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Abstract

The manganese transport regulator MntR is a metal-ion activated transcriptional repressor

of manganese transporter genes to maintain manganese ion homeostasis. MntR, a member

of the diphtheria toxin repressor (DtxR) family of metalloregulators, selectively responds to

Mn2+ and Cd2+ over Fe2+, Co2+ and Zn2+. The DtxR/MntR family members are well con-

served transcriptional repressors that regulate the expression of metal ion uptake genes by

sensing the metal ion concentration. MntR functions as a homo-dimer with one metal ion

binding site per subunit. Each MntR subunit contains two domains: an N-terminal DNA bind-

ing domain, and a C-terminal dimerization domain. However, it lacks the C-terminal SH3-

like domain of DtxR/IdeR. The metal ion binding site of MntR is located at the interface of the

two domains, whereas the DtxR/IdeR subunit contains two metal ion binding sites, the pri-

mary and ancillary sites, separated by 9 Å. In this paper, we reported the crystal structures

of the apo and Mn2+-bound forms of MntR from Bacillus halodurans, and analyze the struc-

tural basis of the metal ion binding site. The crystal structure of the Mn2+-bound form is

almost identical to the apo form of MntR. In the Mn2+-bound structure, one subunit contains

a binuclear cluster of manganese ions, the A and C sites, but the other subunit forms a

mononuclear complex. Structural data about MntR from B. halodurans supports the previ-

ous hypothesizes about manganese-specific activation mechanism of MntR homologues.

Introduction

Metal ions are essential for living organisms because iron, zinc, and manganese ions act as

cofactors for many proteins which are involved in photosynthesis, nerve transmission, and

defense against toxins[1]. Manganese ions are important in many fundamental cellular pro-

cesses, including protection against oxidative stress and the synthesis of the deoxyribonucleo-

tides required for DNA replication[2,3]. However, and excess of manganese ions can be toxic

[4,5]. Therefore, in order to maintain homeostasis, it is important for cells to sense and
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respond to manganese ion concentrations[6,7]. Metalloregulatory proteins regulate metal ion

homeostasis in bacteria by binding metal ions, leading to the activation or repression of the

transcription of genes involved in import or efflux of the ions[8,9]. Each metalloregulatory

protein has a different ligand selectivity for allosteric activation[10].

The transcriptional regulation and manganese binding of MntR from Bacillus subtilis has

been well studied. The manganese transport regulator (MntR) functions as a homodimer

and is activated by Mn2+ to repress the expression of two manganese uptake systems,

MntABCD and MntH, in response to elevated concentrations of Mn2+[11]. Recent studies

have shown that MntR activates the expression of two efflux systems, MneP and MneS, in

Bacillus subtilis[9]. MntR is a member of the DtxR/IdeR family, which maintains iron ion

homeostasis in bacteria[12]. Corynebacterium diphtheriae DtxR and Mycobacterium tuber-
culosis IdeRs consist of three domains: an N-terminal HTH-motif DNA binding domain

(domain 1), a dimerization domain (domain 2), and a C-terminal SH3-like domain (domain

3), which is absent in MntR family proteins[13–15]. MntR consists of two domains: an N-

terminal HTH-motif DNA binding domain (domain 1) and a C-terminal dimerization

domain (domain 2)[5]. The DtxR/IdeR family proteins have two major metal binding sites

9.0 Å apart, called the primary and ancillary sites[7,16]. MntR is shorter than DtxR/IdeR

family and the ancillary site of MntR is absent, because of the lack of an SH3-like domain in

MntR[8]. The metal binding site of MntR is located between domains 1 and 2, correspond-

ing to the primary site in DtxR/IdeR[7]. From previous structural studies it is known that

the metal binding site of B. subtilis MntR consists of several residues including Asp8 and

Glu11 in domain 1, and His77, Glu99, Glu102 and His103 in domain 2. There are two types

of metal ion binding conformations in MntR, the AB conformer, and the AC conformer,

resulting from differences in amino acid residues involved in metal coordination and dis-

tances between the two metal ions[5]. In the AB conformer, Asp8, Glu11, Glu102 and

His103 interact with a B site Mn2+ ion, and the metal binding sites are separated 3.3 Å. In

contrast, Asp8, Glu99, Glu102 and His103 interact with a C site Mn2+ ion, and the sites are

separated 4.4 Å in the AC conformer[4].

The metal coordination geometry of MntR is essential for the generation of selective

responses to cognate metals. Larger metal cations (Mn2+ and Cd2+) form a binuclear complex

with MntR and are fully activated. However, when bound to small metal cations (Fe2+, Co2+,

and Zn2+), the metal ions do not fully occupy the site, but form a mononuclear complex,

resulting in low activity[17].

The crystal structures of the MntR family have been determined from several bacterial spe-

cies, including Bacillus subtilis[18], Escherichia coli[7], and Mycobacterium tuberculosis[17].

Previous structural studies of the MntR family have described how conformation changes

depending on whether the sites are bound to cognate metal ions, and how such conforma-

tional changes induce a dissociation of cognate DNA from the MntR protein[19]. The MntR

homologue (BH2807, BhMntR) in Bacillus halodurans is a protein consisting of 139 amino

acids, and has 78% sequence identity with MntR from B.subtilis (BsMntR). Further sequence

comparisons of B. halodurans MntR show that it is 31% identical to E. coli MntR, 26% identical

to M. tuberculosis MntR, 24% identical to C. diphtheriae DtxR, and 26% identical to T. acido-
philum IdeR (Fig 1A).

Although the crystal structures of MntR from bacterial species have been determined, the

metal coordination and selectivity are not fully understood. To further understand the metal

binding site of the MntR protein, we determined crystal structures of the apo and manganese-

bound forms of MntR from B. halodurans. The structures revealed that BhMntR forms a

binuclear complex with manganese ions in the AC conformer.

Crystal structure of Bacillus halodurans MntR
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Materials and methods

Expression and purification of BhMntR

The mntR genes were amplified using polymerase chain reaction (PCR) using the genomic

DNA of B. halodurans as a template. The amplified mntR genes were inserted into an NdeІ/
XhoІ-digested vector pET-28b(+) (Novagen, Germany) producing a hexahistidine-tag (His-

tag) at its N-terminus. The recombinant BhMntR was transformed and expressed in E.coli
BL21(DE3) Star pLysS cells (Invitrogen, USA). The transformed cells were grown at 310 K to

an OD600 of ~0.5 in Luria-Bertani medium supplemented with 30 μg mL-1 kanamycin and

chloramphenicol. Overexpression of recombinant BhMntR was induced with 1.0 mM isopro-

pyl β-D-1-thiogalactopyranoside (IPTG) and allowed to grow for four hours at 303 K. The

cells were harvested by centrifugation at 4,200 g for 15 minutes at 277 K and frozen immedi-

ately at 193 K. The cell pellets (6~8 g) were resuspended in buffer A (20 mM Tris-HCl pH 8.0,

0.5 M NaCl, and 10%(v/v) glycerol) containing 1 mM phenylmethylsulfonyl fluoride and

homogenized using an ultrasonic processor (Sonics & Materials™, Vibra Cell VCX 750, USA).

Fig 1. Multiple sequence alignment and overall structure of BhMntR. (A) Multiple sequence alignment of BhMntR with other MntR homologues.

The secondary structures of BhMntR are indicated above the sequence. The highly conserved and partially conserved residues are shaded in black and

gray boxes, respectively. The residues involved in metal binding are shown as red triangles at the bottom of the sequence. (B) The monomeric and

dimeric structures of apo BhMntR. BhMntR are composed of an N-terminal DNA binding domain (yellow) and a C-terminal domain (green). (C) The

dimeric structure of Mn2+-bound form BhMntR. One subunit contained binuclear manganese ions (purple), while the other subunit forms a

mononuclear complex with magnesium ion (gray).

https://doi.org/10.1371/journal.pone.0224689.g001
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The insoluble fraction was removed by centrifugation at 28,000 g (Supra 22 K; Hanil BioMed

Inc., Korea) for one hour at 277 K.

The recombinant BhMntR in the soluble fraction was loaded on a nickel-charged His-trap

immobilized metal affinity chromatography (IMAC) column (GE Healthcare, UK) pre-equili-

brated with buffer A, washed with buffer A containing 60 mM imidazole, and eluted from the

column with buffer B (20 mM Tris-HCl pH 8.0, 0.5 M NaCl, 10%(v/v) glycerol, and 300 mM

imidazole) to immobilized-metal-affinity-chromatography (IMAC) on a Ni-NTA resin (GE

Healthcare). The BhMntR was further purified by size exclusion chromatography using a

Superdex 200 gel-filtration column (GE Healthcare, UK), employing with elution buffer (20

mM Tris-HCl pH 8.0, 0.2 M NaCl, 5% (v/v) glycerol, 1 mM dithiothreitol (DTT), and 2 mM

MgCl2). The purity of BhMntR was assessed using 12% (v/v) SDS-PAGE. The purified

BhMntR was concentrated to 17 mg/ml using centrifugal filter units (Millipore) and aliquots

of the protein were stored at 193 K.

Crystallization and X-ray diffraction data collection

Crystallization of BhMntR was performed using the sitting-drop vapor diffusion method at

296 K with 96-well crystallization plates (SWISSCI MRC, UK) and commercial screening solu-

tion from Anatrace, Hampton Research, Emerald Biosystems and Molecular Dimensions.

Each sitting-drop was prepared by mixing 0.75 μl of the concentrated protein and the reservoir

solution. The crystals of apo BhMntR were grown in reservoir solution containing 0.1 M

sodium/potassium phosphate pH 6.2 and 0.4 M magnesium formate. The co-crystallization of

BhMntR with manganese ions was unsuccessful. Mn2+-bound crystals were obtained by soak-

ing with 50 mM MnCl2 for one hour in apo crystals, grown in 0.1 M sodium phosphate pH 6.5

and 0.4 M magnesium formate.

Each crystal was transferred into a cryo-protectant solution containing the reservoir solu-

tion with 20%(v/v) glycerol and flash-cooled in a liquid nitrogen stream. X-ray diffraction data

were collected at 100 K with a Pilatus3 6M detector using synchrotron radiation on a Beamline

11C of the Pohang Accelerator Laboratory (PAL) in Korea. The crystals were exposed to X-

rays for 1.0 second per image, and 180 frames were obtained for each 1.0˚ oscillation. All data

were processed and scaled using DENZO and SCALEPACK from the HKL-2000 program suite

[20]. The detailed data collection statistics are summarized in Table 1.

Structure determination and refinement

The structure of apo BhMntR was solved by molecular replacement using the program PHA-
SERMR from the CCP4 program suite[21] using the apo BsMntR structure (PDB code 2HYG)

[18] as a search model. The initial model was further improved by alternating cycles of manual

building using the COOT program[22], and the model was refined with the PHENIX program

package[21]. The refined model was evaluated using MolProbity[23]. The refinement statistics

of apo BhMntR and Mn2+ bound BhMntR are presented in Table 1.

Results and discussion

Model building and quality

The apo crystal structure of BhMntR was determined at 2.3 Å resolution using molecular

replacement with the MntR model of B. subtilis (2HYG). The structure was refined to crystal-

lographic Rwork and Rfree values of 18.9% and 22.9%, respectively with good geometry. The

refined model (PDB code 6KTA) contained two BhMntR subunits which formed a homodi-

mer, four molecules of glycerol, and 135 water molecules in the asymmetric unit. The model

Crystal structure of Bacillus halodurans MntR
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was validated using MolProbity[23]. The C-terminal region of chains A (residue 139) and B

(residues 136–139) were poorly ordered, due to lack of electron-density maps. Mn2+-bound

BhMntR crystals were obtained by soaking with 50 mM MnCl2 for one hour in apo crystals.

The crystal structure of the Mn2+-bound form was determined at 2.5 Å resolution, and the

binuclear manganese ions were clearly evident in the 2Fo-Fc map and omit maps, whereas a

magnesium ion was observed in the other subunit. The structure of Mn2+-bound BhMntR was

refined with a crystallographic Rwork value of 17.1% and an Rfree value of 21.8%. Each subunit

of the Mn2+-bound BhMntR was well defined, except for the C-terminal residue 139. The

refined model (PDB code 6KTB) contains two BhMntR subunits, three molecules of phos-

phate, and 77 water molecules in the asymmetric unit. All refined models for BhMntR showed

favored or allowed regions in a Ramachandran plot.

Table 1. Data collection and refinement statistics.

Apo BhMntR Mn2+-bound BhMntR

Data collection

Space group P212121 P212121

Unit-cell parameters

a, b, c (Å) 39.66, 89.20, 109.76 39.53, 89.37, 109.95

α, β, γ (˚) 90.00, 90.00, 90.00 90.00, 90.00, 90.00

Wavelength (Å) 0.97941 0.97960

Resolution (Å) 50.00–2.30 (2.34–2.30) 50.00–2.50 (2.54–2.50)

Number of observations 115,264 93,537

Unique reflections 17,942 14,131

Data completeness (%) 99.1 (99.2) 99.9 (99.9)

Redundancy 6.4 (6.0) 6.6 (7.1)

Averge I/σ(I) 16.2 (4.5) 14.1 (7.9)

Rmerge (%)a 11.9 (36.4) 12.8 (36.7)

Refinement statistics

Resolution (Å) 46.74–2.30 37.20–2.50

Rwork / Rfree (%) 18.9/22.9 17.1/21.8

No. of non-H atoms 2439 2379

Protein 2280 2284

Ligands 24 18

Water 135 77

rmsd bonds (Å) 0.008 0.008

rmsd angles (˚) 0.938 0.930

Average B-factor 35.7 27.9

Protein 28.48 21.65

Ligands 49.57 (glycerol) 47.20 (Mn2+,Mg2+,Phosphate) MGGMGD

Water 38.97 30.07

Ramachandran plot (%)

Favored 98.53 98.53

Allowed 1.47 1.47

Outliers 0 0

aRmerge = ShSi|I(h)i − < I(h) > |/ShSiI(h)i, where I(h) is the intensity of reflection h, Sh is the sum over all

reflections, and Si is the sum over i measurements of reflection h.

https://doi.org/10.1371/journal.pone.0224689.t001
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Overall structure of B. halodurans MntR

Each BhMntR subunit was composed of seven α-helices and two β-strands, which could be

divided into an N-terminal Helix-Turn-Helix (HTH) DNA binding domain (domain1, resi-

dues 1–71) and a C-terminal dimerization domain (domain2, residues 72–139) (Fig 1). The N

and C-terminal domains were connected by a long linker helix (α4) that extended from the

wing to the dimer interface. The BhMntR was a homodimeric structure, with approximate

dimensions of 40Å × 55Å × 80Å. The N-terminal DNA binding domain consisted of three α-

helices and two strands of antiparallel β-sheet, forming a winged HTH motif that putatively

interacted with DNA. Because helix α3 of the HTH motif could be responsible for DNA recog-

nition, we speculate that the positively charged residues (Lys41, Lys45, and Lys48) in helix α3

are involved in DNA binding. Domain 2, the dimerization domain, is composed of four α-

helices (α4–α7). Domains 1 and 2 are connected by the long linker helix α4 (residues 64–87).

The two subunits form a dimeric structure, related by a non-crystallographic 2-fold axis

(Fig 1). The buried surface area of the dimer is about 1300 Å2, approximately 14% of the

monomer surface area. The dimeric BhMntR is stabilized by the hydrogen bonds and hydro-

phobic interactions along helices α4 to α7; 14 residues were involved in hydrophobic interac-

tions and eight residues in hydrogen bonds. (PDBePISA protein–protein interaction server:

http://www.ebi.ac.uk/msd-srv/prot_int/ and PDBsum generate: http://www.ebi.ac.uk/

thornton-srv/databases/pdbsum/Generate.html). The dimer interface is mainly produced by

hydrophobic side chains such as Phe83, Ile87, Gly88, Val 89, Gly100, Ile101, Leu105, Ala109,

Ile113, Leu116, Tyr119, Phe120, Leu130, and Val133. Ten hydrogen bonds were formed

between Asp90 N and Asp108 Oδ2, between Asp97 Oδ1 and Ser106 N, between Asp97 Oδ2

and Ser106 Oγ, between Tyr119 Oη and Tyr119 Oη, between Glu122 Oε1 and Lys136 Nz,

between Asp115 Oδ1 and Asn137 Nδ2, and between Gln118 Oε1 and Asn137 Nδ2. This find-

ing demonstrated that BhMntR exists as a functional dimer in solution. Two subunits in the

asymmetric unit of BhMntR showed little structural difference, with a root-mean-sequare

deviation (r.m.s.d.) value of 1.31 Å for 137 Cα atoms in residues 1–137 (S1 Fig). There were

few structural differences between apo and Mn2+-bound dimeric forms, with a r.m.s.d. value

of 0.49 Å for 276 Cα atoms.

Metal binding site

We obtained Mn2+-bound crystals by soaking with 50 mM MnCl2 in apo crystals, and con-

firmed using an omit map and an anomalous map showing two peaks at the counter levels

even at 5σ (Fig 2A and S2 Fig). The metal binding site appeared to be fully occupied in one

subunit with the temperature factors for the two manganese ions being 51.02 Å2 and 63.88 Å2,

respectively. However, the other subunit contained a magnesium ion which was coordinated

by the side chains of Glu99, Glu102, and two water molecules (Fig 2C). The two manganese

ions were found at the interface between the HTH domain and the dimerization domain and

formed a binuclear complex separated by 4.5 Å, labeled as the A and C sites (AC conformer).

The binuclear manganese ions were liganded by six amino acid residues: Asp8 and Glu11

contributed by domain 1, and His 77, Glu99, Glu102, and His103 contributed by domain 2

(Fig 2B). The two manganese ions (MnA and MnC) were jointly coordinated by the carboxyl-

ate oxygens of Glu99 and Glu102 from domain 2. Each metal ion was individually coordi-

nated by Glu11 (MnA), His77 (MnA), His103 (MnC) and Asp8 (MnC). The MnA ion was

coordinated by seven atoms: Glu11 Oε1/Oε2, His77 Nδ1, Glu99 Oε2, Glu102 Oε1/Oε2, and

Wat95 O. In addition, the His77 Nε2 made a hydrogen bond with Glu81 Oε1, while the

His77 Nδ1 in the other subunit made a hydrogen bond with Glu81 Oε1 via a water molecule

(Fig 2C). The Mnc ion was coordinated by five atoms: Asp8 Oδ1, Glu99 Oε1, Glu102 Oε2,

Crystal structure of Bacillus halodurans MntR
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His103 Nε2, and Wat37 O, while the C site of BsMntR has octahedral coordination geometry.

In the Mn2+-bound BsMntR structure, the backbone carbonyl oxygen of Glu99 coordinated

with the Mnc ion, but this interaction between them was too distant to interact in the

BhMntR, at 3.5 Å (Fig 2B).

Fig 2. Metal ion binding site in the B. halodurans MntR. (A) Stereoview of metal binding site in the B. halodurans MntR. A σA-weighted electron

density map (2Fo-Fc map) contoured at 1.0σ (blue). Omit map was calculated, contoured at 3σ (red). The Mn2+ atoms (purple) are depicted with

surrounding residues (yellow sticks from domain1 and green sticks from domain2). (B) Metal binding site with binuclear manganese ions. The

coordination with binuclear manganese ions and the distance between Mnc and the backbone carbonyl oxygen of Glu99 are shown in yellow and red,

respectively. (C) Metal binding site with a magnesium ion (gray). Unlike binuclear manganese ions binding site, a magnesium ion was coordinated by

the side chains of Glu99, Glu102, and two water molecules. The His77 made a hydrogen bond with Glu81 via a water. The symmetry-related Tyr57 is

colored gray.

https://doi.org/10.1371/journal.pone.0224689.g002
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In the other subunit of the Mn2+-bound MntR structure, no manganese binding was

observed, although the residues are positioned appropriately to form a manganese binding

site. The reason for the lack of bound manganese ions at this site is unclear. The side chain of

His77, which is strictly conserved in the MntR/IdeR family, had a different rotamer with a

hydrogen bond via a water molecule to Glu81 and was also stabilized by π-π interaction with

symmetry-related Tyr57 (Fig 2C). These interactions could block the proper rotamer of His77

to coordinate with MnA ion in this subunit. These findings suggested that the His77 flip in

BhMntR could initiate metal binding in the presence of manganese ions. It will be valuable to

verify the role of His77 at the metal binding site in the future experiments.

Structural comparison to other MntR homologue

We carried out structural and sequence comparisons among DtxR/MntR proteins from vari-

ous organisms using the Clustal Omega[24] and DALI server[25]. The best five matches were

those of the metal-dependent DtxR/MntR family. They were (1) the manganese transport reg-

ulator, MntR from B. subtilis[4] (PDB code 2F5F; r.m.s. d. of 1.2 Å for 137 equivalent Cα posi-

tions in residue 2–138 of BhMntR, a Z-score of 19.1, and a sequence identity of 78%), (2) the

MntR from E. coli[7] (PDB code 2H09; r.m.s.d. of 2.1 Å for 118 equivalent Cα positions in resi-

due 1–114 and 116–119 of BhMntR, a Z-score of 15.7, and a sequence identity of 35%), (3) the

C. diphtheriae DtxR in complex with DNA[26] (PDB code 1BI2; r.m.s. d. of 2.2 Å for 119

equivalent Cα positions in residue 1–119 of BhMntR, a Z-score of 14.1, and a sequence identity

of 26%), (4) the M. tuberculosis IdeR in complex with DNA[27] (PDB code 1U8R; r.m.s.d. of

1.8 Å for 116 equivalent Cα positions in residue 3–119 of BhMntR, a Z-score of 13.8, and a

sequence identity of 28%), and (5) the T. acidophilum IdeR in complex with DNA[28] (PDB

code 4O6J; r.m.s.d. of 2.5 Å for 114 equivalent Cα positions in residue 4–118 of BhMntR, a Z-

score of 12.7, and a sequence identity of 29%).

Previous studies revealed that BsMntR shows conformational changes when bound to the

manganese ions by inducing a hinge bending motion between residues 72 and 75[18]. To

investigate the hinge motion properties of BhMntR, we compared the domain orientation,

by superimposing the Cα atoms of domain 2 (72–139) in the BhMntR structure with those

of the apo BsMntR (PDB code 2HYG), the Mn2+-bound BsMntR (PDB code 2F5D), and the

Zn2+-bound BsMntR (PDB code 2EV6). The r.m.s deviations in Cα positions for domain 2

(residues 72–139) are 0.90 Å, 0.76 Å and 0.95 Å (S1 Table). When the dimerization domain is

superimposed, the DNA binding domains varies by 2.4–8.5 Å at residue Lys41. The movement

of the DNA binding domain with respect to domain 2 is centered at residue Tyr75 of helix α4,

and is tilted by 4.5–17˚ (Fig 3A). There is no loss of hydrogen bonding within helix α4 upon

metal binding, while hydrogen bonding was lost within helix α4 in T. acidophilum IdeR.

When measured between the Cα atoms of Lys41, at the center of helix α3, the domain separa-

tion of apo and manganese bound BhMntR are 37.4 Å and 37.5 Å, respectively, while the dis-

tance between the Lys41 in apo, Mn2+-bound, and Zn2+-bound BsMntR are 39.2 Å, 32.1Å and

30.7Å, respectively (Fig 3B). There was little domain movement between apo and Mn2+-bound

BhMntR, possibly due to crystal packing or the presence of positively charged ions of Na+

(~0.5 M) and Mg2+ (~0.4 M) during the crystallization process. It will be important to verify

the domain movement upon metal binding by co-cystallization in future experiments.

Conclusions

We reported the crystal structures of BhMntR: apo, and Mn2+-bound forms. Our results

showed that BhMntR is composed of two distinct domains in the homodimeric form, and its

overall structure is similar to those of other MntR homologues. The two manganese ions
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formed a binuclear cluster in the metal binding site of BhMntR, via six amino acid residues;

three strictly conserved residues (His77, Glu102 and His103) in the IdeR/MntR family, two

residues (Asp8 and Glu99) conserved in the MntR family, and a Glu11 conserved in MntR

from B. subtilis and E. coli. The manganese ion in A site was liganded with heptageometry as

shown in BsMntR, whereas the manganese ion in the C site was incompletely liganded with

five atoms. The sixth atom, the carbonyl oxygen of Glu102, was too far away to coordinate

with the MnC ion. Therefore, BhMntR did not cause movement of the domain to bind DNA

upon manganese ion binding. Binuclear metal ions were not formed in the other subunit due

to the crystal packing and the flipping of His77. The side chain of His77 was flipped and stabi-

lized by hydrogen bonding and hydrophobic stacking. In order to initiate metal binding, the

side chain of His77 was flipped to interact with the carboxylate of Glu81. Although the func-

tional assignment of metal binding site for BhMntR is tentative, this structural model is appli-

cable to other MntR homologous structures.

Supporting information

S1 Fig. R.m.s.d plot of BhMntR.

(TIF)

Fig 3. Structural comparison between BhMntR and BsMntR. (A) Superimposing apo BhMntR with Mn2+-bound BhMntR and BsMntR.

Superimposition was based on the dimerization domain of one subunit. The angle was centered at residue Tyr75 of the helix α4 and measured between

the residues of Lys65. The apo BhMntR, Mn2+-bound BhMntR, apo BsMntR and Mn2+-bound BsMntR are indicated in green, yellow, cyan and

magenta, respectively. (B) Distances of residue Lys41 in the dimeric structure. The dimeric structures of MntR are aligned by the dimerization domain.

https://doi.org/10.1371/journal.pone.0224689.g003
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S2 Fig. Anomalous maps in metal ion binding site of BhMntR. (A) Stereoview of metal

binding site with binuclear manganese ions of the Mn2+-bound BhMntR. A σA-weighted elec-

tron density map (2Fo-Fc map) contoured at 1.0σ (blue). Anomalous map was calculated, con-

toured at 2σ (red). The Mn2+ atoms (purple) are depicted with surrounding residues (yellow

sticks from domain1 and green sticks from domain2). (B) Stereoview of metal binding site

with a magnesium ion in other subunit of the Mn2+-bound BhMntR. A σA-weighted electron

density map (2Fo-Fc map) contoured at 1.0σ (blue). Anomalous map was calculated, con-

toured at 2σ (red). (C) Anomalous maps were calculated around metal binding site with binuc-

lear manganese ions with different contour level (5σ, 4σ, and 3σ).

(TIF)

S1 Table. Structural comparisons of BhMntR with BsMntR.

(DOCX)

S1 File. Apo BhMntR coordinate.

(PDB)

S2 File. Apo BhMntR structure factor.

(MTZ)

S3 File. Mn-bound BhMntR coordinate.

(PDB)

S4 File. Mn-bound BhMntR structure factor.

(MTZ)

S5 File. Validation report of apo BhMntR structure.

(PDF)

S6 File. Validation report of Mn-bound BhMntR structure.

(PDF)
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