
Stickler syndrome is a genetically and clinically hetero-
geneous condition first described in 1965 by Gunnar Stickler 
as an inherited progressive arthro-ophthalmopathy [1]. 
Although Stickler syndrome is the most frequently inherited 
cause of retinal detachment in childhood, this disorder is rare, 
and the reported prevalence in the United States is 1:10,000 
[2-4].

The autosomal dominant (AD) Stickler syndrome 
subtypes include Stickler syndrome type I (STL1, OMIM 
108300), Stickler syndrome type II (STL2, OMIM 604841), 
and Stickler syndrome type III (STL3, OMIM 184840). STL1 
results from altered type II collagen molecules encoded by the 
collagen type II alpha 1 (COL2A1) gene while STL2, caused 
by mutations in the collagen type XI alpha 1 (COL11A1) gene, 
and STL3, caused by mutations in the collagen type XI alpha 
2 (COL11A2) gene, affect the type XI collagen molecules 
[5]. Since 2006, mutations in the collagen type IX alpha 1 

(COL9A1) and collagen type IX alpha 2 (COL9A2) genes, 
encoding for type IX collagen, have been reported as causal 
for an autosomal recessive form of Stickler syndrome [6,7].

Type II, IX, and XI collagen molecules are major extra-
cellular matrix components in the hyaline cartilage and the 
vitreous, and are structurally and functionally associated 
[8-10]. Affected individuals with mutations in STL1 and 
STL2 demonstrate a combination of ocular and systemic 
manifestations. In contrast, STL3 involves only non-ocular 
manifestations; affected individuals present with systemic 
malformations such as deafness and cleft palate [7,10-13]. 
Ocular features associated with AD Stickler syndrome consist 
of myopia, vitreous degeneration, radial perivascular retinal 
degeneration, presenile cataract, and high incidence of retinal 
detachments [14]. The vitreous phenotype depends on the AD 
Stickler syndrome type, since STL1 vitreous demonstrates a 
congenital retrolental membrane while patients with STL2 
demonstrate vitreous with fibrillar or beaded aspect [15-17]. 
Non-ocular manifestations of AD Stickler syndrome include 
arthropathy, hearing impairment, f lat midface, midline 
clefting, and skeletal abnormalities, but these findings can be 
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highly variable, even within a family [5]. Autosomal recessive 
forms of Stickler syndrome may present with ocular features, 
such as high myopia and vitreoretinal degeneration but no 
presenile cataract, and systemic features may include but 
are not limited to short stature, hearing impairment, facial 
structural abnormalities but no midline clefting, and causal 
gene-dependent spondyloepiphyseal dysplasia [7].

The expression of the COL2A1 gene, associated with 
STL1, is tissue-dependent, due to an alternative splicing of 
exon 2, which results in two isoforms of type II collagen [18]. 
Type IIB is the shorter form with 53 exons (exon 2 spliced), 
and is mainly expressed in the cartilage while type IIA is 
the longer form with 54 exons (including exon 2) and is 
predominantly present in the vitreous [18]. Thus, mutations 
in COL2A1 exon 2, such as a premature stop codon, may 
lead to the ocular variant of the STL1. This ocular condition 
shares typical STL1 ocular features, such as membranous 
vitreous and radial perivascular retinal degeneration, but 
shows none or few systemic manifestations [3,19-21]. To date, 
several families harboring COL2A1 exon 2 mutations have 
been reported [3,19,20,22-25]. In these families, the reported 
penetrance of vitreoretinal degeneration is more than 90% in 
affected patients at the age of 20 [19,20].

Wagner syndrome (OMIM 14200) is also associated with 
the extracellular matrix component gene versican (VCAN; 
alternatively called CSPG2), identified in 2005 by Miyamoto 
et al., which encodes for a large chondroitin sulfate proteo-
glycan versican [26-30]. We confirmed the involvement of 
this gene in 2009 by describing an intronic base pair splice 
site substitution in VCAN segregating with the disease in 
a multigenerational family resulting in a truncated protein 
affected by the splicing [31]. Wagner syndrome clinical 
features involve ocular manifestations close to those found 
in Stickler syndrome. However, patients also complain of 
nyctalopia, where the vitreous phenotype is different as 
characterized by an optically empty aspect with avascular 
strands and veils or fibrillary condensations [32], retinal 
detachments occur rarely, and retinal features demonstrate 
retinitis pigmentosa–like “bone spicule” pigmentary atrophy 
[20] with accompanying electroretinogram abnormali-
ties. Nevertheless, in some cases, distinguishing Wagner 
syndrome from the ocular-only variant of STL1 may be diffi-
cult. Erosive vitreoretinopathy syndrome (OMIM 143200) is 
another ocular-only disorder, first reported by Brown et al. 
[33], that can also lead to indeterminate diagnosis based on 
clinical features only [30]. The clinical features of erosive 
vitreoretinopathy syndrome include night blindness, visual 
field defects, and chorioretinal atrophy. The variability in 

the clinical presentations of vitreoretinal disease phenotypes 
underscores the importance of careful clinical assessment.

We clinically and genetically report a three-generation 
Caucasian family from the southeast United States demon-
strating AD vitreous degeneration with variable phenotypes 
among affected members. Over the years, one affected 
member was initially diagnosed clinically with Stickler 
syndrome and then Wagner syndrome by her ophthal-
mologist. We conducted Sanger sequencing of the COL2A1 
(NM_001844) and VCAN (NM_004385) genes to delineate 
the genetic etiology of disease in this family.

METHODS

Study subjects: Ten individuals (six affecteds, four unaf-
fecteds) from a three-generation Caucasian family was 
recruited. All consenting family members (four males, six 
females) were recruited under the approval of the Duke 
University Institutional Review Board according to the 
principles of the Declaration of Helenski, under the research 
protocol entitled “Clinical and Molecular Analysis of Genetic 
Eye Disorders”, to include molecular genetic testing (protocol 
number Pro00008040). Individuals underwent ophthalmic 
examinations that included health histories regarding 
systemic issues such as cleft palate, midline defects, skeletal 
or joint abnormalities, and early onset arthritis. The clinical 
evaluation included assessment tests of Early Treatment 
Diabetic Retinopathy Study visual acuity (Snellen equivalent) 
and intraocular pressure, slit-lamp inspection of the anterior 
segment, and indirect ophthalmoscopy to inspect the fundus 
[34,35].

Genomic DNA was extracted using AutoPure LS® DNA 
Extractor and PUREGENE™ reagents (Gentra Systems 
Inc., Minneapolis, MN) from blood or saliva samples. DNA 
samples were also collected from 1,142 unrelated ethnically 
matched Caucasian healthy control participants.

Gene screening and sequence analysis of collagen type II 
alpha 1 and versican genes: Primers for PCR and sequencing 
were designed to cover coding and untranslated gene regions, 
including intron–exon boundaries, using the ExonPrimer and 
Primer3 programs (Helmholtz Zentrum, Munich, Germany). 
Primers were selected to produce amplified product sizes not 
to exceed 900 bp for optimal sequence output and reading. 
Large exons or untranslated gene regions were covered with 
overlapping amplicons, with a minimal 50 bp of overlapped 
sequence. All 54 COL2A1 exons and 15 VCAN exons were 
examined. Appendix 1 displays the optimized primer 
sequences used for VCAN and COL2A1 screening.

http://www.molvis.org/molvis/v19/759
http://omim.org/entry/14200
http://omim.org/entry/143200
http://www.ncbi.nlm.nih.gov/nuccore/NM_001844
http://www.ncbi.nlm.nih.gov/nuccore/NM_004385
http://frodo.wi.mit.edu/primer3/
http://ihg2.helmholtz-muenchen.de/ihg/ExonPrimer.html


Molecular Vision 2013; 19:759-766 <http://www.molvis.org/molvis/v19/759> © 2013 Molecular Vision 

761

Genomic DNA of two affected individuals (II:2 and 
II:3; Figure 1) of the study family was initially screened for 
sequence variations in the COL2A1 and VCAN genes. The 
DNA of the remaining family members was subsequently 
screened to determine and confirm sequence variants 
segregation.

PCR was conducted using an Eppendorf Mastercycler 
Pro S® with a standard touchdown PCR protocol. PCR 
amplicons were visualized with 2% agarose gel electro-
phoresis. BigDye™ Terminator 3.1 was used to perform 
sequencing reactions, and ABI3730XL robotics was used 
to process the DNA fragments (Applied Biosystems Inc. 
[ABI], Foster City, CA). The Sequencher® 5.0 Software 
(Gene Codes, Ann Arbor, MI) was used to analyze the base 
pair calls. Sequences of affected and unaffected individuals 
were aligned to a known reference genomic sequence (UCSC 
Genome Browser) and compared for sequence variation. 
Sorting Intolerant From Tolerant (SIFT) [36] and Polymor-
phism Phenotyping (PolyPhen2) [37] software tools were 
used to predict mutational consequence of all COL2A1 and 
VCAN variations segregating with disease.

Genotyping: Applied Biosystems (ABI) TaqMan® SNP 
Genotyping assays were designed and employed to measure 
the allelic frequencies in 1,142 ethnically matched control 
DNA samples. Variants of interest were screened with 
PCR assay technology using TaqMan probes according to 
the manufacturer’s protocol (Applied Biosystems). Alleles 
were detected and allelic discrimination were analyzed 

with ABI Prism® 7900HT Sequence Detection System and 
ABI Sequence Detection Systems 2.4 software, respectively 
(Applied Biosystems). For quality control, positive and nega-
tive controls were run in the same experiment.

Complementary deoxyribonucleic acid tissue expression: 
We investigated the expression of the COL2A1 messenger 
ribonucleic acid (mRNA) construct(s) in fetal ocular tissues 
to verify the presence of type IIA and/or type IIB isoforms. 
Fetal ocular tissue panels not affected with disease were 
established internally by acquisition of whole eye globes from 
Advanced Bioscience Resources (Alameda, CA). Twenty-
four-week fetal eyes were obtained and preserved in RNAl-
ater® Foster City, CA within minutes of abortion and shipped 
overnight on ice. Whole globes were dissected the same day 
as they arrived, and specific ocular tissues were isolated by 
snap-freezing the samples and storing at −80 °C until RNA 
extraction. RNA was extracted from each tissue sample inde-
pendently using the Ambion Foster City, CA mirVana Total 
RNA Extraction Kit per the protocol. The tissue samples were 
homogenized in Ambion’s lysis buffer using an Omni Bead 
Ruptor 24 Homogenizer per protocol. Reverse transcription 
reactions were performed with Invitrogen’s SuperScript™ III 
First-Strand Synthesis kit to obtain cDNA (Life Technologies, 
Grand Island, NY).

In-house fetal eye cDNA was amplified using primers 
that spanned multiple exons, not to exceed 600 bp (Appendix 
1). PCRs were run using a standard protocol. Visualization 
of the PCR products was done on a 2% agarose gel through 
electrophoresis at 120 V for 50 min. Products with exon 2 
were expected to amplify at 510 bp, whereas those that did 
not contain the exon 2 were expected to produce a product of 
303 bp. Band extraction, purification, and sequencing of the 
bands were conducted to verify the amplicon.

RESULTS

Clinical features: A three-generation family with affected 
member variable ocular-only diagnosis of either Stickler or 
Wagner syndrome was ascertained. The disease appeared 
to be transmitted in an AD inheritance pattern and showed 
variable expressivity with 100% penetrance (Figure 1). Six 
affected and four unaffected individuals participated in the 
study. Clinical data were obtained where available.

The proband, patient III:3, was a 40-year-old woman with 
moderate myopia and history of retinal detachment in the left 
eye (OS) at the age of 18 years. Periodically, she underwent 
prophylactic peripheral laser photocoagulation treatment 
bilaterally. She had cataract extraction surgery of both eyes 
at the age of 37 (right eye, OD) and 40 (OS). Fundus exami-
nation showed bilateral vitreous syneresis, with a vitreous 

Figure 1. Study family pedigree. The family consisted of 14 indi-
viduals in three generations with six affected and four unaffected 
participants. Solid symbols indicate affected individuals. Asterisks 
indicate participating individuals for whom DNA was available for 
genomic analysis.
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membrane in the left eye, and bilateral radial extensive lattice 
degeneration. She had no history of systemic manifestations.

Patient III:2 was a 40-year-old woman and the monozy-
gotic twin sister of III:3. Patient III:2 presented with moderate 
myopia and underwent retinal surgeries at the age of 18 (OD) 
and 33 (OS) for retinal detachment (OD) and epiretinal 
membrane and large retinal tears (OS). Subsequently, she 
was treated with extensive peripheral prophylactic photoco-
agulation. She underwent cataract extractions bilaterally at 
the age of 37 (OS) and 38 (OD). Fundus examination revealed 
bilateral radial lattice degeneration and bilateral vitreous 
syneresis. She had no history of systemic manifestations.

Patient II:2 was the 65-year-old mother of the twins. She 
had a history of bilateral congenital cataract extractions. Her 
fundus examination demonstrated bilateral vitreous syneresis 
with vitreous membranes. Patient II:3 presented with a cleft 
palate at an early age. Patients IV:3 and IV:4 presented with a 
history of retinal detachments but no systemic manifestations. 
We were not able to collect clinical data from the deceased 
individuals I:1 and I:2, although historical accounts from II:1 
revealed her mother (I:2) had a history of retinal problems.

Molecular genetic analysis: Initial genomic DNA sequencing 
of two affected individuals (II:2 and II:3) was conducted 
in the VCAN and COL2A1 genes. For VCAN, no sequence 
variants segregated with the disease status were identified 
compared to the control DNA and to published reference 
sequences.

For the COL2A1 gene, we identified 18 single nucleo-
tide variations: one nonsense variant, one known missense 
variant, two known coding-synonymous variants, and 14 
intronic single nucleotide polymorphisms (Appendix 1).

The nonsense mutation was a C to A change (Figure 2) 
in exon 2 (c.258C>A; NM_001844.4), converting codon TGC 
for cysteine at position 86 to codon TGA for a premature stop 
codon (Cys86Stop; NP_001835.3). Subsequent sequencing of 
the remaining family members showed mutation cosegrega-
tion with the disease phenotype (Figure 2).

Genotyping was performed for the c.258C>A mutation in 
the COL2A1 gene for an additional 1,142 unrelated ethnically 
matched controls (2,284 chromosomes). The mutation was not 
present in the control samples.

Tissue expression: We examined COL2A1 expression across 
normal fetal eye tissues to verify the presence or absence of 
type IIA and/or type IIB isoforms (Figure 3). Both COL2A1 
mRNA isoforms (type IIA and type IIB) were expressed in the 
fetal retina/retinal pigment epithelium and choroid (Appendix 
1). The COL2A1 mRNA type IIB isoform (excluding exon 
2) was expressed in the sclera, optic nerve, and cornea. Gel 

extraction and Sanger sequencing of the specific product 
bands confirmed our findings of the isoforms except for the 
optic nerve, where the IIA isoform was not sequenced.

DISCUSSION

We report a nonsense mutation in a large Caucasian family 
consisting of six affected individuals variably diagnosed 
with Stickler and Wagner syndromes. A base pair change 
at c.258C>A leading to a premature stop codon in exon 
2 of COL2A1 was cosegregated with the disease status. 
Sequencing of ocular tissues confirmed the presence or 

Figure 2. Sequence chromatogram of the Cys86X mutation in 
COL2A1 exon 2. The sequence chromatogram of COL2A1 exon 
2 encompassing codon 86 demonstrates the c.258C>A mutation 
(GenBank NM_001844.4, +1 in cDNA numbering corresponding 
to the A of the methionine translation initiation codon) converting 
a cysteine codon to a stop codon in two affected individuals while 
the mutation is not present in two unaffected individuals. DNA 
analysis of all other affected family members cosegregated with 
this mutation while the mutation was not present in all unaffected 
family individuals.

Figure 3. COL2A1 cDNA structure and COL2A1 cDNA primer 
design. Exon 2 undergoes tissue-dependent alternative splicing. 
The COL2A1 type IIA isoform (A), expressed in the eye vitreous 
and in embryonic chondroprogenitor cells, includes exon 2 (Ex 2) 
whereas this exon is spliced in the COL2A1 type IIB isoform (B), 
which is expressed by adult differentiated chondrocytes. Primers 
were designed to amplify both cDNA isoforms: The COL2A1 cDNA 
primers span 303 bp when amplifying COL2A1 type IIB cDNA 
(excluding exon 2), and 510 bp when amplified COL2A1 type IIA 
cDNA (including exon 2). Ex 1, Ex 2, Ex 3, and Ex 8 depict exons 
1, 2, 3, and 8.
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absence of exon 2, demonstrating that isoforms may be ocular 
tissue specific. The mutation was not present in more than 
2,000 chromosomes, validating the rarity of this mutation and 
confirming Stickler syndrome has a predominant ocular-only 
phenotype.

Two striking features of Stickler syndrome are, as in our 
reported family, the high penetrance and variable expres-
sivity. In the literature, the same mutation as in our family 
(c.258C>A; NM_001844.4) demonstrated high penetrance 
[3,19,20]. In families harboring alternative COL2A1 exon 
2 mutations, the ocular manifestation penetrance was also 
high—from 90% [20] to 100% [24,38]. The variable expres-
sivity, even within the same family [39], contrasts with the 
high disease penetrance: In most reported COL2A1 exon 2 
mutations, ocular features were variable as either myopia, 
retinal detachment [22], or retinal degeneration [23] could be 
absent in affected patients. Furthermore, two common ocular 
features in COL2A1 exon 2 mutations are vitreous degen-
eration and radial perivascular retinal degeneration [3,19,20]. 
Systemic manifestations were rarely associated with COL2A1 
exon 2 mutations, as manifestations were present in few cases 
[3,19,20,22]. In our family, only one affected individual 
presented with cleft palate.

Underlying causes of variable expressivity in ocular-only 
STL1 are still undetermined. However, in recent years the 
phenotypic variability of exon 2 mutations has been hypoth-
esized to be due to degradation of mRNA by nonsense-
mediated decay (NMD) or synthesis of alternatively spliced 
protein [21].

NMD is a regulation pathway involving the targeted 
degradation of mRNA that contains a premature stop codon. 
In this way, NMD may play a role in phenotype variability 
by minimizing the potential damage caused by premature 
termination codons [40,41]. In achondrogenesis and hypo-
chondrogenesis caused by COL2A1 mutations, a relationship 
has been proved between the severity of the phenotype and 
the amount of type II collagen within the cartilage extracel-
lular matrix [42]. This implies that not only qualitative but 
also quantitative factors likely modulate phenotypes linked to 
the COL2A1 gene [43], as in haploinsufficiency due to NMD.

Haploinsufficiency due to NMD was reported by Kaarni-
ranta et al. [44], who found that heterozygous inactivation of 
COL2A1 gene in the murine model led to structural defects 
and alterations that resulted from haploinsufficiency in ocular 
tissues containing type II collagen. These alterations included 
vitreous changes similar to those seen in patients with 
Stickler syndrome, which included reduced immunostaining 
of type II collagen in the vitreous and retina, in addition to 
reduced density of vitreous filaments in COL2A1+/− mutant 

mice [45]. Furthermore, in COL2A1 exon 2 mutant mice 
with mutant allele encoding COL2A1 mRNA without exon 2 
[46], IIA+/− mutant embryos demonstrated, at an early stage, 
craniofacial abnormalities of truncated frontonasal structures 
and hypoplasia of the midface tissues. These malformations 
were more frequent in IIA−/− mutants. These findings are 
consistent with COL2A1 type IIA mRNA expression in 
regions of active recruitment of cells for chondrogenesis and 
in areas of skeletal growth [41].

Alternatively, a second hypothesis is that nonsense-
mediated altered splicing can be caused by disruption within 
the splicing cis element [21]. Minigene constructs created 
by McAlinden et al. demonstrated that disruptions in the 
enhancer sites in COL2A1 exon 2 favor the production of the 
procollagen type IIB isoform. The decrease in the ratio of 
type IIA compared to type IIB leads to variance in expression 
levels, perhaps one isoform predominating over another, but 
the less expressed is not completely absent. These studies 
highlight the alternative imbalance between the two isoforms, 
which may have adverse effects during ocular embryogenesis 
[21].

Systemic manifestations associated with STL1, particu-
larly facial development abnormalities and midline clefting as 
reported here (individual II:3; Figure 1), have been observed 
in some cases of COL2A1 exon 2 mutations, with a frequency 
depending on the series, 1%, 4%, and 43% in the Donoso 
[3], Parma [19], and Richards [22] series, respectively. These 
findings are not inconsistent with exclusive expression of 
the longer type IIA isoform in the adult vitreous [47], as 
embryonic expression of this isoform has been demonstrated 
in chondroprogenitor tissues [48].

The Cys86Stop mutation has previously been reported in 
four families with Stickler syndrome whose genealogy was 
traced to the 16th century. Subsequently, Donoso et al. identi-
fied a member of the branch that migrated to the southeastern 
and mid-southern United States during the 19th century 
[3,19,20]. Some members of these families included direct 
descendants from the passengers of the 1620 Mayflower 
voyage [20] who arrived on the northeastern coast and then 
migrated to the south. Interestingly, an affected individual 
(III:2) reviewed her genealogy and traced her ancestry to 
the state of Georgia. If descendants from Donoso’s family 
indeed migrated south due to the Cherokee Land Grant of 
1813, the similar geographical region of their cohort and ours 
would not exclude the possibility that the families could be 
related [20]. The apparent founder effect coupled with litera-
ture estimations of 50,000 to 100,000 descendants that could 
be related to the original family with this reported mutation 
demonstrates the importance of the genotype-phenotype 

http://www.molvis.org/molvis/v19/759
http://www.ncbi.nlm.nih.gov/nuccore/NM_001844.4


Molecular Vision 2013; 19:759-766 <http://www.molvis.org/molvis/v19/759> © 2013 Molecular Vision 

764

relationship in patients with Stickler syndrome with this 
particular mutation [3].

The overarching similarities in phenotypes among 
vitreoretinal diseases make accurate diagnosis difficult clini-
cally. Clinicians must understand and be updated on all allied 
conditions associated with Stickler syndrome to properly 
diagnose patients [47]. The characteristics of vitreous and 
retinal degeneration may guide molecular testing, but in case 
of doubt, a retinal specialist should be referred [47]. Although 
concentrations of exon 2 mutations are for predominantly 
ocular-only phenotypes, family members with mutations 
can still have systemic manifestations, seen in individual 
II:3, who presented with a cleft palate at a young age. The 
broad phenotypic variation seen in families with Stickler 
syndrome underscores the importance of using clinical and 
genetic testing to properly diagnose and treat patients with 
Stickler and Wagner syndromes.

APPENDIX 1. SUPPLEMENTAL SECTION 
CONTAINS 4 TABLES AND 1 FIGURE.

Supplemental section contains 4 tables and 1 figure. Table 
S1 contains all variants identified in COL2A1. Table S2 
and S3 contains primers used for COL2A1 and VCAN gene 
screening. Table S4 contains primers used for cDNA ampli-
fication. Figure S1 contains PCR products of COL2A1 cDNA 
tissue expression. To access the data, click or select the words 
“Appendix 1.”
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