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As a pivotal tool to build interpretive models, variable selection plays an increasingly important role in high-dimensional data
analysis. In recent years, variable selection ensembles (VSEs) have gained much interest due to their many advantages. Stability
selection (Meinshausen and Bühlmann, 2010), a VSE technique based on subsampling in combination with a base algorithm like
lasso, is an effective method to control false discovery rate (FDR) and to improve selection accuracy in linear regression models.
By adopting lasso as a base learner, we attempt to extend stability selection to handle variable selection problems in a Cox model.
According to our experience, it is crucial to set the regularization regionΛ in lasso and the parameter 𝜆min properly so that stability
selection can work well. To the best of our knowledge, however, there is no literature addressing this problem in an explicit way.
Therefore, we first provide a detailed procedure to specify Λ and 𝜆min. Then, some simulated and real-world data with various
censoring rates are used to examine how well stability selection performs. It is also compared with several other variable selection
approaches. Experimental results demonstrate that it achieves better or competitive performance in comparison with several other
popular techniques.

1. Introduction

Variable selection is a classical problem in statistics and has
enjoyed increased attention in recent years due to a massive
growth of high-dimensional data across many scientific
disciplines. In modern statistical applications, the number
of variables or covariates 𝑝 often exceeds the number of
observations 𝑛. In such settings, the true model is often
assumed to be sparse, in the sense that only a small propor-
tion of the 𝑝 variables actually relates to the response. Thus,
variable selection is fundamentally important in statistical
analysis of high-dimensional data. With a proper selection
method and under suitable conditions, we are able to build a
good model to interpret the relationship between covariates
and our interested outcome more easily, to avoid overfitting
in prediction and estimation, and to identify important
variables for applications or further study.

For variable selection,many researchers focus onmultiple
linear regressionmodels. To emphasize that variable selection
methods are useful for other statistical models as well, we use

a different statistical model, that is, a Cox’s proportional haz-
ards model (abbreviated as Coxmodel) [1], as the platform in
this context. The Cox model was first proposed for exploring
the relationship between the survival of a patient and some
explanatory variables. As a matter of fact, the Cox model
[2, 3] nowadays is one of the most commonly used forms in
semiparametric models and it can not only solve the issues
of censored data, but also analyze the influence of various
factors on survival time simultaneously. A briefmathematical
description of the Cox model is given as follows.

Suppose that there are 𝑛 observations {(𝑦𝑖, x𝑖, 𝛿𝑖)}𝑛𝑖=1 of
survival data. For an individual 𝑖, 𝑦𝑖 denotes its survival time
and x𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝)𝑇 stands for the observed data for
the 𝑝 covariates. At the same time, 𝛿𝑖 ∈ {0, 1} is a censoring
indicator variable, where 𝛿𝑖 = 0 means that 𝑦𝑖 is right-
censored. Let ℎ(𝑡) be the hazard rate at time 𝑡; the generic
form of a Cox’s proportional hazards model can be expressed
as

ℎ (𝑡 | x) = ℎ0 (𝑡) exp (x𝑇𝛽) , (1)
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where 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑝)𝑇 is a 𝑝-dimensional unknown
coefficient vector and ℎ0(𝑡) is the baseline hazard function,
that is, the hazard function at time 𝑡 when all covariates take
value zero. In general, 𝛽 can be estimated by maximizing
partial likelihood function. For convenience, we assumeℎ0(𝑡) = 1 below.

Like linear regression models, traditional methods such
as subset selection [4, 5], forward selection, backward elim-
ination, and a combination of both are among the most
common methods for selecting variables in a Cox model.
However, these methods will have difficulty in computa-
tion when faced with high-dimensional data. Therefore,
some other methods have been proposed to overcome this
problem. After lasso (least absolute shrinkage and selection
operator) [6] was first proposed for linear regression models,
Tibshirani [7] extended it to the Cox model. Later on, many
scholars [2, 3, 8–12] developed some penalized shrinkage
techniques like SCAD [13] and adaptive lasso [14] specially
for Cox models.

Although the above-mentioned variable selection meth-
ods have been shown to be successful in theoretical proper-
ties and numerous experiments, their performance strongly
depends on the proper setup of the tuning parameter. On the
other hand, these approaches may be unstable (especially in
the situation of high-dimensional data). Breiman [15] proved
that uncertainty can lead to more prediction loss. What is
more important, small changes in data can result in that
the same method selects different models. This makes the
subsequent interpretation difficult and unreliable. In order to
obtain more stable, accurate, and reliable variable selection
results, ensemble learning [16, 17] is one kind of extremely
potential technologies.

As a hot research topic in machine learning, ensemble
learning is used more and more widely in many fields of
natural science and social science in last two decades. The
powerful advantages of ensemble learning lie in improving
the generalization capacity and enhancing robustness in the
process of learning. Its main idea is to obtain a number of
different base learning machines by running some simple
learning algorithm and then combine these base machines
into an ensemble learning machine in some way. Generally,
the base learningmachines should have strong generalization
capability on one side, and they should also complement each
other on the other hand.

The ensemble approach for statistical modeling was
first proposed for solving prediction problems, aiming to
maximize prediction accuracy. Inspired by this idea, Zhu
and Chipman [18] applied bagging ensemble approach to
handle variable selection problems, aiming at maximizing
selection accuracy. Meanwhile, they pointed out that there
is much difference between “prediction ensembles” (PEs)
and “variable selection ensembles” (VSEs). More recently,
ensemble learning methods have attracted more attention on
copingwith variable selection problems since they can greatly
improve the selection accuracy and lessen the risk to falsely
select unimportant variables and simultaneously overcome
the instability of traditionalmethods in the high-dimensional
data analysis. Because of these benefits, there are more
and more researches applying ensemble learning to variable

selection and putting forward some novel approaches. As
far as we know, existing VSE techniques mainly include
PGA (parallel genetic algorithm) [18], stability selection [19],
BSS (bagged stepwise search) [20], random lasso [21], ST2E
(stochastic stepwise ensemble) [22], TCSL (tilted correlation
screening learning) [23], RMSA (random splitting model
averaging) [24], SCCE (stochastic correlation coefficient
ensemble) [25], and PST2E (pruned stochastic stepwise
ensemble) [26]. It is noteworthy that these algorithms are
mainly designed for handling variable selection problems in
linear regressionmodels. Only Zhu and Fan [20] investigated
the performance of BSS and PGA in the Cox model.

Through analyzing these VSE techniques, it can be
found that their success primarily lies in producing multiple
importance measures for each predictor. By simply averaging
these measures across multiple trials, the noise variables can
be more reliably distinguished from the informative ones.
In this process, the strength to select important variables
and the diversity between the importance measures need
to be preserved simultaneously [20, 22]. Stability selection
applies subsampling (or bootstrap) to a selection method
like lasso to improve its performance. In fact, it is an
extremely general ensemble learning technique for identify-
ing important variables. Due to the characteristics of lasso, it
is very efficient in high-dimensional situations. Another good
property of stability selection is that it provides an effective
way to control false discovery rate (FDR) in finite sample
cases provided that its tuning parameters are set properly.
Due to its versatility and flexibility, stability selection has
been successfully applied in many domains such as gene
expression analysis [24, 27–29]. Nevertheless, we have not
found any literature about applying stability selection to
a Cox model. Therefore, in this paper we would like to
extend it to the situation of Cox models. At the same
time, we also discuss how to set appropriate values for the
involved parameters so that stability selection achieves its best
performance.

The remainder of the paper is described as follows. In
Section 2, the details for applying stability selection to the
Cox model are described. We also provide an explicit way
to set its involved parameters. In Section 3, some numerical
experiments were conducted to study the impact of 𝜆min
on the behavior of stability selection and to compare its
performance with other variable selection approaches for the
Cox model. In Section 4, some real examples are analyzed to
further study the effectiveness of stability selection. Finally,
some conclusions are offered in Section 5.

2. Stability Selection Algorithm
for the Cox Model

In this paper, we consider stability selection with lasso as its
base learner. Lasso [6] is one of the most effective techniques
to deal with high-dimensional linear regression problems
with 𝑝 > 𝑛. With respect to its application in Cox models,
the core idea is to maximize the partial likelihood minus the𝐿1 penalty function. For convenience, suppose that there are𝑚 unique failure times, say, 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑚, among the𝑛 observations {(𝑦𝑖, x𝑖, 𝛿𝑖)}𝑛𝑖=1. Let 𝑗(𝑖) denote the index of the
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observation failing at time 𝑡𝑖. The lasso algorithm needs to
maximize

𝐿 (𝛽) = 𝑚∏
𝑖=1

exp (x𝑇𝑗(𝑖)𝛽)∑𝑗∈𝑅𝑖 exp (x𝑇𝑗 𝛽) , (2)

under the constraint ∑𝑝𝑗=1 |𝛽𝑗| ≤ 𝑠. In (2), 𝑅𝑖 is the set of
indices, 𝑗, with 𝑦𝑗 ≥ 𝑡𝑖 (i.e., the observations are at risk at
time 𝑡𝑖). Equivalently, the estimate of 𝛽 can be obtained as

𝛽̂ = argmax
𝛽

[
[
𝑚∑
𝑖=1

x𝑇𝑗(𝑖)𝛽 − log(∑
𝑗∈𝑅𝑖

exp (x𝑇𝑗 𝛽))

− 𝜆 𝑝∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨]] ,
(3)

where 𝜆 is the regularization parameter which controls the
trade-off between themodel fitting and the coefficient shrink-
age degree. At present, there are several efficient algorithms
[7, 30] (such as cyclical coordinate descent) to get 𝛽̂ in (3).We
refer readers to the related literature formore details about the
optimization strategy.

In applications, we need to first set a sensible region,
say, Λ = [𝜆lower, 𝜆upper], for the regularization parameter 𝜆
in lasso. Notice that lasso will choose all variables (i.e., full
model) for 𝜆 ≤ 𝜆lower while choosing none of the variables
(i.e., null model) for 𝜆 ≥ 𝜆upper. By taking𝐾 candidate values
in Λ, that is, 𝜆lower = 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ < 𝜆𝐾 = 𝜆upper, lasso
generally employs 5-fold or 10-fold cross-validation to select
an optimal value of 𝜆, say 𝜆opt.Then, the variables which have
nonzero coefficient estimation under 𝜆opt are determined as
important variables. Although lasso with 𝜆opt being specified
in this way has good prediction performance, much evidence
[14, 19, 21] has shown that it tends to choose more variables
than necessary (i.e., higher FDR).

To eliminate this drawback of lasso, Meinshausen and
Bühlmann [19] developed stability selection which works by
choosing variables whose selection probabilities are large as
important ones. In reality, the selection probability can be
estimated by running lasso on multiple different sets. These
sets can be obtained via subsampling from the given set.
Specifically, stability selection first estimates the probability
that variable 𝑋𝑗 (𝑗 = 1, 2, . . . , 𝑝) is important for each reg-
ularization parameter 𝜆1, . . . , 𝜆𝐾, and then takes the maxi-
mum probability over Λ = {𝜆1, 𝜆2, . . . , 𝜆𝐾} as the important
measure for𝑋𝑗. Eventually, it selects important variables by a
preset threshold 𝜋thr. The detailed steps of stability selection
algorithm for the Cox model are listed in Algorithm 1.

As argued byMeishausen and Bühlmann [19], the promi-
nent advantage of stability selection is to control FDR under
finite sample size and simultaneously to weaken the theoreti-
cal assumptions that are required to achieve variable selection
consistency (i.e., the probability that the fittedmodel includes
only truly important variables is tending to one when 𝑛 →∞). Let 𝑉 be the number of falsely selected variables with
stability selection; Meinshausen and Bühlmann [19] have

proved that, under some mild assumptions, for arbitrary𝜋thr ∈ (1/2, 1), the expectation of 𝑉 satisfies

𝐸 (𝑉) ≤ 12𝜋thr − 1 ⋅
𝑞2Λ𝑝 , (4)

where 𝑞Λ represents the average number of variables selected
by base learner. Roughly speaking, we can set any two
parameters of 𝑞Λ,𝜋thr, and𝐸(𝑉) anddetermine the remaining
one according to the above inequality. For example, let𝐸(𝑉) ≤ 4 and 𝜋thr = 0.7; then 𝑞Λ can be specified as 𝑞Λ =⌈(1.6𝑝)1/2⌉ in which ⌈𝐴⌉ denotes taking the smallest integer
larger than or equal to 𝐴. As stated in [19], 𝜋thr is recom-
mended to take value in the range of 𝜋thr ∈ [0.6, 0.9] and
the results tend to be similar. As far as 𝐸(𝑉) is concerned,
it can be set by users according to the level of FDR that they
would like to control. In general, small𝐸(𝑉)means to control
FDR strictly so that less noise variables are falsely included.
Nevertheless, too small𝐸(𝑉)may cause some truly important
variables omitting in the finalmodel.On the other hand,𝐸(𝑉)
can be larger if one can accept a little higher FDR to make
sure that all important variables can be included. Regarding𝑞Λ, it should be no less than the number of truly important
variables. Because we have no means to know the number of
truly important variables in advance, however, one can first
specify 𝐸(𝑉) and 𝜋thr and let 𝑞Λ be determined automatically.

Asmentioned earlier, the crucial role of stability selection
is to reduce the FDR of lasso (i.e., to exclude noise variables
more reliably). Intuitively, it is still difficult to identify the true
sparse model if too much noise variables are falsely included
every time.Thus, a minimum value of 𝜆 (or 𝜆min) needs to be
specified for stability selection so that every time at most 𝑞Λ
variables are chosen when 𝜆 ≥ 𝜆min. Subsequently, only the𝜆’s lying in the interval [𝜆min, 𝜆upper] are taken as candidate
values of 𝜆 to implement lasso in each trial.

According to our experience, the setting of 𝜆min as well
as Λ is crucial to the success of stability selection. However,
we cannot find any detailed instruction in related literature
[19, 27, 28] about how to set them. Moreover, all the existing
literature related to stability selection has not discussed how
to apply it in Cox models. Here, we would like to provide an
explicit way to cope with this problem in the framework of
Cox models. According to the proposal in [30], we can first
set 𝜆upper for lasso in a Cox model as

𝜆upper = max
1≤𝑗≤𝑝

1𝑛
𝑛∑
𝑘=1

𝜔𝑘𝑥𝑘𝑗𝑧𝑘, (5)

in which

𝜔𝑘 = ∑
𝑖∈𝐶𝑘

[𝑠𝑖 − 1𝑠2𝑖 ] ,
𝑠𝑖 = 𝑛∑
𝑗=1

I (𝑦𝑗 > 𝑡𝑖) , 𝐶𝑘 = {𝑖 | 𝑦𝑘 > 𝑡𝑖, 𝑖 = 1, 2, . . . , 𝑛} ,

𝑧𝑘 = 1𝜔𝑘 [[𝛿𝑘 − ∑𝑖∈𝐶𝑘
1𝑠𝑖]] .

(6)
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Input
y: an 𝑛 × 1 response vector containing survival times for 𝑛 observations.
𝛿: an 𝑛 × 1 vector containing censoring indicators for 𝑛 observations.
X: 𝑛 × 𝑝 design matrix.Λ: regularization parameter set, i.e., Λ = {𝜆1, 𝜆2, . . . , 𝜆𝐾}.𝐵: ensemble size.𝜋thr: a pre-set threshold.
Output: an index setI for selected variables.
Main process of stability selection
(1) For 𝑏 = 1, 2, . . . , 𝐵

(a) Randomly draw a subset (X(𝑏), y(𝑏), 𝛿(𝑏)) of size⌊𝑛/2⌋ without replacement from (X, y, 𝛿). Here,⌊𝐴⌋ stands for the largest integer less than or equal
to 𝐴.

(b) For each 𝜆𝑘 ∈ Λ, run lasso on (X(𝑏), y(𝑏), 𝛿(𝑏)), and
record the set for selected variables as Ŝ𝜆𝑘

⌊𝑛/2⌋,𝑏
(𝑘 = 1, 2, . . . , 𝐾).

End For
(2) Estimate the probability of each variable being selected as𝜋̂𝑗 = max

𝜆𝑘∈Λ
{𝜋̂𝜆𝑘𝑗 }, 𝑗 = 1, 2, . . . , 𝑝, (∗)

where 𝜋̂𝜆𝑘𝑗 = (1/𝐵)∑𝐵𝑏=1 I{𝑗 ∈ Ŝ𝜆𝑘⌊𝑛/2⌋,𝑏}, and I(⋅) is an indicator function,
I(⋅) = 1 when its condition is satisfied and I(⋅) = 0 otherwise.

(3) Select variables which satisfy 𝜋̂𝑗 > 𝜋thr, i.e.I = {𝑗 : 𝜋̂𝑗 ≥ 𝜋thr}.
Algorithm 1: The stability selection algorithm for the Cox model.

Here, 𝑠𝑖 is the number of subjects (observations) at risk at time𝑡𝑖 and 𝐶𝑘 is the set of indices, 𝑖, with 𝑡𝑖 < 𝑦𝑘 (i.e., the times for
which observation 𝑘 is still at risk). Subsequently, we can set𝜆lower = 𝜖𝜆upper with 𝜖 = 0.05 for 𝑛 < 𝑝 and 𝜖 = 0.0001
for 𝑛 ≥ 𝑝. In order to create 𝐾 + 1 candidate values for 𝜆 ∈[𝜆lower, 𝜆upper], we can set 𝜆𝑗 = 𝜆upper(𝜆lower/𝜆upper)𝑗/𝐾 for𝑗 = 0, . . . , 𝐾.

Next, the parameter 𝜆min in stability selection can be
determined by

𝜆min = argmax
𝜆

{󵄨󵄨󵄨󵄨󵄨𝜆upper − 𝜆󵄨󵄨󵄨󵄨󵄨 : 𝜆lower ≤ 𝜆
≤ 𝜆upper, 𝑞[𝜆,𝜆upper] = 𝑞Λ} .

(7)

Equation (7) implies that 𝜆min must be chosen to ensure
that lasso selects at most 𝑞Λ variables for each 𝜆 ∈ Λ =[𝜆min, 𝜆upper]. Specifically, one can begin with 𝜆 = 𝜆upper
and decrease 𝜆 gradually until lasso detects 𝑞Λ variables as
important (i.e., 𝑞Λ variables having nonzero coefficients).The
value of 𝜆 obtained at this point is exactly 𝜆min defined in
(7).Then, only the candidate values lying in [𝜆min, 𝜆upper] are
considered as the candidate values for 𝜆 in lasso to execute
variable selection.

3. Experimental Studies

With simulated data, some experiments are conducted in this
section to investigate the impact of 𝜆min on the behavior of
stability selection in a Cox model and to compare it with sev-
eral other variable selection approaches. In order to maintain
consistency and comparability, we set ensemble size 𝐵 as 200.

Each simulation was run 100 times to estimate the evaluation
of a method. To simplify notations, we abbreviated stability
selection as StabSel. Regarding lasso, we made use of 10-
fold cross-validation to determine its optimal regularization
parameter.

3.1. Simulation 1: Influence of 𝜆min. Meinshausen and
Bühlmann [19] stated that the threshold value 𝜋thr is a tuning
parameter whose influence is small as long as it is in the
range of (0.6, 0.9). According to our experience, 𝜆min has
more significant effect in comparisonwith the parameter𝜋thr.
When 𝑉 and 𝜋thr are fixed, small 𝜆min will make lasso select
more variables in each path. As a result, some noise variables
may be falsely considered as important ones (i.e., high false
positive rate). On the other hand, the noise variables can be
safely filtered out by setting a large 𝜆min. However, this may
lead us to miss some signal variables (i.e., high false negative
rate). Thus, 𝜆min plays a role in controlling the trade-off
between false positive rate and false negative rate of StabSel.
Due to this consideration, we fixed 𝜋thr = 0.6 and report
results for several values of 𝜆min in the first experiment.

Suppose that there are 𝑝 = 8 variables, x1, x2, . . . , x8,
with each generated from the standard normal distribu-
tion 𝑁(0, 1). Furthermore, the variables are correlated with𝜌(𝑥𝑖, 𝑥𝑗) = 0.5|𝑖−𝑗| for all 𝑖 ̸= 𝑗 (𝑖, 𝑗 = 1, . . . , 8). The response y
was generated froman exponential distributionwhose hazard
function is

ℎ (𝑡 | x) = ℎ0 (𝑡) exp (x𝑇𝛽) , (8)

where the true coefficient vector 𝛽 = (3, 1.5, 0, 0, 2, 0, 0, 0)𝑇.
Clearly, only three variables x1, x2, x5 are truly important
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Table 1: Selection frequencies of StabSel to identify IV and UIV.

𝑥𝑗 ∈ IV 𝑥𝑗 ∈ UIV(𝑗 = 1, 2, 5) (𝑗 = 3, 4, 6, 7, 8)
Min Med Max Min Med Max0% censoring𝜆min = 0.3 67 69 73 0 0 1𝜆min = 0.2 75 77 81 0 1 3𝜆min = 0.1 77 81 84 3 7 1520% censoring𝜆min = 0.3 85 88 91 0 0 3𝜆min = 0.2 93 99 100 1 3 6𝜆min = 0.1 100 100 100 3 8 2040% censoring𝜆min = 0.3 49 76 98 0 0 2𝜆min = 0.2 94 98 100 0 1 6𝜆min = 0.1 100 100 100 3 6 14

and the remaining ones are unimportant. We took 𝑛 = 50
and conducted three experiments with censoring rates 0%,
20%, and 40%, respectively. For the censoring mechanism, a
censoring time 𝑡𝑖 is generated independently and uniformly
from [0, 𝜂] for each observation. If 𝑦𝑖 > 𝑡𝑖, we replaced𝑦𝑖 with 𝑡𝑖 and then let 𝛿𝑖 = 0. Here, the parameter 𝜂 was
chosen to achieve some desired censoring rates. For example,𝜂 = 45 corresponds to 20% censoring rate and 𝜂 = 4
corresponds to 40% censoring rate. Aiming at evaluating the
performance of StabSel for a given 𝜆min, we computed the
selection frequency of StabSel in each case. Specifically, the
selection frequencywas calculated as, among 100 simulations,
the minimum, median, and maximum number of times that
the important and unimportant variables (𝐼𝑉 and 𝑈𝐼𝑉) are
selected by StabSel, respectively. Interested readers can refer
to [26] for the detailed definition of selection frequency.
Table 1 summarizes the results for the cases with different
centering rates.

The results in Table 1 demonstrate that StabSel using a
relatively large 𝜆min performs slightly better in excluding
unimportant variables. However, the side effect is that it more
likely misses some truly important variables. In other words,
StabSel controls false discovery rate (or false positive rate)
quite effectively with a relatively large 𝜆min, but this will cause
it to behave poorly in terms of catching important variables.
To improve its selection accuracy, we must reduce 𝜆min.
Nevertheless, this inevitably allows more false discoveries. In
practice, it is worthy of choosing an appropriate value for𝜆min
depending on whether our emphasis is more on false positive
rate or false negative rate. Moreover, we need to pay more
attention to the tuning of 𝜆min if the censoring rate is high.

3.2. Simulation 2: Performance Comparison on a Cox Model
with High-Dimensional Data. In this subsection, we concen-
trated on applying StabSel and lasso to a Cox model with
high-dimensional data. To generate the design matrix, the
following two simulated datasets were generated by following
the strategy in [19].

Case 1. x𝑘 ∼ 𝑁(0, I𝑛), where 𝑘 = 1, 2, . . . , 𝑝 and 𝑝 = 1000,𝑛 = 100.
Case 2. x𝑘 = 𝑓𝑘,1𝜙1 + 𝑓𝑘,2𝜙2 + 𝜂𝑘, for 𝑘 = 1, 2, . . . , 𝑝, where𝜙1, 𝜙2, 𝑓𝑘,1, 𝑓𝑘,2, 𝜂𝑘 ∼ 𝑁(0, I), and 𝑝 = 1000, 𝑛 = 200.

Moreover, we created sparse regression vectors by setting𝛽𝑘 = 0 for all 𝑘 = 1, . . . , 𝑝, except for a small variable set 𝑆.
For all 𝑘 ∈ 𝑆, we chose the coefficient 𝛽𝑘 independently and
uniformly in [0, 1] and let the size 𝑠 = |𝑆| varying between 4
and 10. Here, we employed the method used in Section 3.1 to
achieve the censoring rates 0% and 20%. Then, a Cox model
was constructed by (8).

To compare the power of StabSel and lasso to ranking
variables, we adopted the strategy utilized by [19], that is,
focusing on the probability that 𝛾𝑠 variables in 𝑆 can be
recovered correctly, where 𝛾 ∈ {0.1, 0.3}. For lasso, thismeans
that there is a regularization parameter such that at least ⌈𝛾𝑠⌉
variables in 𝑆 are selected while all variables in 𝑁 = {1,. . . , 𝑝} \ 𝑆 are not selected. For stability selection, it stands for
the fact that ⌈𝛾𝑠⌉ variables with highest selection frequency
are all in 𝑆. In this example, we fixed the threshold value𝜋thr = 0.6 and 𝑞Λ = ⌈(0.8𝑝)1/2⌉ to determine a proper value
for 𝜆min.

The top two subplots in Figure 1 correspond to the
situation of 𝛾 = 0.1 while the bottom two subplots illustrate
the results for 𝛾 = 0.3. Notice that the latter task is more
challenging than the former one. When the covariates are
independent in Case 1, lasso performs satisfactorily and the
advantage of StabSel is not significant. In Case 2, the dom-
inance of StabSel over lasso to identify important variables
more correctly can be clearly seen, especially when faced
with censored data. In the more challenging task in which
more important variables are required to be ranked ahead
(i.e., 𝛾 = 0.3), the superiority of StabSel is more significant.
In conclusion, this experiment shows that StabSel is indeed
helpful to enhance the ranking ability of lasso.

3.3. Simulation 3: Performance Comparisonwith Several Other
Methods. Finally, we considered a simulated dataset used in
[20]. There are 𝑛 = 80 observations and 𝑝 = 20 predictor
variables. Each predictor was generated according to

x𝑗 = z + 𝜖𝑗, 𝑗 = 1, 2, . . . , 20, 𝜖𝑗, z 𝑖𝑖𝑑∼ 𝑁80 (0, I) . (9)

The response vector y was generated from an exponential
distribution with hazard function

ℎ𝑖 (𝑡) = ℎ0 (𝑡) exp (0.5𝑥𝑖,5 + 𝑥𝑖,10 + 1.5𝑥𝑖,15) . (10)

As for the variables other than x5, x10, x15, the coefficient
is zero. Altogether, three simulation studies were conducted
with censoring rates 0%, 20%, and 40%, respectively. For
StabSel, we fixed 𝜋thr = 0.6 and 𝑞Λ = ⌈(1.6𝑝)1/2⌉. As men-
tioned in Section 2, the number of variables that lasso selects
in each trial should be at least larger than the number
of truly important variables. Thus, we increased the factor
multiplying 𝑝 in 𝑞Λ because 𝑝 is small in this simulation. We
compared it with traditional stepwise search as well as some
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Figure 1: Selection probabilities of StabSel and lasso.

VSE techniques including BSS [20], PGA [18], RSMA [24],
and ST2E [22]. The parameters involved in these methods
were set according to the related literature.

Table 2 summarizes the selection frequencies of IV
and UIV for each approach. The results demonstrate that
although PGA performs better to exclude unimportant vari-
ables, it may miss some truly important variables. On the
other hand, RSMA, ST2E, and StabSel can identify almost the
same number of important variables; the difference only lies
in the exclusion of unimportant ones. In this aspect, StabSel
is observed to behave the best. As for BSS, its ability to guard
against noise variables seems to be worse than the others
although it works well to identify IVs.

In order to see more clearly the differences among the
considered approaches, we computed the average selection
rate of IV and UIV. For IV, it was computed as the selection
probabilities averaged over all important variables. The met-
ric was similarly estimated for UIV.The results are illustrated

in Figure 2. The top three subplots are IVs while the bottom
three ones are for UIVs. From Figure 2, we can come to some
conclusions similar to those drawn from Table 2.

At the same time, we also utilized several other metrics
to extensively evaluate each method. First, we computed the
selection success rate [13]. Given an algorithm, it refers to
the fraction of times among 100 runs that the algorithm
correctly identifies the true model (i.e., the model only
includes {x5, x10, x15}). Second, the true positive rate (TPR)
and true negative rate (TNR) of eachmethodwere considered.
In particular, TPR and TNR are as follows:

TPR = 1100 ⋅ |IV|
100∑
𝑡=1

∑
𝑗∈IV

I (𝛽𝑗,𝑡 ̸= 0) ,

TNR = 1100 ⋅ |UIV|
100∑
𝑡=1

∑
𝑗∈UIV

I (𝛽𝑗,𝑡 = 0) ,
(11)
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Figure 2: Average selection rate for different ensemble approaches.

where 𝛽̂ = (𝛽1,𝑡, 𝛽2,𝑡, . . . , 𝛽𝑝,𝑡)𝑇 is the estimated coefficient
vector in the 𝑡th simulation. In addition, |IV| and |UIV|
represent the size of IV and UIV, respectively. The method
“Oracle” corresponds to fitting a Cox model with only
variables x5, x10, and x15. Usually, a good variable selection
method should produce results as close as possible to those
of Oracle.

It can be seen from Table 3 that stepwise method is
hopeless to select variables since it can hardly find the
true model. Among the VSE algorithms, StabSel always
reaches the largest selection success rate, especially when the
censoring rate is high. On the other hand, StabSel tends to
achieve a model size closest to that of Oracle. As far as the
prediction performance is concerned, StabSel almost always
outperforms the other approaches.

4. Real-World Applications

In this section, we applied the compared VSE techniques to
three real-world datasets, that is, PBC [31], Lung [32], and
Rats [33]. These real datasets were taken from the R package
survival. For the original PBC and lung sets, we simply
ignored the observations containing missing data. In these
situations, there are no means to know which variables are
truly important or not. Aiming at evaluating the selection
behavior of each method, we took the original variables
as truly important ones (i.e., IVs). Then, some irrelevant
variables were artificially added to these sets by following
the strategy used in [25, 34]. These irrelevant variables
were generated from a uniform distribution on the interval[0, 1]. Table 4 lists the main characteristics of the used three
datasets.
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Table 2: Selection frequencies of each method in Simulation 3.

Method 𝑥𝑗 ∈ IV 𝑥𝑗 ∈ UIV
Min Med Max Min Med Max0% censoring

Stepwise 97 100 100 13 22 30
BSS 79 100 100 3 7 10
PGA 40 93 100 0 0 1
StabSel 91 97 97 0 3 5
RSMA 79 98 100 4 8 13
ST2E 100 100 100 10 15 1820% censoring
Stepwise 94 100 100 19 24 31
BSS 70 100 100 6 12 17
PGA 29 94 100 0 0 1
StabSel 94 96 97 1 3 5
RSMA 80 98 100 4 9 17
ST2E 94 100 100 8 15 2340% censoring
Stepwise 94 100 100 22 26 38
BSS 65 89 96 8 11 15
PGA 31 95 100 0 0 1
StabSel 97 100 100 1 3 7
RSMA 80 99 100 7 13 18
ST2E 91 100 100 11 15 25

Table 3: Results for each method in Simulation 3.

Method Succ. rate Size TNR TPR0% censoring
Stepwise 0.02 6.92 0.768 0.990
BSS 0.51 3.89 0.935 0.930
PGA 0.37 2.36 0.998 0.777
StabSel 0.55 3.30 0.973 0.950
RSMA 0.21 4.09 0.922 0.923
ST2E 0.01 5.47 0.855 1.00020% censoring
Stepwise 0.04 7.02 0.760 0.980
BSS 0.31 4.76 0.879 0.900
PGA 0.28 2.25 0.999 0.743
StabSel 0.57 3.33 0.914 0.957
RSMA 0.14 4.50 0.899 0.927
ST2E 0.05 5.55 0.849 0.99340% censoring
Stepwise 0.02 7.44 0.735 0.980
BSS 0.15 4.55 0.878 0.823
PGA 0.30 2.30 0.998 0.753
StabSel 0.61 3.51 0.968 0.990
RSMA 0.06 4.87 0.878 0.930
ST2E 0.03 5.68 0.837 0.970
Oracle 1.00 3.00 1.00 1.00

Analogous to the situation of simulation studies, the
ensemble size was set as 𝐵 = 200. The parameters involved in

Table 4: Main characteristics of the used real-world datasets.

Dataset Number of variables Number of samples Training size
PBC 15 (original covariates) 276 200

+20 (random uniform)
Lung 8 (original covariates) 167 100

+20 (random uniform)
Rats 3 (original covariates) 300 250

+20 (random uniform)

each method were set similarly to those used in simulations.
For each dataset, the experiment was repeated 100 times. In
each replication, a training set was randomly drawn from
the given set with size being specified in Table 4. The rest
of observations was then used as a test set to evaluate the
prediction performance measured with C-index [35] (i.e.,
concordance index). In particular, we applied each algorithm
to the training set to perform variable selection. Based on
the selected variables, the parameters in the corresponding
model were estimated and the C-index was estimated on
the test set. Table 5 shows the results obtained with each
algorithm.

In terms of selection rate, it can be observed from
Table 5 that BSS performs well to identify IVs. Nevertheless,
it behaves worse to exclude UIVs. On the contrary, PGA
shows the lowest selected rate of UIVs while it has the
lowest selected rate of IVs. Therefore, BSS and PGA are not
ideal selectionmethods. For the remainingmethods, StabSel,
RSMA, and ST2E behave similarly in identifying IVs. But
when compared with StabSel, RSMA and ST2E include more
irrelevant variables. In conclusion, StabSel achieves better
performance on variable selection when being evaluated with
selection rate.

Furthermore, the results of C-index in Table 5 reveal
that the prediction performance of StabSel is competitive
although it is not the best one. Furthermore, almost all
ensemblemethods tend to have low TPR values in these three
real datasets. This is largely due to the fact that we directly
consider all the original covariates as IVs among which some
are actually uninformative.

5. Conclusions

As an ensemble method, StabSel [19] is the marriage of
subsampling with a variable selection algorithm such as
lasso. Due to its property of controlling false discovery rate,
StabSel has a flexible manner to choose a proper amount of
regularization. Another superiority of StabSel over lasso is
that it requires less assumptions to achieve variable selection
consistency. In this article, we extended StabSel to the Cox
model. The specification of 𝜆min significantly affects the
performance of StabSel since it controls the balance between
false positive rate and false negative rate. We provide an
explicit way to set a proper value for 𝜆min in the situation
of Cox models. In comparison with other VSE techniques
including PGA, BSS, RSMA, and ST2E, StabSel exhibits better
selection ability to correctly identify important variables in
a high-dimensional Cox model. At the same time, StabSel
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Table 5: The performance of each method on three real datasets.

Dataset Metric PGA BSS StabSel RSMA ST2E

PBC

Sel. rate
IVs (1–15) 0.299 0.597 0.518 0.543 0.605

UIVs (26–35) 0.015 0.291 0.053 0.074 0.120
C-index 0.792 0.812 0.819 0.826 0.835
TPR 0.24 0.50 0.42 0.54 0.63
TNR 0.98 0.60 0.99 0.96 0.96

Lung

Sel. rate
IVs (1–8) 0.284 0.607 0.477 0.476 0.466

UIVs (9–28) 0.077 0.426 0.097 0.289 0.200
C-index 0.631 0.703 0.695 0.680 0.695
TPR 0.27 0.61 0.41 0.51 0.54
TNR 0.92 0.55 0.83 0.71 0.74

Rats

Sel. rate
IVs (1–3) 0.627 0.890 0.850 0.893 0.997

UIVs (4–23) 0.043 0.332 0.101 0.160 0.159
C-index 0.800 0.870 0.853 0.869 0.693
TPR 0.60 0.89 0.70 0.89 1.00
TNR 0.91 0.67 0.90 0.84 0.84

has satisfactory prediction performance.When the censoring
rate is high, its advantage is even more significant. Therefore,
StabSel can be considered as an alternative to explore the
relationship between covariates and survival times in survival
analysis.
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