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The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective
registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on
contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS) method and a
dynamic threshold denoising (DTD) method are creatively proposed to preprocess CT and PET images, respectively. Next, a new
automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet
Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes
Mutual Information on 13 pairs (246~286 slices per pair) of 3D whole-body PET and CT data. Experimental results demonstrate
the registration effectiveness of our method with lower negative normalization correlation (NC = —-0.933) on feature images and
less Euclidean distance error (ED = 2.826) on landmark points, outperforming the source data (NC = —0.496, ED = 25.847) and
the compared method (NC = —0.614, ED = 16.085). Moreover, our method is about ten times faster than the compared one.

1. Introduction

The fusion image of Positron Emission Tomography (PET)
and Computed Tomography (CT) provides the functional
and metabolic information, which could help medical diag-
nosis, treatment planning, and evaluation [1, 2]. Because
of the different scanning time of PET and CT and the
respiratory movements, there are always image artifacts and
deformations existing in PET/CT images, bringing enormous
challenges to the research work on image fusion. Therefore,
it is necessary to find an efficient and accurate registration
method to improve the correspondence between PET and CT
images before fusion, which is also of great significance to
clinical diagnosis and treatment [3, 4].

Image registration is the process of aligning one image
(moving image) to another image (fixed image) by finding a
transformation that maximizes the similarity metric between
the transformed moving image and the fixed image [5]. The
registration of PET and CT images is a matter of multi-
modal image registration. Recently, there are many methods

proposed in the field of image registration. They are generally
classified into two categories: intensity-based and feature-
based methods.

As for intensity-based methods, [6] proposed Mattes
Mutual Information (MMI) as a similarity metric for PET-
CT image registration in the chest. The study in [7] combined
the Harris corners as the feature information to enhance the
conventional MMI registration. A registration method based
on multiresolution generic algorithms [8] for 3D registration
of cardiac PET/CT images achieved a high accuracy in a
reasonable time. The study in [9] combined the segmentation
and intensity information together for PET/CT registration,
whose speed and accuracy were enhanced. As for feature-
based methods, [10] presented a preprocessing method for
MRI and CT images and a feature-based affine transforma-
tion where tibia and femur were selected as the feature for the
registration of human knee images. Reference [11] modified
Iterative Closest Points (ICP) by combining moments, center
points, and Canny calculators, which had a good result on
head images with a high speed. Reference [12] presented
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aregistration framework based on the geometrical characters
for aligning CT data that reduced the processing time heavily
without affecting the registration accuracy.

However, the accuracy and time efficiency of 3D registra-
tion on whole-body PET and CT images are still challenging.
The intensity-based methods often have a higher accuracy
but less time efficiency because of the large computation,
while the feature-based methods with less computation are
faster but the accuracy depends heavily on the extracted
feature [13-16]. To address these issues, this paper presents
a multithread registration solution based on contour point
cloud for 3D whole-body PET and CT images. There are
mainly three contributions in this paper. Firstly, a geometric
feature-based segmentation (GFS) method and a dynamic
threshold denoising (DTD) method are creatively proposed
for removing background noise in CT and PET images,
respectively. Secondly, this paper proposes a new automated
trunk slices extraction method to extract feature point cloud
sequences automatically. This method is different from the
manual method proposed in [17] where the identification
of trunk slices must be done manually. Finally, a simple
downsampling method and a multithread ICP are used to
achieve registration quickly with a considerable accuracy.

The remaining sections of this paper are organized as
follows. Section 2 presents our proposed registration method.
In Section 3, we introduce a new geometric feature-based
segmentation method and dynamic threshold denoising
method to preprocess the CT and PET images, respectively.
The feature point cloud extraction is shown in Section 4.
Section 5 explains the multithread ICP in detail. We compare
our proposed method with one commonly used registration
method and the experimental results evaluation and discus-
sion are shown in Section 6. Finally, the conclusions and
future work are given in Section 7.

2. Registration Method and Steps

To address the challenges and requirements mentioned above
with considerable accuracy and efficiency, this paper pro-
posed a multithread registration solution based on contour
point cloud for PET and CT images. Figure 1 is the flowchart
of the proposed method where the bold rectangles mean our
innovation works. The inputs, CT and PET images, are the
original image sequences in DICOM format from the same
patient. The point cloud is the set of feature points used as
the inputs of the registration.

As shown in Figure 1, the proposed method contains three
phases: preprocessing, feature point cloud extraction, and
registration. Firstly, the preprocessing includes two parts, CT
image preprocessing and PET image preprocessing. Figures 2
and 3 are the flowcharts of them, respectively. In this phase,
we primarily perform normalization that maps intensities of
both PET and CT images to the range of [0,255]. Besides,
in PET preprocessing, a cubic b-Spline interpolation is
employed to interpolate the PET images from 128 x 128 to
the same resolution as CT images (512 x 512). Next, the
GFS method and DTD method are utilized on CT and PET
images, respectively, in order to get segmented images and
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FIGURE 1: The flowchart of the proposed registration method.
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FIGURE 2: The flowchart of CT image preprocessing.

binary feature images. The GFS method combines the slice
id and contour selection together to eliminate background
voxels of CT images (e.g., the shadow of scanning bed). The
DTD method integrates a dynamic threshold segmentation
and contour selection to get high quality PET images with
little noise. After the preprocessing, we use a new automated
trunk slices extraction method according to our definition
of trunk slices (see Section 4) to identify trunk slices from
the obtained feature images and then extract feature point
clouds from them. In the last phase, a simple downsampling
method is primarily used on the extracted feature point
clouds before registration to reduce the computation. Then, a
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multithread ICP is adopted to obtain the registration results
where multithreads could further enhance the time efficiency.

3. Preprocessing with GFS and DTD

It is desirable to do preprocessing before registration due to
the following reasons [18]. Firstly, intensity normalization is
needed because the intensity range of the original CT and
PET images is too wide that would cause high computational
complexity. Secondly, the resolutions of PET and CT images
are different so that an interpolation should be performed
on PET images. Finally, it is necessary to do segmentation
to remove the massive background noise information (the
pixels do not belong to human body) in both CT and PET
images because that could affect the registration accuracy
heavily. For example, the noise in CT images (see the red
circle in Figure 4(a)) is from the shadow of the scanning bed.
The noise captured from the background in PET image (see
Figure 5(a)) is hard to be observed due to its low value of
intensity. In order to observe the noise in PET directly, we
perform binary threshold segmentation on Figure 5(a). The
threshold segmentation result is shown in Figure 5(b), where
the isolated points are the noisy pixels.

Different preprocessing methods are proposed for CT and
PET images because of the different kinds of noise. Figures 2
and 3 are the flowcharts of CT and PET image preprocessing,
respectively, where bold rectangles are the innovative works
of this paper. After preprocessing, the segmented results of
PET and CT images and the feature images used for feature
point extraction could be obtained. The segmented results
of PET and CT would be as the moving and fixed images
in registration, respectively. In this paper, the outlines of the
human body are the anatomical feature that we focus on
because only pixels of the human body make sense to clinical
process. The feature image is defined as a binary image where
the intensity values of all the pixels inside the outlines of the
human body are set to 255 and the rest of pixels outside the
human body are set to 0. According to these feature images,
we can identify and remove those pixels that do not belong
to human body and then obtain the segmented result.

3.1. CT Image Preprocessing

3.1.1. Normalization of the CT Image. To normalize the inten-
sity of a source CT image to the range of [0, 255], the following
formula is used:
I(x)—-1I
I'(x) = L6 = Iin 255, )
Imax - Imin
where [I ;. I,..,] is the intensity range of an input image. For
CT images, I, = wc + ww/2.0 and I;, = wc — ww/2.0. wc
and ww are window center and window width provided in
DICOM data.

3.1.2. Geometric Feature-Based Segmentation (GFS). This
paper proposes a GFS method (see Algorithm 1) that com-
bines the id of slices in image sequences and geometric cha-
racteristics together to remove the background noise in CT
images and obtain segmented images and feature images.

Algorithm 1 contains three phases. Firstly, step (1) means
contour extraction where all the external contours (CL) of the
input image are detected here and then sorted in descending
order according to their area. Secondly, steps (2)-(22) are the
contour selection procedure. In step (2), those contours with
area less than 1000 pixels are removed. The number of the
remaining contour list (CL) is defined as h. After that, in steps
(3)-(22), we select those contours that could represent the
outlines of human body based on the relationships among
h, the area value of the contours, and the slice id of the
input feature image. The size means the number of elements
contained by the selected effective contour list (ECL). Finally,
the rest of steps (23)-(24) are the segmentation phase. In step
(23), the feature image (F) could be obtained by setting the
intensity value of all the pixels inside the contours of ECL
to 255 and setting the rest of pixels to 0. Besides, the mask
image (M) is similar to the feature image except that the
pixels inside the contours of ECL are set to 1. Then, in step
(24), by multiplying the input image (S) with the mask image
(M), the segmented result (O) could be obtained where the
background noise in the source CT image has been removed.

An example of CT preprocessing results is shown in
Figure 4. Figure 4(a) is one source CT image as an input
image. The red circle signs the background noise in the CT
image needed to be removed. Figures 4(b), 4(c), and 4(d) are
the normalization result as the input image of GFS, the final
preprocessing result (the segmented result) as the fixed image
in registration, and the feature image for extracting feature
points, respectively. It is clear that the background noise has
been removed totally after preprocessing.

3.2. PET Image Preprocessing

3.2.1. Cubic B-Spline Interpolation. Similarly, we firstly per-
form normalization on PET images according to formula
(1). Then, the function, BSplinelnterpolatelmageFunction,
provided by Insight Segmentation and Registration Toolkit
(ITK) is employed to interpolate PET images from 128 x 128
to the same resolution as CT images (512 x 512).

3.2.2. Median Filtering. The median filter is commonly used
to replace the intensity value of each pixel with the median
of neighboring values, which could not only eliminate the
isolated noisy points but also preserve the edges well with less
blur problem. As a result, we adapt median filter to remove
single point noises of PET images.

3.2.3. Dynamic Threshold Denoising (DTD). As shown in
Figure 3, the DTD method combines the dynamic threshold
segmentation, contour extraction, contour selection, and
segmentation sequentially to achieve noise elimination of
PET images and then obtain denoising images (segmented
results) and feature images used for image registration and
feature point extraction, respectively. Due to the different
intensity distribution in different slices, dynamic threshold
segmentation is performed on images after the median
filtering. The threshold is dynamically determined by the
peak of the gray histogram and the id of the current slice in
the image sequences. Algorithm 2 shows the detailed steps of
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Steps:

3)ifh>2
(4) ifid <50

(10) elseif id > 210

12) else size =1, ECL = {C,} end if
(13)  elsesize =1, ECL = {C,}

(14) endif

(15) elseif h =2

(17)  else

19) else size = 2, ECL = {C,, C,} end if
(20) endif

(21) else size = 1, ECL = {C,}

(22) end if

(24) O = M multiply (S)

Input: Normalization result of CT S and slice id.
Output: The feature image F and the segmented result O.

(1) Sort the external contours extracted from S in descending order according to the area.

The contour list is represented as CL = {C,, C, ...
(2) Remove the contours with area less than 1000, then CL = {C,,C,,...,C;,_;}

(5) if area (C,) > 5 = area (C,) then size =1, ECL = {C,}

(6) else

(7) if area (C,) > 1.6  area (C,) then size = 3, ECL = {C,, C}, C,}
(8) else size = 2, ECL = {C,,C,} end if

9) end if

11) if area (C,) < 1.3 = area (C,) then size = 2, ECL = {C,, C,}

(16) if 50 < id < 200 then size =1, ECL = {C,}

(18) if area (C,) > 3 * area (C,) then size = 1, ECL = {C,}

(23) F = getFeatureImage (ECL), M = getMaskImage (ECL)

Gk

/#ECL: effective contour list+/

ALGoRrITHM I: Geometric feature-based segmentation (GFS).

the dynamic threshold segmentation. Firstly, the gray histo-
gram (H) of the input image (S) is calculated. After that,
the gray value (peakLoc) corresponding to the peak of the
histogram could be obtained in step (2). Then, in steps (3)-
(7), the threshold used in threshold segmentation (in step (8))
is calculated by estimating the relationships between the slice
id and the peakLoc. Finally, the result of dynamic threshold
segmentation (1) could be obtained in the last step (8). Note
that the procedures of contour extraction, contour selection
method, and the final segmentation employed in DTD are
similar to those utilized in CT preprocessing.

Figure 5 illustrates an example of PET preprocessing
results. Figure 5(a) is the source PET image (128 x 128).
Figures 5(c) and 5(d) are the interpolation result (512 x 512)
and median filtering result, respectively. Figure 5(e) is the
final processing result (the segmented result) which would
be as a moving image in registration. Figure 5(g) is the feature
image obtained by DTD. Due to the low value of the intensity,
the noisy points in Figure 5(a) are unable to be observed
directly. We perform binary threshold segmentation on both
Figures 5(a) and 5(e) in order to illustrate the performance of
noise elimination intuitively (Figure 5(e) is an image with less
noisy pixels compared to Figure 5(a)). The threshold chosen
here is 0, which means that the pixels whose intensity value
is bigger than 0 are set to 255, while the other pixels are set to
0. Their threshold segmentation results which highlight the
noisy points are shown in Figures 5(b) and 5(f), respectively.
It is clear that the small and isolated points (noisy pixels) have

been effectively removed by comparing Figures 5(b) and 5(f).
This approves that the proposed DTD method could reduce
noise in PET effectively.

4. Feature Point Cloud Extraction

The points on the outlines of one feature image are defined
as the feature points for one specific slice. A feature point
cloud is the set of the feature points contained by one specific
feature image. It could be obtained by writing the coordinates
of one set of feature points into a corresponding point cloud
file. The feature point cloud sequences for CT or PET data are
constructed by all of the point cloud files extracted from the
corresponding feature image sequences, which would be as
the input data of the registration.

However, there is some useless information in the input
clinical slices. For example, some slices that include only
arms and legs of a human body have little clinical meaning
for a doctor. Therefore, in order to reduce the computation
and increase the time efficiency, a new automated trunk
slices extraction method is proposed in this paper which is
different from the manual method in [17]. Trunk slices are
considered as those slices that contain only one connected
region. Following this definition, we can traverse the feature
image sequences and calculate the number of connected
regions for every image. If the number of connected regions
is equal to one, then the slice is regarded as a trunk slice. As
shown in Figure 6, Figures 6(a) and 6(b) are not trunk slices,
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FIGURE 3: The flowchart of PET image preprocessing.

which contained more than one connected region (see red
circle), while Figures 6(c) and 6(d) are trunk slices.

The PET and CT slice sequences and the feature image
sequences of one specific data pair are in correspondence one
by one, so the trunk slices in PET could be determined as long
as the trunk slices in CT are found. After extracting trunk
slices, the feature point clouds can be obtained automatically
by writing the coordinates of the feature points of every
feature image into a corresponding point cloud file. The
detailed steps of the feature point cloud extraction are shown
in Algorithm 3. Firstly, the number of connected regions
(NCR) for every image in the feature image sequences (FIS) is
calculated in step (1). Next, in steps (2) and (3), the slice id of
the first and the last slice with only one connected region (M1
and M2) can be obtained by traversing NCR. Finally, in step
(4), the feature points of all the feature images between M1
and M2 are extracted and then the coordinates of these fea-
ture points are written into the corresponding point cloud file.

5. Registration

Generally, ICP could be adopted on the input feature point
clouds to calculate the parameters of an affine transformation
matrix. Then the matrix is used to transform the moving
images and then obtain the registration results. However, the

extracted feature point clouds are still large for registration,
so we use a simple downsampling method before registration
to reduce the computation and increase the time efficiency.
Subsequently, a multithread ICP is employed for registration
to further enhance the time efficiency.

5.1. Downsampling. Firstly, a sample ratio a (a positive
integer) and a downsampling direction (x or y) should be
determined. Then, the average coordinate of « adjacent points
along the selected direction is calculated as the new feature
point. Note that each original feature point is only used one
time. Figure 7 illustrates an example that is downsampling
with &« = 2 in x direction. With the increase of « and the
number of downsampling directions, the registration speed
will be greatly enhanced but the registration accuracy will
be decreased heavily. Through a lot of experiments, we find
that the accuracy and speed are both pretty good while
downsampling in single direction and « = 50.

5.2. Multithread ICP. ICP, first proposed in [19], is widely
employed on the registration of two point clouds. ICP iter-
atively revises the transformation to minimize the distance
(cost function) between the fixed and moving point clouds
through an optimizer [12]. The cost function and optimizer
used in the traditional ICP are mean squared error and iter-
ative least-squares approach, respectively. Firstly, ICP finds
the closest point in the moving point cloud for every point
in the fixed point cloud. Then, the transformation matrix is
calculated for every pair of points. Next, the corresponding
points found in the previous step could be matched precisely
by finding the transformation matrix based on the cost
function. After that, the moving points could be transformed
by using the obtained matrix. Finally, the former steps are
iterated until satisfying certain criteria.

Parallel computing is an effective way to improve the
processing power and computing speed. To enhance the
time efficiency of registration, in this paper, a multithread (4
threads are used) ICP method is employed. Different from the
traditional ICP, we use the Euclidean distance and Levenberg
Marquardt algorithm [20] as the cost function and optimizer,
respectively. By the multithread ICP, we can calculate the
transformation matrix and guide the affine transformation.
The process of applying an affine transform to a point in 3D
space is shown in the following formula:

x Moy Moy My, x-C,
!
y | =|Myo My My y-C,
z Myy My My, z-C,
2)
T, +C,
+|T,+C, |,
T, +C,
. MOO MUI MOZ .
where 3 x 3 matrix M = [Mlo My, My, ] represents rotations,
20 M21 M22

anisotropic scaling, and shearing and C = (C,,C,, C,)" and

T = (Tx,Ty,TZ)T are the rotation center and translation
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(a) (b)

() (d)

FIGURE 4: An example of CT preprocessing results. (a) The source CT image. (b) The normalization result. (c) The final preprocessing result

(segmented result). (d) The feature image.

(e)

(g)

FIGURE 5: An example of PET preprocessing results. (a) The source PET image (128 x 128). (b) is got by applying binary threshold segmentation
on (a). (c) The interpolation result (512 x 512). (d) The median filtering result. (e) The final preprocessing result. (f) is got by applying a binary

threshold segmentation on (e). (g) The feature image obtained.

coefficients. (x, y, z)T and (x',y',z')T are the source point
and the transformed point, respectively.

Briefly, the procedure of the multithread ICP is as follows.
The input data of the multithread ICP are the extracted
feature point clouds of PET and CT that are as the moving
point cloud and fixed point cloud, respectively. Firstly, the
input data are divided into four groups. Then, the four groups
of data are computed by ICP algorithm in parallel on differ-
ent threads. Finally, an affine transformation is performed
on the moving image sequences (the segmented results of
PET image sequences) after calculating the transformation
matrixes for all of the slices. And then, the registration results
could be obtained.

6. Results and Discussion

6.1. Experimental Data and Platform. The experimental data
are provided by the General Hospital of Shenyang Military
Area Command, Shenyang, China. There are 13 pairs of
PET/CT data used and the detailed information is shown in
Table 1.

The experimental platform is Intel® Core™ i7-2600 CPU
@ 3.40 GHz, 8G RAM, 1T hard disk, Windows 7 OS. The
integrated development environment is Visual Studio 2013
and C++ is the only one programming language adopted in
this paper. Besides, there are several open source libraries
employed including OpenCV, ITK, Visualization Toolkit
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Input: The result image of median filter S and the id of the current slice.
Output: The result of threshold segmentation T, which is a binary image.
Steps:
(1) H = calcHist (S) [* Calculating the gray histogram of S. */
(2) peakLoc = getPeakLoc (H);  /* peakLoc is the gray value corresponding to the peak s/
(3) if id < 36 then threshold = peakLoc + 1
(4) else if id < 46
(5) if peakLoc > 5 then threshold = peakLoc + 3

else if peakLoc > 3 then threshold = peakLoc - 3

else threshold = 0

end if
(6) else threshold = peakLoc + 3
(7) end if
(8) T = doThreshold (S, threshold)

ALGORITHM 2: Dynamic threshold segmentation.

Input: The feature image sequences FIS and the number of images contained by the sequences N.
Output: The feature point cloud sequences FPCS.

Steps:
(1) forid=1— N do /| * NCR[i]: the number of connected region contained by FIS[i] |
NCR[i] = countNumberOfConnectedRegion (FIS[i])
end for
(2)forid=1— N do | = M1: the slice id of the first slice with only 1 connected region in FIS /|
if NCR[id] = 1 then M1 = id, break the circulation
end if
end for
(3)forid=N — 1do | * M2: the slice id of the last slice with only 1 connected region in FIS */
if NCR[id] = 1 then M2 = id, break the circulation
end if
end for

(4) for id = M1 — M2 do | = FPli]: the feature points contained by FIS[i] * |
FP[id] = extractFeaturePoints (FIS[id])
writeCoordinatesOf FeaturePointsIntoPointCloudFile (FP[id], FPCS[id])
end for

ALGORITHM 3: Feature point cloud extraction.

Slice id = 8 Slice id = 231 Sliceid =9 Slice id = 230

(a) (b) (d)

FIGURE 6: The illustration of trunk slices. (a) and (b) are not trunk slices. (c) and (d) are trunk slices. The slice id means the serial number of
one image in the slice sequences. Red circle represents separated regions.
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TaBLE 1: The detailed information of PET/CT data adopted in
experiment.

Attribute PET CT

Tmage matrix size 128 x 128 x 512 x 512 x
246~286 246~286

Pixel size 5.469 x 5.469 mm®* 0.977 x 0.977 mm?

Slice thickness 3.270 mm 3.270 mm

The number of trunk 194~226 194~226

slices

(VTK), and Point Cloud Library (PCL). The ITK-SNAP and
Mango are two applications utilized to view images.

6.2. Registration Accuracy Measure. To quantitatively eval-
uate the registration accuracy of the proposed method and
the compared method, two metrics are applied in this paper
including negative normalized correlation metric (NC) and
the Euclidean distance error (ED) of the landmark points [21].
These measures are defined as follows:

Zfil (Ai ) Bi)

N N ’
V2im A i B
N

1
ED (FS ,, FSg) = de (point,),

i=1

NC (A, B) = (1) x

(3)

where A; and B, are the ith pixel of the binary feature images
A and B, respectively. FS means the landmark points of
one input image. d(point,) represents the minimum distance
from each point of FS, to FSg. Note that the range of NC is
[-1,0].

These two metrics measure the degree of difference
between two input images from different perspective. NC cal-
culates the normalized negative pixel-wise cross-correlation
of the 3D correspondence binary feature images to access the
warp of the entire input images. There are two reasons of
evaluating the binary feature images instead of source images.
Firstly, the outlines of human body are the features that we
focus on as only the pixels of human body have clinical
meaning to doctors. Secondly, the PET images and CT images
are different so that it is easier to evaluate the feature images
with the positional information. Moreover, we choose all of
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the feature points of the source images as the landmark points
to evaluate the registration accuracy. ED calculates the mean
Euclidean distance error on the corresponding feature points
of the input images to access the positional correspondence
of these points. Poor matching between two images A and B
denotes large values of NC and ED.

6.3. Results Evaluation and Discussion. The speed and the
accuracy are the main factors to evaluate the performance
of a registration method [5]. With respect to these two
factors, several experiments are conducted on 13 pairs of data.
Additionally, the superiority of the proposed registration
method is assessed by comparing its results with another
method which is abbreviated as MR + GD + MMI in this
paper. MR + GD + MMI applies gradient descent algorithm
(GD) [22] and MMI [6] as the optimizer and the similarity
metric, respectively. It is a multiresolution (MR) [8] registra-
tion method based on affine transformation. There are two
reasons of comparing the performance with MR + GD +
MML. Firstly, MMI is often used for multimodal registration
and has a relatively high accuracy and speed [23]. Secondly, a
MR based registration approach is widely used to improve the
speed, accuracy, and robustness of registration. The experi-
mental data and accuracy evaluation metrics are shown in
Sections 6.1and 6.2, respectively. The results and comparisons
with MR + GD + MMI are discussed as follows.

Figure 8 illustrates one case of our proposed method
results. Figures 8(a) and 8(b) are the segmented results
of CT preprocessing and PET preprocessing, respectively.
Figure 8(a) is as the fixed image and Figure 8(b) is as the mov-
ing image. Figure 8(c) is the registration result by aligning
Figures 8(b) and 8(c). Figure 8(d) presents a checkerboard
composite of the fixed image (Figure 8(a)) and the moving
image (Figure 8(b)). Figure 8(e) shows a checkerboard com-
posite of the fixed image (Figure 8(a)) and the registration
result (Figure 8(c)) after registration. Obviously, the cor-
respondence between the outlines of PET and CT images
is increased dramatically after registration (e.g., the regions
marked by red circles in Figures 8(d) and 8(e)), which
demonstrates the effectiveness of our proposed method.

Moreover, we reconstruct the subtraction of PET and CT
feature image sequences in order to explain the registration
result more intuitively. An example is shown in Figure 9
where the images in (a), (b), and (c) show the difference
before registration and those in (d), (e), and (f) correspond
to the difference after registration. Figures 9(a) and 9(d) are
along transverse plane, Figures 9(b) and 9(e) are along sagittal
plane, and Figures 9(c) and 9(f) are along coronal plane. From
Figure 9, it can be easily observed that the outlines of PET
and CT intertwine each other with much slighter variance
after registration. Hence, through subjective evaluations of
our experiments results, our proposed method could achieve
a good result on 3D whole-body PET and CT images.

Further, to support these subjective evaluations of the
proposed method, quantitative analysis is also conducted in
this paper. We compare the accuracy measures (NC and ED)
of the source data with the registration results. The details of
the comparisons are listed in Table 2. Note that the smaller
values of NC and ED, the higher similarity of two images,
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FIGURE 8: An example of the registration results. (a) A CT image (fixed image). (b) A PET image (moving image). (c) The registration result
from (b) to (a). (d) A checkerboard composite of (a) and (b). (e) A checkerboard composite of (a) and (c).

(d)

FIGURE 9: An example of the subtraction of PET and CT feature image sequences. (a), (b), and (c) represent the subtraction before registration
and (d), (e), and (f) represent the subtraction after registration. (a) and (d) are along the transverse plane, (b) and (e) are along the sagittal

plane, and (c) and (f) images are along the coronal plane.

the higher registration accuracy. From Table 2, it can be
seen that both the values of NC and ED of all experimental
data are decreased after registration which demonstrates the
effectiveness of these two examined methods. In addition, the
average values of these two metrics of our method (NC =
—-0.93289 and ED = 2.82614) are better than the compared
method (NC = -0.61424 and ED = 16.08516), which proves
that our proposed method outperforms MR + GD + MMI in
terms of registration accuracy. Moreover, our method has a
better stability than MR + GD + MMI because the standard
deviations of NC and ED (0.02341 and 1.23775, resp.) are
smaller than the standard deviations of the compared one
(0.179473 and 12.23811, resp.).

This accuracy improvement was due to the feature point
clouds extracted from the PET and CT images employed

in our proposed method. Specifically, the tight positional
correspondence between these two point clouds could ensure
the registration accuracy and stability. However, the metric
MMI used in MR + GD + MMI only makes a fairly loose
assumption that image intensities should have a probabilistic
relationship and MMI based registration could fail when
statistical dependence between images is weak [23]. Because
of the different modality of the PET and CT images, it would
sometimes affect the performance of MMI so as to decrease
the registration accuracy of the compared method.

Finally, a comparative study on computational time has
been done to explore the efficiency of the proposed method
and the compared method. From Table 3, the average pro-
cessing time of our method is 2174 s, which is only about
9.25% of the time taken by MR + GD + MMI (23511s).
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TABLE 2: The comparisons of two similarity metrics on 13 pairs of PET and CT data.
Methodology
ID Source data The proposed method MR + GD + MMI
NC ED NC ED NC ED
1 -0.50279 23.6101 —-0.95232 1.87713 —-0.90144 3.92457
2 —-0.48013 30.0264 —-0.95906 1.77737 —-0.56848 19.6972
3 —-0.52668 22.2486 -0.87322 6.35008 —-0.73011 13.1091
4 —-0.50683 23.8465 -0.95017 2.02653 —-0.24907 52.8046
5 —0.49865 28.7776 —-0.91258 4.09511 —-0.57158 13.3536
6 —-0.49636 25.7057 -0.93776 2.5987 —-0.69698 7.43801
7 —0.47822 26.9906 -0.92210 3.01465 —0.52484 16.4022
8 —0.48632 26.5894 —-0.93850 2.53644 -0.51073 14.3721
9 -0.48787 272716 —-0.94317 2.16966 —-0.61221 19.2727
10 —-0.49576 23.6947 -0.90799 3.37168 —-0.46089 15.2446
11 —-0.49330 26.1713 —-0.94317 2.34775 -0.52306 18.9303
12 -0.49176 26.4674 —-0.94490 2.22978 —-0.89865 413041
13 —-0.50106 24.6159 —-0.94265 2.34491 —-0.73704 10.4277
Average —0.49583 25.8474 —-0.93289 2.82614 —0.61424 16.08516
Standard deviation 0.01255 2.2090 0.02341 1.23775 0.179473 12.23811
TABLE 3: The comparisons of processing time on 13 pairs of PET and CT data.
ID The number of trunk slices The proposed method MR + GD + MMI
1 202 1373s 9581's
2 219 2537 s 21676 s
3 208 1527 s 11410 s
4 208 1510's 29149 s
5 226 3704 s 31169 s
6 221 2801s 30140's
7 194 1764 s 30358 s
8 209 2612 259195
9 199 2488 s 42415
10 218 1719 s 30085
11 208 1608 s 27403 s
12 211 2930's 8721s
13 213 1697 s 7627 s
Average 210 2174 s 23511's

MR + GD + MMI is time-consuming because each calcu-
lation for MMI needs to involve all the pixels of the input
images and the number of iterations during optimization is
very large. However, our registration method only involves
a certain number of feature points not all the pixels of the
input images so as to enhance the time efficiency. Specifically,
in our proposed method, we also use a new automated truck
sliced extraction method to reduce unimportant information
(such as the slices containing only legs or arms), a simple
downsampling method to further decrease the number of
feature points used for registration, and a multithread ICP
to do computing work in parallel for further reducing the
computational amount as well as the processing time. In
summary, the proposed method has a higher accuracy and
better efficiency than MR + GD + MMI.

7. Conclusion and Future Work

In this paper, a multithread ICP method based on contour
point cloud is proposed for registration of 3D whole-body
PET/CT images which has a great value to PET/CT fusion
[24]. Firstly, to eliminate background noise in the PET and
CT images and increase registration accuracy, a geometric
feature-based segmentation method and a dynamic threshold
denoising method are presented for CT and PET prepro-
cessing, respectively. Then, we put forward a new automated
trunk slices extraction method to extract the feature point
cloud. Next, to further enhance the time efficiency, a simple
downsampling method is performed before registration to
reduce the computation. Finally, a multithread ICP solution
is used to guide the affine transformation and then achieve
the PET/CT registration with a higher speed. To verify
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the effectiveness of our proposed method, we perform the
registration experiments on 13 pairs (246~286 slices per pair)
of PET and CT data. The numerical results and comparisons
with MR + GD + MMI prove that our proposed method has
a higher accuracy and speed.

However, there are two weaknesses in our proposed
method. Firstly, the application range is limited because some
steps of our method are designed only for whole-body PET
and CT. Secondly, although this paper uses a multithread ICP
based on parallel-computation to reduce registration time,
the processing time could still be enhanced. In the future, we
would try our proposed method on GPU to further improve
the performance.
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