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Abstract

Motivation: Convolutional neural networks (CNNs) have been tremendously successful in many

contexts, particularly where training data are abundant and signal-to-noise ratios are large.

However, when predicting noisily observed phenotypes from DNA sequence, each training in-

stance is only weakly informative, and the amount of training data is often fundamentally limited,

emphasizing the need for methods that make optimal use of training data and any structure inher-

ent in the process.

Results: Here we show how to combine equivariant networks, a general mathematical framework

for handling exact symmetries in CNNs, with Bayesian dropout, a version of Monte Carlo dropout

suggested by a reinterpretation of dropout as a variational Bayesian approximation, to develop a

model that exhibits exact reverse-complement symmetry and is more resistant to overtraining. We

find that this model combines improved prediction consistency with better predictive accuracy

compared to standard CNN implementations and state-of-art motif finders. We use our network to

predict recombination hotspots from sequence, and identify binding motifs for the recombination–

initiation protein PRDM9 previously unobserved in this data, which were recently validated by

high-resolution assays. The network achieves a predictive accuracy comparable to that attainable

by a direct assay of the H3K4me3 histone mark, a proxy for PRDM9 binding.

Availability and implementation: https://github.com/luntergroup/EquivariantNetworks

Contact: richard.brown@well.ox.ac.uk or gerton.lunter@well.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Deep Learning based models have been highly successful in many

areas where traditional modelling approaches appeared to have

reached their limits. This is true also for modelling biology from se-

quence, where Deep Learning sequence models have been shown to

outperform previous state of the art techniques (Alipanahi et al.,

2015; Kelley et al., 2016; Zhou and Troyanskaya, 2015). These

models have several attractive characteristics, including their ability

to learn without the need for manual feature curation or model seed-

ing, and the ability to learn complex non-linear interactions. This is

balanced by the need for large amounts of training data, and the

tendency of these models to overtrain. In many situations this is not

problematic, but for applications in biology training data are often

fundamentally limited, either by the size of the genome, the limited

genetic diversity of a population or the cost of assaying individuals

or samples. In this context it is particularly important to exploit the

known structure of the model as much as possible, and to try and

avoid overtraining and improve generalizability.

As an example of a biologically motivated problem with limited

training data, we consider the problem of predicting recombination

hotspots from sequence. In humans, the rate of meiotic recombin-

ation varies greatly along the genome, with recombinations
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occurring primarily in short regions colloquially known as recom-

bination hotspots. The mechanism for this localization has been

shown to be the action of the zinc finger protein PRDM9 (Baudat

et al., 2013). After being expressed in meiotic prophase, PRDM9

binds DNA in a sequence-specific manner, and catalyzes H3K4 and

H3K36 trimethylation and double-stranded breaks, some of which

are resolved as recombinations.

The canonical PRDM9 binding motif, CCTCCCTNNCCAC, was

identified by an enrichment analysis of sequences underlying hotspot

versus those in regions not involved in recombination (Myers et al.,

2008). However, while significantly enriched, this motif is only

weakly predictive of recombination. For example, in our data it

appears in around 2% of hotspots and 0.3% of coldspots. This,

coupled with the fact that there are only around 20 000 hotspots,

many of which are ill resolved [median length �2000 base pairs

(bp)], makes prediction of recombination hotspots challenging.

To build a model that optimizes predictive power given these

constraints, we combine two recently introduced ideas. One is that

of equivariant convolutional networks (Cohen and Welling, 2016)

which we use to build a network exhibiting the reverse-complement

(RC) symmetry of double-stranded DNA. Equivariance is a richer

concept than invariance; while a sequence and its RC are expected

to exhibit the same pre-disposition for recombination, the binding

of proteins to DNA is usually not RC-symmetric, and protein–pro-

tein interactions can be similarly directional. This is reflected by

symmetries on higher levels in the convolutional neural network

(CNN) that mirror the RC symmetry on the sequence level. A simi-

lar approach specific to RC symmetry was found independently by

Shrikumar et al. (2017), who reported that enforcing RC symmetry

by weight tying increased predictive accuracy and stability of the

learned motifs.

The second insight is that dropout, a commonly used regulariza-

tion technique for CNNs, can be interpreted as an approximation of

a variational Bayesian inference (Gal and Ghahramani, 2016), here

referred to as Bayesian dropout. This interpretation suggests particu-

lar modifications of standard applications of dropout. In particular,

this interpretation suggests the use of Monte Carlo (MC) averaging

of activations (MC dropout) rather than weight averaging at the pre-

diction stage. The implementation suggested in the literature would

break equivariance (Gal and Ghahramani, 2016). Here we show

how to obtain an equivariant version of Bayesian dropout, and how

to use this to obtain a model exhibiting exact RC symmetry while

retaining the advantages of Bayesian dropout.

The remainder of the paper is organized as follows. In Section 2,

we introduce equivariant networks, and show how to build equivar-

iance into standard CNN layers including convolutional layers,

max-pooling and dropout. We show how to make the Bayesian

dropout scheme equivariant, and we introduce a new max-pooling

layer that acts over the action of the RC symmetry group. In Section

3, we show that RC-equivariant networks and Bayesian dropout

each and in combination significantly increase predictive accuracy,

both on simulated and real data, whereas classical dropout hurts

performance. We further show that our network outperforms state-

of-art motif finders, and is able to identify high-resolution binding

motifs. We finish with discussion and conclusions in Section 4.

2 Materials and methods

2.1 Equivariant networks
We use feedforward neural networks to generate a learnable map-

ping directly from the input sequence to an output response variable,

which in this case is a class assignment. The network is composed of

a sequence of layers that define a directed acyclic computation

graph, with each layer acting in turn on the output of its ancestor.

Explicitly, for a two dimensional input tensor Xij, the network can

be viewed as a function composition

FðXÞ ¼ ðFn � � � � � F1ÞðXÞ ¼ FnðFn�1ð. . . F1ðXÞ . . .ÞÞ (1)

with component functions Fi representing the actions of layer i; here

� denotes function composition. Note that component functions are

defined on their own tensor spaces, Fi : Tði�1Þ ! TðiÞ.

In our case, Xij represents a length-N DNA sequence from an al-

phabet fA;C;G;Tg which is usually one-hot encoded (Alipanahi

et al., 2015; Lanchantin et al., 2016; Zhou and Troyanskaya, 2015)

so that Tð0Þ ¼ R
4�N. The DNA represented by the input sequences X

exists physically mostly in a double-stranded form, with one strand

hydrogen bonded to its RC. This means that the sequence seen by the

model could just as naturally be represented by its RC, and the net-

work should arrive at identical outputs for these two sequences:

FðXÞ ¼ FðRCðXÞÞ (2)

where RC : Tð0Þ ! Tð0Þ maps the encoding of a sequence to the

encoding of its RC. One way to achieve this symmetry is to require

that F1ðRCðXÞÞ ¼ F1ðXÞ. However, this is highly restrictive; the first

layer often represents protein binding motifs, which are often not RC-

symmetric. Intuitively, one wants the output of a layer to exhibit the

‘equivalent’ symmetry appropriate for the encoding of the next layer.

The mathematical translation of this is to require equivariance:

ðFi � RCi�1ÞðXÞ ¼ ðRCi � FiÞðXÞ (3)

for all i and all X 2 Tði�1Þ. A graphical representation of this relation

is given in Figure 1. Note that the two operators RC in Equation (3)

are different, as indicated by their index, as they act on different ten-

sor spaces. In particular, in our case RCn acts as the identity on TðnÞ

to ensure that the full model is invariant under reverse-complement-

ing, and on Tð0Þ the operator RC0 is determined by the chosen encod-

ing. The modeller has freedom in choosing RCi on intermediate

layers, subject to constraint (3), which also imposes constraints on the

Fi, the initialization, training procedure and any parameter ties used

during training. Note that this setup is not restricted to RC equivar-

iance, and is valid for any group with actions on tensor spaces, includ-

ing mirror symmetries, rotations and translations. In this general case

the operators RCi in Figure 1 are replaced by group actions J
ðiÞ
g oper-

ating on TðiÞ, where g is a group element. We will not pursue that dir-

ection here, but see Cohen and Welling (2016) for an exposition.

2.2 Choice of one-hot basis
We define the vectors

A ¼ ½1; 0; 0; 0�0;C ¼ ½0;1;0; 0�0;G ¼ ½0; 0;1;0�0;T ¼ ½0; 0;0; 1�0

where 0 denotes transposition, and encode a genomic sequence by

Fig. 1. Commutative diagram for a RC equivariant network. Compositions of

functions along any path in the network that respects the arrow directions de-

pend only on the start and end point, and not on the path taken
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the concatenation of corresponding column vectors. For a sequence

encoded in this way,

RCðXÞij ¼ X�i;�j (4)

with negative indices denoting offsetting from the opposite end of

each dimension by that amount. Note that we use 1-based indexing.

2.3 Convolutional layer
For sequence classification we use a 1D convolution layer, with nf

filters of length fl stored in a weight matrix Wijk. The output of such

an operation on tensor Xij (ignoring bias terms for simplicity) is

CðXÞij ¼ f
X4

m¼1

Xfl

n¼1

Xm;jþn�1Wmni

2
4

3
5 (5)

where f is the activation function. Note that we used ‘valid padding’

so the sequence dimension is reduced by fl � 1. Applying the RC op-

eration to the input tensor of shape ½4;N� yields

CðRCl�1ðXÞÞij ¼ f
X4

m¼1

Xfl

n¼1

X�m;�ðjþn�1ÞWmni

2
4

3
5 (6)

¼ f
X4

m0¼1

Xfl

n0¼1

Xm0;½�j�þn0�1W�m0 ;�n0;i

2
4

3
5 (7)

¼ f
X4

m0¼1

Xfl

n0¼1

Xm0;½�j�þn0�1Wm0 ;n0 ;�i

2
4

3
5 (8)

¼ CðXÞ�i;�j :¼ RClðCðXÞÞij (9)

where we used the substitutions m ¼ �m0; n ¼ fl þ 1� n0, and ½�j�
denotes the positive index ðN þ 1Þ � ðfl � 1Þ � j. At (8) we assumed

that W obeys the symmetry Wm;n;i ¼W�m;�n;�i. Therefore, the con-

volutional layer satisfies (3) if this weight symmetry holds, and if we

define RC on the output layer as in (9). A schematic of this is shown

in Figure 2A. We note that this specific symmetry was used in a con-

volutional layer in Shrikumar et al. (2017) and was shown to im-

prove inference.

2.4 Max-pooling
Spatial max-pooling along the position dimension of a tensor is used

in order to increase the receptive field at the expense of resolution.

We consider the special, commonly used, case where the stride

length is the same as pool width. For this case we have, for a pool

length pl,

MPðXÞij ¼ max
k2½1þðj�1ÞNpl

;jN
pl
�
ðXikÞ: (10)

As long as pl divides N this defines an equivariant mapping, with

RC defined on the next layer in the obvious way.

2.5 RC max-pooling
We frequently found it useful to pool along the ‘filter axis’ rather

than along the spatial direction. More precisely, we take maxima

along orbits under the group action, which in our case consist of

two elements. After RC max-pooling we therefore have a new

output

MðxÞij ¼ maxðXi;j;X�i;�jÞ: (11)

This process halves the size of the output tensor compared to the

input. The resulting compression is depicted in Figure 2B. Equation

(3) is again satisfied, now with RC acting as the identity on the new

layer. A network that contains RC max-pooling is therefore auto-

matically symmetric under reverse-complementing. In general, more

complex symmetry groups may contain non-trivial subgroups, and

any of those may be used to do partial symmetric max-pooling; see

Cohen and Welling (2016).

2.6 Dropout
Dropout is a form of stochastic regularization for neural networks

designed to prevent overfitting by adding noise to the output of a

layer during network training (Srivastava et al., 2014). This is com-

monly implemented by dropping out nodes according to a Bernoulli-

distributed random variable, and can be implemented by taking the

Hadamard product between two identically shaped tensors. Define

�ij �i:i:d:BernðpÞ; (12)

then dropout applied to a tensor X with dropout rate p is

D�ðXÞij ¼ ð� �XÞij ¼ �ijXij (13)

with the tensor � sampled on a batch-wise basis. We denote the

Hadamard product by � rather than the more usual � to avoid con-

fusion with function composition. Applying RC gives the condition

D�ðRCl�1ðXÞÞij ¼ X�i;�j�ij ¼ RClðD�ðXÞÞ (14)

which holds if

�ij ¼ ��i;�j (15)

and if RCl ¼ RCl�1.

2.7 Bayesian equivariant networks
Convolutional networks have been shown to work well on large

datasets, but it is known that they overfit quickly when relatively lit-

tle training data are available (Gal and Ghahramani, 2016). This is

often the case in the biological domain, calling for a principled ap-

proach to deal with limited training datasets. Networks with drop-

out after every convolutional layer and trained via backpropagation

can be seen as approximating Bayesian variational inference

Fig. 2. (A) The three dimensional filter tensor has enforced symmetry by

weight tying, flipping the second half of the filter axis as shown. (B) In con-

trast to a conventional max-pooling along the spatial dimension, this ap-

proach permits pooling along filters
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(Gal and Ghahramani, 2016), promising good behaviour in data-

poor settings. The interpretation also suggested to use Bayesian

dropout rather than traditional weight averaging for making predic-

tions, using dropout to approximate sampling from a posterior

weight distribution. In this interpretation, the corresponding predic-

tion is obtained by the average over a sample of instantiations of the

network:

pðY�jX�;X;YÞ 	 1

K

XK

k¼1

FðY�jX�; �kÞ (16)

for unseen X� given previous training examples X ¼ ðX1; . . . ;XnÞ
and Y ¼ ðY1; . . . ;YnÞ used to train F. We refer to the process of

using dropout during both training and test time as Bayesian drop-

out, while we use dropout to refer to networks that use weight aver-

aging at test time.

The set of random variables � ¼ ð�1; . . . ; �KÞ in (16) implement a

random sample of the weights defining the network F. To implement

equivariance, it is sufficient that these weights obey the correct sym-

metry, e.g. (15), as then each term will be RC-symmetric and so will

the sum. The resulting function will be stochastic, but as long as � is

sampled and fixed beforehand, it will nevertheless exhibit exact RC

symmetry.

2.8 Choice of activation function
Rectified linear units (ReLUs), defined as ReLUðzÞ ¼ maxð0; zÞ, are

activation functions applied at the terminus of every layer, providing

the requisite non-linearity for stacked layers to have richer represen-

tational power than a simple linear model. These activation func-

tions have become ubiquitous in deep learning, though usually for

networks which are composed of more layers than is typical in gen-

omic problems, as they reduce or resolve the vanishing gradient

problem. ReLU elements have the property that for a large number

of units, the output will be identically zero. Although sparsity can be

advantageous, e.g. by making interpretation easier, we found that it

hampers convergence in all problems we have tried. We found that

using exponential linear units (ELUs) (Clevert et al., 2015) result in

substantially better convergence behaviour on our dataset (see

Supplementary Fig. S1). We observed qualitatively similar results

using shifted ReLUs [SReLUðzÞ ¼ maxðz;�1Þ] (data not shown).

2.9 Initialization of the output layer
We found that using a custom initialization of the output layer, pro-

viding the classification scores before a final softmax transform-

ation, substantially improved convergence for the networks we

considered (Supplementary Fig. S2). We initialized the weight ma-

trix of the final layer with 1, and the two bias parameters (corre-

sponding to the two nodes representing class probability) with

f1;�1g. A motivation for this choice was the observation that on a

number of problems the output layers weights were always close to

these values, so it appears that this initialization is closer to the glo-

bal optimum than traditional approaches such as those proposed

by Glorot and Bengio (2010). We also tried Batch normalization

(Ioffe and Szegedy, 2015) to address this problem, but found that it

did not improve convergence by as much as custom initialization did

(see Supplementary Fig. S5).

2.10 Network architecture
To find optimal non-Bayesian non-equivariant networks we per-

formed hyperparameter searches for both datasets (see Section 3.1)

independently (see Supplementary Sections A.1 and I for the

networks and search space, respectively). Next, for each dataset we

built three extensions as follows:

1. An equivariant network, by adding an RC pooling layer and

enforcing weight equivariance in the internal layers;

2. A Bayesian network, by adding one or two MC dropout layers;

3. A Bayesian equivariant network, by doing both, and changing

MC dropout into equivariant MC dropout.

To build these networks we performed additional restricted

hyperparameter searches on the position of the RC pooling and MC

dropout layers, the type of RC pooling (max, sum or average pool-

ing), and the L2 regularization parameter (because both equivar-

iance and dropout are themselves inherently regularizing), while

keeping all other network parameters fixed (see Supplementary

Section A.2).

3 Results

3.1 Datasets
Simulated data were generated as follows. As a model for a regula-

tory network involving two binding proteins, we sampled two pos-

ition weight matrices (PWMs) (ATAF4 and ERF1) from JASPAR

(Sandelin et al., 2004). We first randomly sampled 40 000 times a

random {0, 1}-response with 50% probability for each, representing

a measured phenotype of interest. For each response variable with

value 1 we sampled a specific motif from each of the two PWMs

(reverse-complementing them at random) and injected it into a ran-

dom background sequence with 40% probability. Otherwise we

injected the motifs with probability 20%. This procedure resulted in

40 000 sequences of length 1000, with 20 110 in category 1 and

19 890 in category 0. Note that there is a substantial amount of

noise in this dataset, making for a challenging classification

problem.

We also prepared a dataset of human recombination hot and

coldspots, similar to Myers et al. (2008). We first applied a simple

hidden Markov model to segment the genome into regions classified

as ‘hot’ and ‘not hot’. For emission probabilities we used two

exponential distributions for pðobserved ratejhotÞ and pðobserved

ratejnot hotÞ, and used Viterbi training to set the parameters. The

median recombination rate in regions classified as ‘hot’ was

10.5 cM/Mb. The length of hotspots, once annotated, had a median

value of 2448 bp, but with a heavy tail up to around 20 kbp. For

our purposes, we wanted to study localized recombination events,

so we discarded all hotspots longer than 4 kb. After discarding

sequences with unspecified bases, we then sampled a sequence of

length 1 kb from the centre of the remaining hotspots, yielding a

total of 17 552 truncated hotspots for classification.

To define a matched set of coldspot regions once hotspot regions

were identified, we applied a greedy search within 300 kb of each

hotspot region to identify a sequence within 10% GC content, and

with a recombination rate below 0.5 cM/Mb. GC matching ensures

that GC content, which tends to be higher in recombination hot-

spots due to GC-biased gene conversion, cannot be used as a proxy

for recombination strength, forcing the network to focus on causal

signals of DNA binding motifs. This pipeline yielded a total of

17 547 truncated coldspots, also of length 1000 bp.

3.2 ELU and SReLU activations improve convergence
Across a wide range of learning and topology hyperparameters we

observed consistent difficulty with the ReLU activation function,

with networks often not converging to optimal accuracies, and
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sometimes not converging at all, leaving no better than random

guesses. We observed, upon experimentation, that ELU and SReLU

activations gave much improved results (see Supplementary Fig. S1

for an illustration of this effect with ELU activations).

3.3 Equivariant Bayesian networks improve

classification accuracy
Comparing the best-performing networks resulting from the opti-

mization procedure outlined in Section 2.10 we found that for both

datasets the equivariant Bayesian networks outperformed the best-

in-class non-equivariant networks, achieving significantly better test

accuracy over a sample of 50 runs (Fig. 3). We found that both

equivariant non-Bayesian and Bayesian non-equivariant networks

were significantly more accurate than the best-in-class convolutional

network, and that the combination of Bayesian dropout and equiv-

ariance was again significantly more accurate than either.

We also investigated how well the equivariant Bayesian network

performed for these two problems in comparison to classical data

augmentation, whereby the RC of every sequence is added to the

dataset, at the cost of doubling the training time in comparison to

the unaugmented non-equivariant networks. As expected, data aug-

mentation improved the accuracy compared to standard networks

trained without data augmentation. Equivariant Bayesian networks

remained significantly better than the best discovered network

trained with data augmentation for the simulated dataset, while

results were comparable for the recombination dataset. Here, we

still note an empirical advantage in the gradient update speed in the

equivariant network of 32% in comparison to two updates in the

augmented data case, and 8% in comparison to the augmented case

where we double the batch size for improved computational effi-

ciency. The reason that this is not double the speed of the data aug-

mented case is due to the additional gradient updates required to

maintain weight tying in these equivariant networks.

Finally, we performed an experiment to test the efficacy of equivar-

iant networks in the low-data regime. Here, we used the baseline net-

works optimized for the full dataset, and trained them on half and a

quarter of the original training data comparing the asymmetric net-

works to the equivariant and equivariant Bayesian networks. For the

recombination dataset we observed an increasing performance gap be-

tween the equivariant and baseline networks as the data size was

reduced. For the simulated data, we found that the distribution of accu-

racies at convergence became increasingly broad and overlapping, as

the networks often struggled to converge in this regime. This made in-

terpretation more difficult, and all of the networks ended with around

0.54 area under the ROC curve (AUROC) (Supplementary Fig. S6).

3.4 Conventional dropout considered harmful
To understand the contribution of Bayesian dropout on the perform-

ance of the network, we compared the final asymmetric topology for

both datasets with no dropout, Bayesian dropout and conventional

dropout; the latter uses dropout during training but weight scaling

during test time. We recorded the mean accuracy over 50 trials.

Compared to Bayesian dropout, an identical network that used the

conventional dropout procedure yielded substantially inferior results

(Table 1), and performs worse than the baseline without dropout.

This behaviour was seen in both datasets. It appears that the approxi-

mation of weight averaging breaks down in this setting, apparently

causing biases in the output leading to reduced accuracies.

3.5 Equivariant Bayesian networks yield more

consistent predictions between runs
For the purposes of motif discovery and interpretation, it is advanta-

geous for networks to result in consistent internal representations be-

tween training runs. It has been noted previously (Shrikumar et al.,

2017) that CNNs tend not to learn stable internal representations across

different training runs, increasing the potential for different prediction

results on the same test data. Enforcing equivariance reduces the poten-

tial for such representational instability, and we hypothesize that this

would increase the consistency of predictions on hold-out data.

To test this hypothesis, we trained networks 50 times independ-

ently on identical training data, computed predictions on identical

hold-out data, and computed 1225 pairwise correlations of these pre-

dictions. We performed this experiment for the previously determined

optimal networks for the case of training with and without data aug-

mentation, and for both cases we made the model equivariant with-

out otherwise changing the topology. We found that in all four cases,

the equivariant networks achieved significantly higher correlation be-

tween runs than their non-equivariant counterparts with the same

number of filters (Fig. 4). We note that a hyperparameter search spe-

cifically for equivariant networks might further improve performance,

but for this experiment we did not pursue this. The improved predic-

tion consistency indicates that equivariance result in more training

that converges more reliably to the same optima, which would be

expected to improve the consistency of the harvested motifs.

3.6 Equivariant Bayesian networks improve upon

existing motif finders
To assess our approach we compared our results with two state-of-

art motif finders, DeepMotif (DeMo; Lanchantin et al., 2016) and

HOMER (Heinz et al., 2010), using the recombination dataset.

Fig. 3. For every network configuration, we trained to convergence a total of

50 times and plotted the distribution of the final AUROC statistic. For both the

simulation (top) and the recombination data (bottom) we find a statistically

significant improvement over the case where either equivariance or Bayesian

dropout is not applied. P-values calculated using the Wilcoxon test

Table 1. Mean test accuracies (6 one standard error) for the sym-

metric networks with no dropout, Bayesian dropout and conven-

tional dropout

Dataset Baseline Bayesian drop Conventional drop

Simulation 58.260.3 59.260.2 56.160.2

Recombination 63.560.2 64.560.2 58.260.3
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For the neural network-based algorithm DeMo we benchmarked

our results against the three network configurations offered by the

package, CNN, RNN and CNNRNN. All of these have substantial-

ly more complexity and weights than the model we used, but failed

to perform well on this task. Indeed the CNN model (a CNN) often

failed to converge at all, a problem that we also observed when

training our vanilla convolutional networks on these datasets. The

first training attempt that converged to better random predictions

had AUROC 0.58. Both the RNN and CNNRNN topologies con-

verged reliably, but achieved AUROCs of 0.64, substantially less

than the median AUROC of 0.71 achieved by our equivariant net-

work. These results are displayed in Figure 5.

We ran HOMER on the same dataset, using default parameters

except for setting a target motif length of 22 in an attempt to find

the sparse motif we discovered, but were unable to recover it. We

did however identify the canonical PRDM9 motif, and a number of

spuriously looking motifs (see Supplementary Fig. S7).

3.7 Discovery of novel PRDM9 binding motifs
Using the equivariant Bayesian network with the best classification

accuracy, we recovered binding motifs by identifying a subset of in-

put sequences responsible for the activation of particular nodes at

the first layer, finding the subsequence driving the activation in each

of those, and building a PWM from the aligned subsequences.

This process identified five motifs, three of which are versions of

the classical 13mer that was identified via enrichment analysis and

exhaustive search of motifs in Myers et al. (2008) (Fig. 5c–e). In

addition we identified two substantially longer (22 nt) and sparse

motifs that were not previously identified using this dataset (Fig. 6).

Since our networks are only approximately Bayesian, to confirm

that these motifs were not artefacts of overtraining, we confirmed

their significance by frequentist tests of significance for enrichment

on hold-out data (Table 2). The enrichment of the sparse motif is

similar to that of the canonical 13mer originally associated with

PRDM9 binding, but its complexity and under-constrained nature

(only about 8 out of the 22 bases of the motif have substantial infor-

mation content) mean that it was not originally discoverable using a

traditional enrichment approach. We discuss this finding further in

the next section.

4 Discussion

Deep learning approaches have been shown to be very effective in

building sequence models on large-scale data (Kelley et al., 2016;

Quang and Xie, 2016; Zhou and Troyanskaya, 2015). However,

through simulated and biological data we show here that models

designed using traditional building blocks for neural networks may

struggle to converge consistently and produce reliable results in

cases where the signal in the data is weak, and the amount of train-

ing data is limited. This problem was seen across a large number of

network architectures, as well as in methods specifically designed to

identify transcription factor binding sites from sequence data

(Lanchantin et al., 2016). To improve on this situation, we showed

how to combine equivariant neural networks (here, neural networks

that exhibit exact RC symmetry) with Bayesian dropout. While a

naive combination of these ideas would result in networks that are

only in expectation RC symmetric, we show that it is possible to

achieve exact RC symmetry. In addition, we find that by modifying

the activation functions, and the initialization of the output layer,

we obtain a further significant improvement in accuracy.

Equivariant networks can be implemented in several ways. We

chose to implement a standard (non-equivariant) network, enforcing

equivariance by requiring certain identities on the parameters.

Although this introduces some extra computation, this approach

yields a number of advantages in comparison to data augmentation,

where the training data are made symmetric and symmetry must be

learned by the network. We find that in comparison to data augmen-

tation, an equivariant network reduces the update time and results

in equal or better test accuracies and improved consistency between

training runs. Equivariant networks have the additional advantage

of guaranteeing identical predictions on the forward and reverse

strand, which may be desirable in applications.

We also found that Bayesian dropout resulted in a substantial

performance improvement. This is striking, as dropout is normally

thought of as a regularization technique that reduces the tendency of

overtraining often found in large models. By contrast, in our regime

the final models were small in comparison to the number of samples

in the training set, and we did not see much evidence of overfitting

Fig. 4. Mean of correlation of predictions on unseen data for pairs of networks

that were independently trained on identical data. Shown are results for

Bayesian networks optimized on both augmented and unaugmented data,

and for the same networks but constrained to be equivariant; the latter show

significantly more consistent predictions than non-equivariant networks. Full

architectural details given in Supplementary Material Section A

A B

Fig. 5. Classification accuracies (A) and (area under) receiver operator curves

(B) for the equivariant Bayesian network and the three models provided by

the Deep Learning based motif finder DeMo (Lanchantin et al., 2016). For

comparison we also show the classification accuracy of the canonical PRDM9

13mer motif, as well as the classification accuracy obtainable by using the dif-

ferential histone mark H3K4me3 under PRDM9 overexpression, a direct proxy

for PRDM9 binding (Altemose et al., 2017)
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either with or without using dropout, such as a substantial contin-

ued decrease of training loss after test loss stabilized, and we did not

find that the model latched on to spurious motifs that were not stat-

istically significant on test data. It appears that, in addition to

addressing overtraining, Bayesian dropout leads to superior learning

and feature extraction. It would be interesting to confirm this phe-

nomenon in different settings.

We then applied a network incorporating both Bayesian dropout

and equivariance to the problem of predicting meiotic recombin-

ation hotpots directly from sequence. It was straightforward to in-

terpret the resulting model, and interrogation of the sequences that

maximally activated the input layer revealed the previously charac-

terized 13-base PRDM9 binding motif (Myers et al., 2008).

Additionally, we discovered a much sparser motif, with only about

8/22 bases showing substantial information content. Like the clas-

sical motif, these new motifs were statistically significant on hold-

out data, indicating that they were truly predictive features and not

artefacts of an overtrained model. These sparse motifs (category A

in Fig. 6) bear strong resemblance to motifs recently shown to be

associated with PRDM9 binding (Altemose et al., 2017), lending

further support to this conclusion. In fact, the observation that the

model was able to achieve predictive accuracy on a par with hot-

spots predicted using differential H3K4 trimethylation as an input

[also from Altemose et al. (2017)] is consistent with the hypothesis

that the neural network model represents a near-optimal model for

PRDM9 binding (Fig. 5). The alternative but less parsimonious ex-

planation is that our model and the H3K4me3 assay are suboptimal

to the same degree.

From a practical point of view, we noted that the motifs gener-

ated from this network with Bayesian dropout were qualitatively

different and more numerous than the motifs identified with a clas-

sical convolutional approach, and we see a degree of degeneracy

among the motifs learned by our network. It remains to be seen

whether these different binding motifs correspond to relate but

slightly different binding modalities, or whether these motifs are a

result of dropout training and provide a way for the network to ro-

bustly identify motifs in the presence of weight noise. This would be

an interesting direction for further research. Certainly, if indeed

these motifs do correspond to different binding modalities, each

with slightly different binding affinities, it would explain why these

networks are able to achieve the superior classification accuracies

compared to standard models.
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