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Abstract

Introduction: People born preterm at very low birth weight (VLBW, #1500g) have higher rates of risk factors for adult-onset
diseases, including cardiovascular diseases and type 2 diabetes. These risks may be mediated through epigenetic
modification of genes that are critical to normal growth and development.

Methods: We measured the methylation level of an imprinted insulin-like-growth-factor 2 (IGF2) locus (IGF2/H19) in young
adults born preterm at VLBW and in their peers born at term. We studied 158 VLBW and 161 control subjects aged 18 to 27
years from the Helsinki Study of Very Low Birth Weight Adults. Methylation fraction at two IGF2 differentially methylated
regions (DMRs) – IGF2 antisense transcript (IGF2AS, also known as IGF2 DMR0) and last exon of IGF2 (IGF2_05, also known as
IGF2 DMR2) – were measured with Sequenom Epityper. We used linear regression and adjustment for covariates to compare
methylation fractions at these DMRs between VLBW and control subjects.

Results: At one IGF2AS CpG site, methylation was significantly lower in VLBW than in control subjects, mean difference
20.017 (95% CI; 20.028, 20.005), P = 0.004. Methylation at IGF2_05 was not different between the groups.

Conclusions: Methylation of IGF2AS is altered 20 years after preterm birth at VLBW. Altered methylation may be a
mechanism of later increased disease risk but more data are needed to indicate causality.
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Introduction

It has been hypothesized that many complex adult chronic

diseases originate from conditions encountered in utero and in early

life. This was first perceived in people born at term with a lower

birth weight who have higher rates of many adult-onset diseases

(cardiovascular diseases and type 2 diabetes) or their risk factors

[1–4]. Also individuals that were in utero exposed to caloric

deprivation during the Dutch and Biafran famines have been

shown to be in excess risk of several common chronic diseases in

adulthood [5,6]. Similarly people born preterm at very low birth

weight (VLBW, birth weight #1500 g) encounter risks for late-

onset chronic diseases [7–12]. For instance, in comparison to their

non-low-birth-weight term-born peers, VLBW subjects have

higher blood pressure [7–10] as well as impaired glucose

regulation [11,12].

Individuals born at term with a low birth weight, exposed to

famine in utero or born preterm at VLBW all share a period of poor

nutrition and growth early in life [13–15]. In the Dutch famine

studies, early caloric deprivation has been shown to be associated

with aberrant methylation at the Insulin-like growth factor-2

(IGF2) gene [16,17], which is an imprinted gene that functions as

part of the anabolic growth hormone/insulin-like growth factor

endocrine axis regulating growth. Imprinted genes are epigenet-

ically labile to early environmental influences [18] and modest

methylation shifts in their functional/regulatory regions are

associated with changes in gene expression. IGF2 is particularly

critical for growth in fetal life and plays a role in fetal growth
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restriction [19]. Whether a change in IGF2 methylation results in

enhanced incidence of chronic diseases in the Dutch famine study

population is presently unknown. However, evidence for its role as

a link between early conditions and later adult disease risk comes

from several other studies reporting associations between methyl-

ation shifts at IGF2 differentially methylated regions (DMRs) and

increased susceptibility to e.g. malignancies, as well as obesity [20].

Variation in IGF2 methylation could potentially serve as a

mediator between adult cardiovascular disease (CVD) risk and

preterm birth at VLBW.

In this study we investigated the level of IGF2 (IGF2/H19 locus)

methylation in a population of young adults born preterm at

VLBW, in whom we previously have reported elevated levels of

CVD risk factors – higher blood pressure and impaired glucose

regulation [10,12] – in comparison to their non-low-birth-weight

term-born controls. We chose to study hierarchically regulated

IGF2 DMRs through which imprinting of the IGF2 gene is

maintained. The first DMR we chose was the IGF2 antisense

transcript (IGF2AS) amplicon, also known as IGF2 DMR0 [21], in

which both gain and loss of methylation have been reported under

different conditions [16,17]. The other amplicon we chose to study

was IGF2-DMR2, overlapping the last exon of IGF2 (IGF2_05)

[22].

Subjects
The participants of this study come from The Helsinki Study of

Very Low Birth Weight Adults, which is a longitudinal follow-up

cohort of subjects born preterm at VLBW between 1978 and 1985

and treated in the Neonatal Intensive Care Unit of Children’s

Hospital of Helsinki University Central Hospital. Of the original

cohort, 255 VLBW subjects had survived from the intensive care

period and resided in the greater Helsinki area at the time of

invitation for follow-up. These subjects were invited to participate

in the study together with a sex-, age-, and birth hospital -matched

comparison group of 314 term-born subjects who were not small

for gestational age (SGA), i.e. whose birth weight was more than –

2 SD, based on Finnish growth standards [23]. Clinical visits of the

study participants as well as non-participant analysis are explained

in more detail elsewhere [10,12,24]. Altogether, 165 (65%) VLBW

and 172 (55%) control subjects participated in a clinical

examination in their early adulthood, at age 18 to 27 years. The

examination included, e.g., height and weight measurement based

on which body mass index (BMI) was calculated (weight in

kilograms divided by height in meters squared), and a 2-hour oral

glucose tolerance test. The subjects also completed detailed

questionnaires that covered their medical history, lifestyle factors,

and familial history of disease. Furthermore, blood samples were

drawn for epigenetic analyses (IGF2 methylation fraction mea-

surement). These samples were taken in a fasting state and blood

was stored as EDTA blood in a freezer (–20uC). For eight VLBW

and 11 control subjects the IGF2 methylation fraction data did not

pass quality control. We obtained reliable methylation fractions for

158 VLBW and 161 controls. For 127 VLBWs and 146 controls,

we also carried out dual-energy x-ray absorptiometry (DXA,

Discovery A, Hologic) to measure body composition.

This study was performed according to the declaration of

Helsinki. The study protocol was approved by the Ethics

committee of the Helsinki and Uusimaa Hospital District, Finland.

Written informed consent was obtained from each participant.

Methods

Assessment of methylation fractions
In the two DMRs, IGF2AS and IGF2_05, we measured the

methylation level of CpG units (i.e. fragments containing one or

more CpG sites) – six units for IGF2AS and seven units for

IGF2_05 – using Sequenom EpiTYPER (Sequenom, San Diego,

CA, USA). A fragment is produced from a PCR amplicon,

designed to contain at least 4 analyzable CpGs, which is initially

amplified from bisulfite treated DNA. The PCR amplicon is

subsequently transcribed in vitro and fragmented by RNAase to

produce smaller fragments where the cytosines of unmethylated

CpGs are present as adenosines and of methylated CpGs as

guanines. These fragments differ in mass which the EpiTYPER

software identifies. Genomic DNA was extracted from whole

peripheral EDTA blood by using QIAamp DNA Blood Maxi Kit

(QiagenH); 500 ng of DNA was then bisulfite-treated using the EZ

DNA Methylation Kit (Zymo Research Corporation, Irvine, CA,

USA) according to manufacturer’s instructions. Bisulfite treatment

and further sample processing was carried out at the Mutation

Analysis Facility, Karolinska Institutet, Sweden. Primers (Table 1)

were designed and validated using the EpiDesigner web resource

and the RseqMeth and MassArray packages in R. Two IGF2AS

CpG units with single nucleotide polymorphisms were excluded

from the analysis. One IGF2_05 CpG unit was excluded from the

analysis because of unreliable data indicated by low peaks and low

signal-to-noise ratios. Thus, we finally examined four IGF2AS and

six IGF2_05 CpG units in this study. Quality control of the data

was performed using EpiTYPER and MassArray R-script

software. Assessment of primer-dimer formation and bisulfite

conversion efficiency was made with MassArray R-script and

indicated overall good quality data. Samples with low signal, low

signal-to-noise ratio and low probability of accurate data signaled

by EpiTYPER software were eliminated. All samples were

measured in duplicate. Samples with a duplicate difference of

greater than 20% in methylation level were considered unreliable

and excluded from the analysis. Altogether seven measurements

were excluded. We used means of each duplicate as the

methylation level of that CpG unit in the analyses.

Statistical analyses
Statistical analyses were performed using IBM SPSS Statistics

19.0 (Chicago, IL). To compare the baseline characteristics we

used the t test for continuous and the x2 test for categorical

variables.

To compare the methylation fraction at each IGF2AS and

IGF2_05 CpG units, we used linear regression analysis with

Bonferroni correction for multiple comparisons. We adjusted for

covariates in different models; for plate number (dummy-coded),

sex, and age in model 1, and for plate number, sex, age, height,

BMI, mother’s smoking during pregnancy [25], mother’s age at

birth, father’s age at birth, mother’s BMI before pregnancy [26],

and highest educational attainment of either parent in model 2

(full adjustment). In an additional model we also adjusted for folic

acid use of the subject [27]. Furthermore, in a subgroup with

available data we adjusted for lean body mass instead of height

and BMI.

Some of the VLBW subjects’ birth weight was equal to or less

than 1500 g (inclusion criterion) because of being just born

remarkably early, but appropriate for gestational age (AGA; birth

weight $ –2SD) [23]. Other VLBW subjects were born SGA with

less prematurity and had a birth weight of #1500 g caused by

poor intrauterine growth. We thus also examined the methylation

fractions between AGA and SGA VLBW subjects.

IGF2 Methylation in Subjects Born Preterm
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Results

Characteristics of the study participants are presented in Table

2. The VLBW participants were born at the mean gestational

week of 29.2 weeks (SD 2.2 weeks), and controls at 40.1 weeks (SD

1.2 weeks). Mean birth weight of the VLBW subjects was 1117 g

(SD 220 g), and of the controls 3602 g (SD 478 g). Of the VLBW

subjects, 53 (34%) were born SGA.

Table 3 shows the average methylation percent (%) and

standard deviations (SDs) at each CpG unit of the IGF2AS and

IGF2_05 DMR amplicons in VLBW and in control subjects, as

well as the numbers of measurements that were considered

reliable.

Table 1. IGF2AS and IGF2_05 amplicons.

Amplicon Primers
Amplicon
length

Coordinates in build
GRCh37/hg19

Coordinates in build
NCBI36/hg18

IGF2AS F:aggaagagTGGATAGGAGATTGAGGAGAAA 338 chr11:2169459-2169796 chr11:2126035-2126372

R:cagtaatacgactcactatagggagaaggctAAACCCCAACAAAAACCACT

IGF2_05 F:aggaagagagGAAGGGGTTGGTTAGTAGGTGTTTGT 276 chr11:2154463-2154738 chr11:2111039-2111314

R:agtaatacgactcactatagggagaaggctCCTAAACCCCTTTCCCACTCTCTAA

doi:10.1371/journal.pone.0067379.t001

Table 2. Characteristics of the study participants.

Characteristic VLBW (n = 158) Controls (n = 161) P a
Missing values (VLBW/
controls)

Women, n (%) 91 (58) 96 (60) 0.9 0/0

Men, n (%) 67 (42) 65 (40) 0.8 0/0

Birth

Gestational age, mean (SD), wk 29.2 (2.2) 40.1 (1.2) ,0.0001 0/0

Birth weight, mean (SD), g 1117 (220) 3602 (478) ,0.0001 0/0

Birth weight SDS, mean (SD), SDS –1.29 (1.53) 0.06 (1.04) ,0.0001 0/0

SGA, n (%) 53 (34) 0 0/0

Parental

Mother’s age 29.8 (4.8) 29.9 (5.1) 0.1 0/1

Father’s age 31.6 (5.6) 32.0 (6.0) 0.4 1/3

Mother’s BMI before pregnancy 22.2 (3.7) 22.3 (3.5) 0.2 27/3

Mother’s smoking during pregnancy 29 (18) 26 (16) 0.7 0/1

Highest education of either parent, n (%) 2/1

Elementary 16 (10) 9 (6) 0.2

High school 34 (22) 28 (17) 0.4

Intermediate 64 (41) 53 (33) 0.3

University 42 (27) 70 (43) 0.03

Current

Age, mean (SD), y 22.4 (2.1) 22.5 (2.2) 0.1 0/0

Height, mean (SD), cm

Women 162.0 (7.8) 167.4 (6.8) ,0.0001 0/0

Men 174.2 (7.6) 180.5 (6.5) ,0.0001 0/0

BMI, mean (SD), kg/m2

Women 22.1 (3.8) 22.8 (3.6) 0.2 0/0

Men 22.0 (3.7) 23.3 (3.3) 0.03 0/0

Lean body mass, mean (SD), kg

Women 38.9 (5.7) 43.0 (5.5) ,0.0001 5/19

Men 53.4 (8.1) 61.6 (8.0) ,0.0001 7/15

VLBW was birth weight #1500 g; SGA was birth weight less than –2SD.
aA t test for continuous and chi square test for categorical variables.
doi:10.1371/journal.pone.0067379.t002
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Differences in IGF2 methylation between VLBW and
control subjects

Mean differences and 95% confidence intervals (CIs) in

methylation fractions at IGF2AS and IGF2_05 CpG units between

VLBW and control subjects, obtained by linear regression and full

adjustment (model 2) are presented in Table 4. P-values for model

1 as well as unadjusted P-values are also shown. Males and females

were analyzed together; sex interaction was not significant (P

values $ 0.1). We found that the methylation at all IGF2AS CpG

units tended to be lower in VLBW than in control subjects, but the

difference was significant only at IGF2AS CpG3 [–0.017 (95% CI

–0.028, –0.005), P = 0.004, full adjustment]. As there were

multiple comparisons (10 CpG units), we carried out Bonferroni

correction, in which case this difference between VLBW and term

remained significant. At IGF2_05 CpG unit methylation fractions

were similar in both groups.

Adjustment for folic acid use did not change the results (data not

shown). In a subgroup with available data on body composition

and adjustment for lean body mass instead of BMI and height,

IGF2AS CpG3’s lower methylation fraction in VLBW compared to

control subjects remained significant (P = 0.006). Other results also

remained the same. Mode of delivery was not associated with

methylation levels.

Of the covariates, age of the subject had a negative effect on

methylation at IGF2AS CpG8 [–0.003 (95% CI –0.006, –0.001),

P = 0.020], and mother’s smoking during pregnancy on IGF2_05

CpG7 [–0.019 (95% CI –0.034, –0.004), P = 0.014] and IGF2_05

CpG91011 [–0.017 (95%CI –0.032, –0.002), P = 0.031]. Other

covariates did not have statistically significant effects on methyl-

ation fr actions (Table S1).

We also tested whether adult size-related characteristics or

glucose values in the 2-hour OGTT were associated with IGF2

methylation levels. Final height or adult BMI were not associated

with methylation levels at IGF2 CpG units in our study. Neither

were methylation levels associated with 2-hour glucose levels, but

there was a statistically significant association between fasting

glucose and methylation level at IGF2_05 CpG 12 (B = 1.004,

95%CI: 0.017 to 1.992, P = 0.046) and IGF2_05 CpG 34

(B = 0.957, 95%CI: 0.012 to 1.903, P = 0.047).

Differences in IGF2 methylation between VLBW subjects
born SGA and those born AGA

In analyses within the VLBW group between the VLBW

subjects born SGA and AGA, there were no significant differences

in the methylation fractions at any IGF2AS or IGF2_05 CpG units.

(Table 5). The difference in IGF2AS CpG3 unit methylation was

similarly different between VLBW-SGA and controls [–0.020

(95% CI: –0.037, –0.003), P = 0.022], as well as between VLBW-

AGA and controls [–0.018 (95% CI: –0.031, –0.005), P = 0.007].

A history of perinatal infection, bronchopulmonary dysplasia, or

maternal preeclampsia was not associated with methylation levels.

These were also similar in VLBW subjects from multiple and those

from singleton pregnancies (data not shown). Within the VLBW

group methylation levels were not associated with birth weight or

gestational age.

Discussion

Imprinted genes are epigenetically labile to early environmental

influences [18]. These mitotically heritable marks may serve as

archives of early exposure and may offer a fascinating mechanistic

explanation to the concept of developmental origins of adult

disease. The best characterized imprinted domain is IGF2 that

plays a key role in fetal growth, and alterations of methylation are

present in fetal growth restriction [19] and in Beckwidth-

Wiedemann and Silver-Russell syndromes [28,29]. In this study,

we investigated two DMRs at the IGF2 locus in young adults born

preterm at VLBW, who have previously been shown to have

elevated levels of risk factors for CVDs in adulthood [10,12]. We

found that VLBW subjects have a significantly lower methylation

level at one IGF2AS DMR CpG than their term-born peers. The

finding survived Bonferroni correction of multiple comparisons

and was not explained by potential confounding factors.

Although VLBW birth and in utero severe caloric restriction are

not exactly similar early adverse events, our finding of 2% lower

methylation in VLBW adults parallels that in the Dutch famine

study, which showed that people who had been exposed to very

early nutritional deprivation and had later increased incidence of

chronic diseases had a 5% lower IGF2 methylation level –

measured decades after the exposure – at the same CpG sites that

Table 3. Mean (SD) methylation % at different IGF2 CpG units in VLBW and control subjects.

IGF2 CpGs VLBW (n = 158) Controls (n = 161) Missing values (VLBW/controls)

Mean % (SD) Mean % (SD)

IGF2AS

CpG3 55.6 (0.04) 57.4 (0.05) 1/0

CpG4 60.4 (0.07) 60.9 (0.06) 1/2

CpG67 39.9 (0.04) 40.7 (0.04) 0/2

CpG8 51.8 (0.05) 52.8 (0.04) 1/2

IGF2_05

CpG12 68.5 (0.05) 68.4 (0.05) 0/0

CpG34 67.4 (0.05) 67.1 (0.05) 0/0

CpG6 50.6 (0.04) 50.7 (0.04) 0/0

CpG7 56.3 (0.05) 56.4 (0.04) 0/1

CpG8 55.4 (0.04) 55.3 (0.04) 0/0

CpG91011 53.1 (0.05) 52.7 (0.05) 0/0

VLBW was birth weight #1500 g.
doi:10.1371/journal.pone.0067379.t003
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we measured [16]. Another evidence for epigenetic mechanisms

influencing late-onset conditions comes from another study in

which hypermethylation at some imprinted gene loci sensitive to

prenatal nutrition were associated with myocardial infarction [30].

Recent studies have shown associations between gestational age at

birth and methylation at patterns in newborns at several genes

[31,32]. We are not aware of other reports on DNA methylation

patterns in subjects born preterm at VLBW. Although one study

has reported severe hypomethylation at IGF2/H19 locus in a term

patient with birth weight less than -3SDS [33], another larger

study on subjects born SGA did not reveal an association between

IGF2 methylation levels and SGA birth [34]. Accordingly, we did

not find any difference in IGF2 methylation between those VLBW

subjects that were born SGA and those born AGA. Etiologies of

SGA births are multiple and there are potentially many different

epigenetically regulated loci [35,36], as well as non-epigenetic

factors [17] that lead to later health outcomes in these subjects.

Other perinatal characteristics, such as infection, bronchopulmo-

nary dysplasia, or preeclampsia, were unrelated to methylation

levels. However, we suppose our subject population is not large

enough to permit us to properly assess these effects. In addition, it

has only limited power to assess associations with adult phenotypic

characteristics.

It is not possible to assure here that the altered methylation in

IGF2 is not a primary defect that is responsible for the premature

birth at VLBW. If the methylation change is secondary to VLBW

birth, we can not be sure either that the 2% lower IGF2AS CpG3

methylation can have any clinical relevance. Whether such a

Table 4. Differences in methylation fractions at different IGF2 CpG units between VLBW and controls by linear regression.

Model 2 Model 1 Unadjusted

Difference between VLBW and controls (95% CI)P P P

IGF2AS

CpG3 –0.017 (–0.028, –0.005) 0.004 0.0005 0.0004

CpG4 –0.010 (–0.026, 0.007) 0.248 0.527 0.505

CpG67 –0.008 (–0.017, 0.001) 0.099 0.051 0.057

CpG8 –0.008 (–0.020, 0.004) 0.178 0.053 0.066

IGF2_05

CpG12 0.004 (–0.008, 0.017) 0.511 0.846 0.860

CpG34 0.005 (–0.008, 0.018) 0.435 0.577 0.595

CpG6 –0.002 (–0.012, 0.009) 0.776 0.708 0.733

CpG7 0.001 (–0.011, 0.012) 0.933 0.745 0.765

CpG8 0.003 (–0.008, 0.013) 0.610 0.705 0.698

CpG91011 0.008 (–0.004, 0.021) 0.174 0.446 0.422

VLBW was birth weight #1500 g.
Model 1; adjusted for plate n:o, sex, age.
Model 2; adjusted for plate n:o, sex, age, height, body mass index, mother’s smoking during pregnancy, mother’s age, father’s age, mother’s body mass index before
pregnancy, and highest education of either parent.
doi:10.1371/journal.pone.0067379.t004

Table 5. Differences in methylation fractions at different IGF2 CpG units between VLBW subjects born SGA and VLBW subjects
born AGA by linear regression.

Difference between VLBW-SGA and VLBW-AGA (95% CI) P

IGF2AS

IGF2_AS_CpG3 0.002 (–0.014, 0.019) 0.801

IGF2_AS_CpG4 0.002 (–0.022, 0.026) 0.125

IGF2_AS_CpG67 0.001 (–0.013, 0.015) 0.174

IGF2_AS_CpG8 0.001 (–0.017, 0.018) 0.953

IGF2_05

IGF2_05_CpG12 –0.009 (–0.027, 0.010) 0.354

IGF2_05_CpG34 –0.011 (–0.029, 0.008) 0.253

IGF2_05_CpG6 –0.004 (–0.020, 0.012) 0.640

IGF2_05_CpG7 –0.004 (–0.022, 0.015) 0.685

IGF2_05_CpG8 –0.009 (–0.025, 0.007) 0.268

IGF2_05_CpG91011 –0.007 (–0.025, 0.011) 0.459

VLBW was birth weight #1500 g; SGA was birth weight less than –2SD; AGA was birth weigh equal to or more than 2SD.
doi:10.1371/journal.pone.0067379.t005
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minor reduction in methylation can have functional consequence,

such as downregulation of IGF2 function, is not known. However,

methylation differences may be more significant in other tissues

than the white blood cells from whole blood samples that we

studied here [37,38]. Analysis of methylation in, e.g., fat and

muscle would give more detailed data for methylation associated

with VLBW birth, but other tissues than blood were not available

from our subjects. In addition to different tissues, methylation

levels also vary across different blood cell types [38]. Thus, the

methylation levels studied could be affected by differential cell

count in whole blood samples. Using a publicly available database

[39], we checked the methylation levels for available CpGs within

1 kb from our amplicons, and did not find major methylation

differences between blood cell types that would have affected the

interpretation of our results.

A clear advantage of this study is that the study population was

exceptionally well characterized allowing for, e.g., adjustment for

most important potential confounders that could affect IGF2

methylation levels. It has been stated that infants born to smokers

have higher methylation at the IGF2 than those born to non-

smokers [25]. Moreover, mother’s obesity before pregnancy may

influence IGF2 methylation and gene expression [26]. Although

we observed a significant effect of mother’s smoking during

pregnancy on methylation at some CpG units neither this nor any

other confounding factor explained the differences in the IGF2AS

CpG3 methylation fraction between VLBW and control subjects.

We did not adjust for mode of delivery, since the reasons for

cesarean section are different in preterm and term pregnancies. In

our study, mode of delivery was not associated with methylation

levels. In vitro fertilization has been reported to affect methylation

patterns [40], but it was not used in the 1970s. Ethnicity could also

have an influence on methylation patterns, but our study

participants were almost exclusively of Finnish origin. Folic acid

supplementation that has been suggested to increase the risk of

adult chronic diseases has been reported to be associated with

methylation levels [41]. We adjusted for folic acid use, but it did

not change the results.

A minor disadvantage in our study is the number of study

participants which was relatively small. Moreover, our study

participants may not be representative of the original VLBW

cohort, but this would only be expected to introduce bias if the

association between VLBW birth and IGF2 methylation was

different among participants and non-participants. This cannot be

excluded.

Conclusions

In conclusion, we observed a significant difference in the

methylation fraction at one IGF2AS DMR CpG site between

preterm-born VLBW young adults with elevated levels of CVD

risk factors in comparison to controls born at term. More data are

needed to indicate whether IGF2 methylation patterns can be

causal for VLBW subjects’ higher levels of risk factors of

cardiovascular disease and type 2 diabetes.
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