficult to explain why they can accurately predict the special

cohort of patients. Therefore, we bring in the SHAP value to

determine the optimal MLmodel in this research. SHAP is a new

method to explain the contribution of different variable in any

ML models (14). Its interpretability performance had been

validated in many cancers (28–31). In contrast to other

methods, the SHAP method is based on sound theoretical

groundwork, providing both local and global interpretability
Frontiers in Oncology 04
(32). We used SHAP values to assess the probability of LNM of

whole cohort or an individual.
Statistical analysis

All the analysis were conducted by R software version 4.1.3

(forestmodel and dplyr packages) and python version 3.9.7

(scikitplot, sklearn, matplotlib.pyplot, lightgbm, xgboost,

sklearn.neighbors, sklearn.svm, numpy, and shap packages).

Frequencies and percentages (%) were applied to describe

categorical variables, while the chi-squared test or Fisher’s exact

test was applied to assess differences. The median andmean values

of continuous variables were presented with the interquartile

range (IQR) and standard deviation (SD). The AUC was

applied to compare the performance of each ML model. The

Brier score (33) was applied to evaluate the calibration of each ML

model. The best cut-off value was determined by Youden’s index.

Multivariable analysis was conducted by LR. A nomogram was

established on the basis of multivariate analysis, and a graphic

analysis was performed on the differences between actual and

predicted probabilities obtained by the nomograms. P<0.05 was

deemed statistically significant.
FIGURE 1

Flow chart for the development, explanation and validation of models.
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Results

The baseline of breast IMPC patients

The SEER cohort included 1405 breast IMPC patients, 718

(51.1%) of whom suffered from LNM, the external validation

cohort covered 142 breast IMPC patients, 95 (66.9%) of whom

suffered from LNM, and most patients were female and belonged

to luminal subtype in both cohorts. Besides, the patients among

the SEER cohort and external validation cohort who belonged to

ER accounted for respectively 90.9% and 97.9%, the ones belong

to PR accounted for respectively 80.5% and 88.0%, while those

diagnosed with HER-2 positive were 306 (21.8%), and 20

(14.1%), respectively.

The association between age and tumor size with LNM was

observed in both cohorts (P <0.05). The relation between sex and

LNM was confirmed in SEER cohort, while remaining

untouched in external validation cohort because of the limited

samples. (Table 1)
The predictive ability of different
ML models

AUC and Brier score were adopted to compare seven ML

models, revealing that model Xgboost outperformed with the

biggest AUC of 0.813 (95% CI: 0.7994 - 0.8262; Figure 2A), the

calibration curve (the red line) that was closest to the perfectly

calibrated curve (the black line), and the smallest Brier score of

0.186 (95% CI: 0.799-0.826; Figure 2B). Therefore, model

Xgboost was selected to predict LNM of IMPC.
Frontiers in Oncology 05
The visualization of feature importance

SHAP was adopted to evaluate the effect of these selected

variables on the LNM of IMPC, and to explain such variables.

The feature importance of variables was ranked through the

mean (|SHAP value|), and the tumor size stood out (Figure 3A).

Figure 3B illustrated their detailed impact on LNM. The SHAP

value (x-axis) referred to how the value or status of different

variables influenced the LNM in the model, while the feature

value (y-axis) the change of a certain variable. A bigger tumor

size and smaller age increased the risk of LNM, while the status

of ER, HER-2, PR and laterality exerted limited impact.
Molecular subtype-based analysis

Tumor size and age served as important risk factors for LNM

in different molecular subtype of breast IMPC. ER status was the

third important risk factor for LNM in luminal A, HER-2 OE,

and TNBC subtypes, while HER-2 was the third in luminal B

subtype. (Figure 4)
Individualized prediction

Based on the SHAP value, the risk of LNM in each patient

was calculated. Two classical patients, including a 57-year-old

without LNM and a 72-year-old with LNM, were explored to

interpret the optimal model (Figure 5). The waterfall plot

demonstrated the impact of variables on LNM, in which the

red arrow indicated the increased risk, while the blue arrow the
BA

FIGURE 2

The perfomance comparison of different machine learning models in predicting lyph node metastasis. The receiver operating characteristic
curves (A) and calibration curves (B) of different models.
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decreased risk. The SHAP value was calculated by combining the

effects of variables, which corresponded to the prediction score.

The non-LNM patient (Figure 5A) performed a low SHAP value

(-0.382) and prediction score (0.405529), and the LNM patient

(Figure 5B) exhibited a high SHAP value (1.26) and prediction

score (0.778945).
The multivariable logistic
regression analysis

The Xgboost model was applied to predict LNM in the test

set. All patients were divided into high and low risk groups

according to the best cut-off value (0.42) determined by the

Youden’s index (Figure 6). The unadjusted LR analysis found

that patients in the high-risk group were more prone to LNM
Frontiers in Oncology 06
(unadjusted OR:8.86, 95% CI: 5.71-13.99, P<0.001). Despite the

adjustment of the five most influential variables (tumor size, age,

ER, HER-2, and PR), prediction score was correlated with LNM

(adjusted OR:2.73, 95% CI: 1.30-5.71, P=0.008; Figure 7).
The external validation for the
predictive model

The Xgboost model, which outperformed in stability and

accuracy compared with other ML models, was assessed by

employing 142 breast IMPC samples from our hospital, so as to

further identify its accuracy and stability. The result

demonstrated that the model achieved a big AUC of 0.700

(95% CI: 0.682 - 0.72; Figure 8A), and a low Brier score of

0.220 (95% CI: 0.216-0.225; Figure 8B).
B

A

FIGURE 3

The interpretation of optimal model (Xgboost). (A): The importance ranking of different variables according to the mean (|SHAP value|); (B): The
importance ranking of different risk factors with stability and interpretation using the optimal model. The higher SHAP value of a feature is given,
the higher risk of lymph node metastasis the patient would have.The red part in feature value represents higher feature value.
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The performance of comparison of
Xgboost and nomogram (LR) model

A nomogram was constructed in train set, test set, and

external validation cohort, respectively, according to LR modes

(Figure S2). All three nomograms based on clinical and

pathological variables performed favorably. Nevertheless, the

model Xgboost exhibited a bigger AUC in training (0.761 vs

0.745) and test sets (0.813 vs 0.775) compared with the LR

model. The AUCs of these two models were similar (0.700 vs

0.703) in external validation cohort. Besides, Brier Score of

Xgboost was smaller in these three sets (0.202 vs 0.204; 0.186

vs 0.191; 0.220 vs 0.221; respectively; Table 2).
Discussion

As a special subtype of breast cancer, IMPC cells was

susceptible to invasion and metastasis because of special

growth pattern and histological morphology induced by

polarity reversal (34). Compared to breast invasive ductal

carcinoma (IDC), breast IMPC had higher LNM rate and

worse survival outcome (4, 35–37). Given the close

association between LNM and survival outcome, a tool that

identifies LNM can help doctors in instituting heal project and

timely adjusting the treatment program. This paper chose the

best ML model Xgboost following the comparison of seven

powerful ML models to predict LNM of breast IMPC, whose

performance was validated in the test set and external
Frontiers in Oncology 07
validation cohort. Through the SHAP values and plots, the

feature importance rank and contribution to LNM of risk

factors were intuitively demonstrated. Besides, the prediction

score based on Xgboost was proved to be an independent

predictive factor for LNM.

Nassar et al. found no significant differences in lymph node

status, ER status, tumor size, grade, or lymph vascular invasion

between tumors with different invasive micropapillary

components (5). In addition, the difference of survival

outcome between IMPC and IDC with similar stage was

negligible. Therefore, despite their worse survival outcome

than IDC patients, IMPC patients follow IDC treatment

protocols, the current standard of care (38).

The correlation between LNM and worse survival time of

breast cancer patients is known (6). Breast cancer patients with

LNM underwent axillary lymph node dissection (ALND) in the

past. The results of ACOSOG Z0011 (Alliance) Randomized

Clinical Trial, however, indicated the similar 10-year overall

survival between patients treated with ALND and those treated

with sentinel lymph node dissection (SLNB) alone in T1 or T2

stage with 1 or 2 SLN metastasis (39), which explained the

current wide application of SLNB for early operable invasive

breast cancer patients with negative clinical lymph node.

Nevertheless, it was still controversial if SLNB was suitable for

breast IMPC (40). The information about the status of axillary

lymph node facilitated doctors in developing an individualized

treatment plan, thus avoiding overtreatment or undertreatment,

which highlighted that the management of axillary lymph node

deserved more attention.
B

C D

A

FIGURE 4

Variable importance in ML classification for Luminal A (A, n = 1042), Luminal B (B, n = 242), HER-2 overexpression (C, n = 64) and TNBC (D, n=57).
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In response, Ye and his team developed a nomogram to

predict preoperative lymph node involvement for breast IMPC

patients (7), and propose nomogram as a good tool for LNM

prediction. Their study based on SEER database, however, lacked

external validation and the comparison of model performance.

Actually, the performance comparison between nomogram and

ML models had been conducted in different disease. Rasheed

et al. proved the higher accuracy of boosted decision tree than

nomogram in predicting overall survival among patients with

tongue cancer (41), and Thara and his team demonstrated the

bigger AUC of random forest classifier model than nomogram in

predicting intracranial injury following cranial CT of the brain
Frontiers in Oncology 08
(42), which unfortunately were also short of external validation

and intuitive explanation to the model.

Previous studies took that most breast IMPC were ER

positive (72%-75%), almost half were HR positive, and

patients with HER-2 positive ranged from 10%-30% (43–45).

In this paper, the proportion of patients in the SEER cohort and

external validation cohort with ER positive was 90.9% and

97.9%, respectively, that with PR positive was respectively

80.5% and 88.0%, while that with HER-2 positive was

respectively 21.8% and 14.1%, which shared the results of the

above studies, and verified the stability and reliability of the

samples adopted. Training set was adopted to develop the ML
B

A

FIGURE 5

The interpretation of model prediction results with the two samples. A patient with no lymph node metastasis (A). A patient with lymph node
metastasis (B).
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models, and the ability of optimal model Xgboost and

nomogram in test set and external validation cohort was

compared, demonstrating the bigger AUC of model Xgboost

in training (0.761 vs 0.745) and test sets (0.813 vs 0.775), and the

smallest Brier Score of Xgboost in three sets (0.202 vs 0.204;

0.186 vs 0.191; 0.220 vs 0.221; respectively; Table 2). The AUC of

Xgboost was slightly less than that of LR model (nomogram) in

external validation cohort, which came down to small sample

and racial difference (all patients in external validation cohort

were Chinses while most patients in training and test sets came

from US), but the Xgboost was still a better model than

nomogram based on LR. Meanwhile, instead of nomogram

which only showed the score of each variable in predicting

LNM, SHAP was adopted in the paper to visually demonstrate

the contribution of each variable. The SHAP plots intuitively

displayed the increased or decreased contribution of each

variable to LNM, and the bigger SHAP value indicated higher

probability of LNM. In addition, SHAP values indicated the

feature importance rank of each variable, and tumor size was the

most influential risk factor for LNM. The feature importance of

each variable in different molecular subtype was also compared,

revealing tumor size to be the most important one. Instead, the

application of nomogram failed to rank the importance of

features, which validated the better practicability and
Frontiers in Oncology 09
predictive ability of model Xgboost. The contribution of

prediction score was also evaluated based on Xgboost. After

adjusting for confounding factors, prediction score was

significantly associated with LNM, and patients in high

prediction score group had higher risk for LNM. ML model

was generally a better tool than nomogram based on LR in

predicting LNM of breast IMPC patients.

Despite being the first to predict LNM of breast IMPC

patients using ML models and compare its performance with

nomogram based on LR to the authors’ knowledge, this study

was limited in the following aspects. Firstly, a prospective

analysis was required to further identify the performance of

Xgboost model even for the paper, a multicenter retrospective

analysis. Secondly, the huge samples from SEER database could

not make up for its limited clinical and pathological information,

which required a cohort including more details of breast IMPC

patients. Besides, the XGBoost model combined with more

features (like Grade) could train more useful information

about LNM, so as to promote its performance, which

consolidated its clinical advantages compared with LR model.

Thirdly, the clinical application of the ML model constructed

based on SEER database was limited due to the highly

homogenous feature of IMPC, a rare subtype of invasive

breast cancer. Therefore, a larger sample contained different
FIGURE 6

Categorization threshold of Prediction score.
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FIGURE 7

The multivariable logistic regression analysis for LNM prediction.
BA

FIGURE 8

The external validation based on Xgboost model. The AUC curve (A) and calibration curve (B) 1n external validation cohort.
TABLE 2 The comparison of Xgboost and nomogram (LR) model.

Model Training set Test set External validation cohort

AUC Brier Score AUC Brier Score AUC Brier Score

LR 0.745 (0.730-0.758) 0.204 (0.199-0.210) 0.775 (0.761-0.790) 0.191 (0.186-0.197) 0.703 (0.685-0.718) 0.221 (0.215-0.225)

Xgboost 0.761 (0.746-0.776) 0.202 (0.197-0.206) 0.813 (0.799-0.826) 0.186 (0.182-0.190) 0.700 (0.683- 0.716) 0.220 (0.216-0.225)
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histological types of breast cancer, like breast invasive ductal

cancer, was needed to expand the clinical practicability of the

best ML model.
Conclusions

The ML models, especially Xgboost, outperformed

traditional LR-based nomogram model in predicting LNM of

breast IMPC patients. The combination of Xgboost and SHAP

intuitively reflected the influence of different variables on LNM,

and the tumor size was the most important risk factor of LNM

for breast IMPC patients. In addition, the prediction score

derived from Xgboost model served as a good indicator for LNM.
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