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Abstract
Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder with a largely unexplored epigenetic 
landscape.

Objective This study employs an innovative approach that integrates multi-omics analysis and explainable machine 
learning to explore the epigenetic regulatory mechanisms underlying the epigenetic signature of PRRT1 implicated in 
AD.

Methods Through comprehensive DNA methylation and transcriptomic profiling, we identified distinct epigenetic 
signatures associated with gene PRRT1 expression in AD patient samples compared to healthy controls. Utilizing 
interpretable machine learning models and ELMAR analysis, we dissected the complex relationships between these 
epigenetic signatures and gene expression patterns, revealing novel regulatory elements and pathways. Finally, the 
epigenetic mechanisms of these genes were investigated experimentally.

Results This study identified ten epigenetic signatures, constructed an interpretable AD diagnostic model, and 
utilized various bioinformatics methods to create an epigenomic map. Subsequently, the ELMAR R package was 
used to integrate multi-omics data and identify the upstream transcription factor MAZ for PRRT1. Finally, experiments 
confirmed the interaction between MAZ and PRRT1, which mediated apoptosis and autophagy in AD.

Conclusion This study adopts a strategy that integrates bioinformatics analysis with molecular experiments, 
providing new insights into the epigenetic regulatory mechanisms of PRRT1 in AD and demonstrating the importance 
of explainable machine learning in elucidating complex disease mechanisms.
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Introduction
Alzheimer’s disease (AD) is the most common neuro-
degenerative disorder [1]. Although the etiology of AD 
remains unclear, it is currently believed that the onset of 
AD involves complex interactions between genetic fac-
tors, environmental influences, and aging [2]. Many stud-
ies have found that epigenetic regulation plays a role in 
the pathogenesis of AD [3–5]. The expression levels of 
many known key genes implicated in AD, such as MAPT, 
BACE1, APOE, are subject to epigenetic regulation [3, 6, 
7].

DNA methylation, a prevalent form of epigenetic mod-
ification, is significantly implicated in AD. The modula-
tion of DNA methylation may offer potential diagnostic 
and therapeutic approaches for AD [4]. Recent research 
indicates that methylation can act as a key regulator of 
tau protein aggregation in AD, and adjusting the DNA 
methylation status may alleviate the pathological fea-
tures of AD [8]. Given the complexity of AD’s etiology 
and the high heterogeneity in biological changes and 
disease progression, integrating multi-omics analyses 
such as genomics, epigenomics, transcriptomics, etc., 
aids in identifying biomarkers for AD and exploring 
their upstream regulatory mechanisms and downstream 
molecular effects [9].

This study integrates transcriptomic and epigenomic 
data to investigate potential epigenetic drivers of AD. By 
performing multi-omics analysis on datasets from the 
same set of tissue samples through bioinformatics, we 
employed interpretable machine learning algorithms to 
construct an AD diagnostic model and identify potential 
AD epigenetic signatures (methylation-related differen-
tially co-expressed genes).

For the selected epigenetic signatures, this study used 
the ELMER R package to integrate gene expression 
and methylation data, analyzing the potential motifs 
upstream regulated by DNA methylation and their cor-
responding transcription factors, which were verified 
through luciferase reporter assay and Chromatin Immu-
noprecipitation (ChIP) experiment. Subsequently, further 
experiments explored the roles of epigenetic signatures 
in AD and the regulatory mechanisms of transcription 
factors on them.

Methods
Feature selection
Data preprocessing
The GSE109627 dataset was downloaded from GEO data-
base, which includes the methylation 450 K dataset of the 
middle temporal gyrus of the brain from subjects and 
their clinical information, comprising 45 samples from 
AD patients and 35 normal samples [10]. The 5-meth-
ylcytosine (5mC) methylation expression profile within 
the GSE109627 methylation 450 K dataset was extracted 

using the ChAMP R package [11] (R version 4.0.2). For 
the beta matrix of the GSE109627 methylation dataset, 
filtering and normalization were performed using the 
ChAMP R package. The GSE109887 dataset [10], encom-
passing mRNA expression profiles and clinical group 
information, was downloaded; this dataset includes tem-
poral middle gyrus samples from 46 AD patients and 32 
normal subjects. The study workflow is shown in Fig. 1.

Identification and selection of differentially methylated 
positions in the GSE109627 dataset
Differentially methylated positions (dmCpGs) were ana-
lyzed and selected using the ChAMP R package based on 
the criteria |Δβ| > 0.02 and P < 0.005.

Negative correlation analysis between differentially 
methylated positions and genes
In this study, the hm450.manifest.hg19 methylation 
450  K chip annotation data provided by the ChAMP R 
package was used, followed by mapping differentially 
methylated positions to related genes using the tidyverse 
R package. These were then matched with the corre-
sponding transcribed genes in the GSE109887 transcrip-
tomic dataset, forming pairs of differentially methylated 
positions and transcribed genes. Spearman correlation 
analysis was conducted between the β values of the meth-
ylation positions and the transcriptional expression levels 
of the genes (P < 0.05, r < -0.7).

Selection of differentially expressed genes and 
co-expressed genes
The Limma R package [12] and the WGCNA R package 
[13] were employed to identify differentially expressed 
genes and co-expressed genes, respectively, from the 
GSE109887 dataset.

Identification of AD epigenetic signatures through joint 
analysis of epigenome and transcriptome
For each probe-gene pair, this study categorized genes 
into two types: hypermethylation with low-expression 
and hypomethylation with high-expression:

Up-regulated differentially methylated positions in the 
GSE109627 methylation dataset (selected based on crite-
ria Δβ > 0.02 and P < 0.005) were matched with genes in 
the GSE109887 transcriptomic dataset that were down-
regulated (adj.P.Val < 0.05, logFC < -0.2), AD co-expressed 
genes from the WGCNA purple module, and negatively 
correlated methylation-regulated genes. The intersection 
of these genes was used to identify potential epigenetic 
signatures, visualized using the VennDiagram R package 
[14].

Down-regulated differentially methylated positions 
in the GSE109627 methylation dataset (selected based 
on criteria Δβ < -0.02 and P < 0.005) were matched with 
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Fig. 1 Study flowchart
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up-regulated genes in the GSE109887 transcriptomic 
dataset (adj.P.Val < 0.05, logFC > 0.2), AD co-expressed 
genes from the WGCNA purple module, and negatively 
correlated methylation-regulated genes. The intersection 
of these genes was used to identify potential epigenetic 
signatures, visualized using the VennDiagram R package 
[14].

Machine learning algorithm for selection of epigenetic 
signatures
Python (v3.6.2) with the pandas library [15] was used to 
read and merge clinical traits with methylation-related 
gene data from the GSE109887 dataset, followed by nor-
malization. The LightGBM algorithm was applied with 
10-fold cross-validation to extract feature genes (epigen-
etic signatures) along with clinical traits for subsequent 
development of an AD diagnostic model.

Modeling and evaluation
Construction and evaluation of AD diagnostic models
Using Python (v3.6.2) with the Scikit-learn library, vari-
ous machine learning algorithms were implemented to 
build AD diagnostic models. These models were then 
evaluated through 5-fold cross-validation based on the 
ROC-AUC score to select the optimal algorithm for con-
structing the AD diagnostic model.

The data was split into a 70% training set and a 30% 
test set (random_state = 3) using the Scikit-learn library 
to perform training and test set difference verification. 
Subsequently, the AD diagnostic model was built based 
on the optimal model parameters and evaluated using the 
ROC. Finally, the generalizability of the model was veri-
fied using the external validation set from the GSE132903 
dataset, which includes expression profiles of 10 epigene-
tic signatures along with clinical data such as gender and 
age.

ROC curve analysis
Univariate ROC curve analysis was performed using 
pROC R package to assess the diagnostic performance of 
each epigenetic signature in the GSE109887 dataset, and 
its generalizability was also assessed using the external 
validation set (GSE132903).

Interpretation and visualization of the AD diagnostic 
model
The AD diagnostic model was interpreted and visualized 
using the SHAP library [16].

Gene functional analysis
AlzData validation
AlzData database [17] was used to verify the expression 
differences of epigenetic signatures between AD and nor-
mal tissues.

GO, KEGG analysis and GSEA
In this study, GO and KEGG analyses were conducted on 
the identified epigenetic signatures using the clusterPro-
filer R package [18] (P < 0.05). Additionally, AD samples 
were categorized from the GSE109887 dataset into “high-
expression” and “low-expression” groups based on the 
median expression level of epigenetic signatures. Then 
GSEA [19, 20] was performed using the GSEA database 
“c2.cp.kegg.v7.4.symbols.gmt” (P < 0.05).

The immune function analysis
The ssGSEA algorithm provided in the GSVA R pack-
age [20, 21] was used to comprehensively evaluate the 
immunological characteristics of each sample in the 
GSE109887 dataset.

Immune checkpoint analysis
Based on the median expression levels of epigenetic sig-
natures, the AD samples within the GSE109887 dataset 
were divided into two groups: “high-expression group” 
and “low-expression group.” Subsequently, the ggpubr R 
package was employed to conduct an analysis and visual-
ization of the expression profiles of genes associated with 
immune checkpoints.

NetworkAnalyst analysis
The transcription factor (TF)-gene interaction analy-
sis was performed by integrating common Alzheimer’s 
disease risk genes [22, 23] (APP, PSEN1, PSEN2, BDNF, 
SORL1, ABCA7, APOE, TREM2, PLCG2) with epigen-
etic signatures using NetworkAnalyst [24]. Additionally, 
NetworkAnalyst was employed to develop a TF-miRNA 
coregulatory network and to pinpoint compounds that 
interact with the epigenetic signatures.

ELMER analysis
The ELMER R package [25] was utilized to analyze gene 
methylation (GSE109627 methylation dataset) and gene 
expression levels (GSE109887 transcriptomic data-
set) based on the same sample cohort. By comparing 
the methylation levels of all enhancers and promoter 
regions in AD and normal samples, methylated sites were 
selected based on criteria P < 0.005 and Δβ > 0.02 between 
the two groups, specifically those that were hypermeth-
ylated in AD samples. Subsequently, an analysis was 
conducted to determine whether there was a negative 
correlation between the expression levels of target genes 
and these hypermethylated sites. Following this, the base 
sequences within the 250 bp region upstream and down-
stream of these sites were extracted to identify motifs 
enriched in epigenetic signatures, namely transcription 
factor binding motifs (TFBMs). Ultimately, by utilizing a 
database of transcription factors (TFs) binding to motifs, 
potential upstream driving factors were predicted.
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Single-cell transcriptome analysis
SCAD-Brain [26] performs trajectory analysis to model 
the dynamic processes of cells based on single cell tran-
scriptomics data which contains prefrotnal cortex of 
human (GSE157827) [27].

Single-cell analysis of the GSE157985 dataset [28] 
which contains hippocampal tissues from wildtype mice 
and J20 AD mouse model, was performed using the 
SCAD-Brain database [26].

Experimental validation
Cell culture
SH-SY5Y cells were cultured in DMEM/f12 medium con-
taining 10% fetal bovine serum and 1% Penicillin-Strep-
tomycin, and HEK293T cells were cultured in DMEM 
medium with 10% fetal bovine serum. Both types of cells 
were incubated in a CO2 (5%) cell culture incubator at 
37 °C.

Aβ oligomers preparation
Dissolve 1 mg of Aβ1−42 (GL Biochem, Shanghai, China) 
in 400 µl of hexafluoroisopropanol (HFIP), and incubate 
at room temperature for 20 min. Then, transfer 100 µl of 
the solution into a clean eppendorf tube and add 900 µl 
of sterile deionized water, followed by incubation at 
room temperature for another 20  min. Next, centrifuge 
at 12,000  rpm for 15  min, and transfer the supernatant 
to another clean eppendorf tube. Subsequently, gently 
blow off the residual HFIP with high purity nitrogen for 
10–15  min using a nitrogen blower. Stop when approx-
imately 750  µl of liquid remains in the eppendorf tube. 
Finally, incubate at 500  rpm for 48  h using a magnetic 
stirrer before storing in a refrigerator at 4 °C.

Western blotting
The proteins of each group of cells were extracted (Bey-
otime, P0033, China). The extracted membrane pro-
teins were separated via SDS-PAGE electrophoresis and 
transferred onto a PVDF membrane. The membranes 
were then incubated with primary antibodies including 
anti-PRRT1 (rabbit, 1:1000, 17261-1-AP, Proteintech) 
and internal reference antibodies Na, K-ATPase (rabbit, 
1:5000, #3010, CST), anti-MAZ (rabbit, 1:1000, 21068-1-
AP, Proteintech), anti-LC3 (rabbit, 1:1000, 14600-1-AP, 
Proteintech), anti-phosphorylated-tau (rabbit, 1:1000, 
28866-1-AP, Proteintech), anti-tau (rabbit, 1:2000,10274-
1-AP, Proteintech), anti-actin (rabbit, 1:10000, TDY051, 
TDY Biotech), followed by incubation with secondary 
antibodies. Western blots were detected using an X-ray 
film, after which data analysis was conducted on the 
results.

Luciferase reporter assay
Prior to transfection, HEK293T cells were seeded at 
a density of 1 × 105 cells per well in a 24-well plate con-
taining 500  µl of antibiotic-free culture medium. The 
cells were transfected when they reached a confluency of 
30–50%.

The Firefly luciferase reporters, which include the 
PRRT1 promoter constructs, and the pRL-TK Renilla 
luciferase reporter, were introduced into HEK293T cells 
via a transfection reagent (Lipofectamine 2000, Invit-
rogen). The expression vectors of transcription factors 
MAZ, VEZF1, TFAP2E, HMGA1 or control empty vector 
were transfected respectively. Dual Luciferase Reporter 
Gene Assay Kit (Beyotime, RG027, China) was used and 
the luciferase activity in cell lysates was detected. Rela-
tive luciferase activity was calculated by normalizing fire-
fly luciferase activity to the luciferase activity of Renilla 
luciferase. ANOVA was employed for statistical analysis 
(n = 3, ****P < 0.0001).

ChIP-qPCR
HEK293T cells were cross-linked using formaldehyde to 
form a stable complex of proteins with DNA. Cell lysis 
was then performed to isolate the nuclei. The chroma-
tin was cleaved into appropriately sized fragments using 
ultrasonic fragmentation. The cleaved chromatin was 
incubated with the specific antibody to bind the tar-
get protein to the antibody of MAZ (Thermo Fisher, 
A301-652A-T) or IgG (ABclonal, AC005). Protein A/G 
magnetic beads were then added to precipitate the pro-
tein-DNA complex by magnetic force. The precipitated 
genomic DNA was subjected to amplification through 
real-time PCR using the following specified primers: 
sense: 5’- C C C G A C A G A G A C T A A C G T G A G-3’; anti-
sense: 5’- G A G A A T G G A C C C C A A G G T C T T-3’.

Small interfering RNA knockdown and plasmid 
transfection
In order to silence PRRT1, SH-SY5Y cells were intro-
duced to either siRNA or scrambled siRNA (ELK Bio-
technology, China) utilizing Lipofectamine 2000.

In addition, in order to overexpression PRRT1 and 
MAZ, SH-SY5Y cells were transfected with plasmid or 
vectors. Aβ1−42 was used 24 h after cell transfection. Cells 
were utilized in further experiments 48  h post-trans-
fection to measure cell viability, apoptosis, and protein 
levels.

CCK8 assay
SHSY5Y cells in logarithmic growth phase were digested 
with trypsin and prepared into a cell suspension at a con-
centration of 1 × 105 cells/ml. The cells were seeded in 
96-well plates at 10,000 cells/well, and 100 µl serum-free 
medium was added to each well. The cells were incubated 
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at 37 °C for 24 h to adhere to the wall. The medium of the 
control group was subsequently replaced with medium 
containing solvent, and the medium of 1/2 cell samples 
of the other groups was replaced with medium contain-
ing Aβ. After reaching the set time of different treat-
ment in each group, cell viability was assessed by adding 
CCK8 reagents (Biosharp, BS350B), followed by a 2-hour 
incubation, and subsequently, absorbance at 490 nm was 
gauged using a 96-well plate reader.

Flow cytometric analysis
The cell apoptosis rate of each group was detected using 
the Annexin V-FITC Apoptosis Detection Kit (Sun-
gene Biotech, AO2001-02P-G), following the guidelines 
provided by the manufacturer. The treated cells were 
immediately analyzed by flow cytometry on the BD FAC-
SCalibur (Becton, Dickinson and Company).

Results
Feature selection
Identification and selection of differentially methylated 
positions
In the GSE109627 methylation dataset, 2220 differ-
entially methylated positions were identified (Supple-
mentary Fig.  1), with 2188 being upregulated and 32 
downregulated.

Negative correlation analysis between differentially 
methylated positions and genes
A total of 79 negatively correlated differentially meth-
ylated position-transcript expression gene pairs were 
selected.

Selection of differentially expressed genes and co-expressed 
genes
Differentially expressed genes were selected based 
on |logFC| > 0.2 and adj.P.Val < 0.05 criteria; within 
the GSE109887 dataset, there were 4151 differentially 
expressed genes, with 2037 upregulated and 2114 down-
regulated (Supplementary Fig. 2). WGCNA results indi-
cated that the purple module in GSE109887 had the 
smallest p-value (p = 2e-06) and the highest correlation 
with AD (correlation coefficient r = -0.51). Therefore, 
3119 co-expressed genes from the purple module were 
selected for subsequent analysis (Supplementary Fig. 3).

Identification of AD epigenetic signatures through joint 
analysis of epigenome and transcriptome
The study identified 10 epigenetic signatures among 
hypermethylated low-expression genes: BAIAP2, 
SEMA4F, PRRT1, GNB1, ENC1, R3HDM1, CDK5, 
RIMS3, SRRM4, PRDM8 (Fig.  2A); no epigenetic signa-
tures were found among hypomethylated high-expres-
sion genes (Fig. 2B).

Machine learning algorithm for selection of epigenetic 
signatures
Using the LightGBM algorithm (threshold = 0.9999) with 
10-fold cross-validation, importance scores for each fea-
ture were obtained. Based on these results, all epigenetic 
signatures were retained for the subsequent construction 
of an AD diagnostic model (Fig. 2C and D, Supplemen-
tary Table 1).

Modeling and evaluation
Construction and evaluation of an AD diagnostic model
Using Python (v3.6.2) with the Scikit-learn library, vari-
ous machine learning algorithms were employed to con-
struct an AD diagnostic model, which was then validated 
through 5-fold cross-validation to determine the model’s 
ROC-AUC (Supplementary Tables 2–3, Fig. 3A). Among 
these, the model built using the random forest algorithm 
achieved the highest average ROC-AUC of 0.801. Con-
sequently, the random forest algorithm was chosen for 
the development of the AD diagnostic model. Valida-
tion results for differences between the training and test 
sets confirmed that there were no statistical differences 
between the data of the split training and test sets (Sup-
plementary Table 4). Ultimately, the AD diagnostic model 
constructed using the random forest algorithm showed 
good diagnostic performance on the test set with a ROC-
AUC = 0.829. The model also demonstrated good gener-
alization ability on the external validation set GSE132903 
with a ROC-AUC = 0.708 (Supplementary Table 5).

Sample size and power analysis are key steps in 
research design, crucial for ensuring the validity and reli-
ability of study results. A larger sample size can provide 
more stable and reliable outcomes. To ensure the reli-
ability of the model, this study used an external validation 
dataset (GSE132903) with a larger sample size to assess 
the generalizability of the model. Given that the exter-
nal validation set GSE132903 has a larger sample size, it 
could potentially influence the model’s predictive results.

ROC curve analysis
In the GSE109887 dataset, nine genes exhibited an AUC 
greater than 0.7 (Fig. 3B). This finding was corroborated 
in the external validation set, GSE132903, where five 
genes maintained an AUC above 0.7 (Fig.  3C), under-
scoring their commendable diagnostic efficacy and 
adaptability.

Interpretation and visualization of the AD diagnostic 
model
The SHAP library was utilized to interpret and visualize 
the AD diagnostic model. Referring to Fig. 4A, the scat-
ter points on the right side of the X-axis represent a posi-
tive driving effect on the occurrence and development of 
AD, while the scatter points on the left side of the X-axis 
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represent a negative driving effect. The color of the scat-
ter points represents feature values (red indicates high 
values, blue indicates low values). The comprehensive 
interpretation of the AD diagnostic model, derived from 
the SHAP algorithm, reveals that alterations in these ten 
epigenetic signatures significantly impact the onset and 
progression of AD. For example, the low expression of 
BAIAP2, SEMA4F, R3HDM1, GNB1, ENC1, RIMS3, and 
PRRT1 increases the risk of AD.

In the SHAP model (Fig. 4A), it is clearly evident that 
there are potential confounding factors in the samples, 
such as 10 epigenetic signatures, age, and gender. In 
Fig. 4A, the color of the scatter points for the “age” fea-
ture represents the feature values (red for high, blue 
for low). In this study, the majority of samples show an 
increased risk of AD with advancing age, although there 
are individual confounding factors present. The color of 
the scatter points for the “sex” feature in Fig.  4A repre-
sents the category (red for male, blue for female), with the 
study showing that most samples indicate a higher risk of 
AD in females, although there are individual confounding 
factors as well. The SHAP model provides a new perspec-
tive on the heterogeneity of AD.

Furthermore, Fig.  4B and C illustrate the epigenetic 
signatures in individual samples that influence the devel-
opment and advancement of the disease. This model can 
be used to identify high-risk patients for early interven-
tion and treatment. Lastly, this study constructed an 
interactive SHAP panel (red denotes risk factors, blue 
represents protective factors) based on all samples from 
the GSE109887 dataset (Fig.  4D), which enhances the 
interpretability of the model, allowing doctors to better 
understand and trust the model’s predictions, thereby 
providing a basis for precision medicine.

Gene functional analysis
AlzData validation
The expression of all 10 epigenetic signatures were signif-
icantly down-regulated in AD compared with the normal 
group (Supplementary Fig. 4, Supplementary Table 6).

GO, KEGG analysis and GSEA of epigenetic signatures
The results of GO, KEGG analysis, and GSEA, which 
were conducted on the 10 identified epigenetic signa-
tures, are shown in Supplementary Figs. 5–6.

Fig. 2 Identification of epigenetic signatures in Alzheimer’s disease. (A) Recognition of hypermethylated genes with downregulated expression; (B) 
Recognition of hypomethylated genes with upregulated expression. (C) Features required for 0.9999 of cumulative importance. (D) Feature Importances
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The immune function analysis
The results revealed statistically significant differ-
ences in immune infiltration between AD and normal 
groups (Supplementary Fig. 7A). In AD samples, the 10 
epigenetic signatures showed varying degrees of sig-
nificant correlation with both immune cell infiltration 
and immune-related functional scores (Supplementary 
Fig. 7B).

Immune checkpoint analysis
In AD samples, the gene expression of immune check-
points exhibited varying statistical disparities between 
groups with high and low expression groups of 10 epi-
genetic signatures (Supplementary Fig. 8).

NetworkAnalyst analysis
The results of TF-gene Interactions, TF-miRNA Coregu-
latory Network and Protein-chemical Interactions were 
shown in Supplementary Fig. 9.

ELMER analysis
Utilizing the ELMER R package to integrate gene expres-
sion and methylation data, we analyzed potential tran-
scription factors upstream of epigenetic signatures. 
A total of four hypermethylated site-gene pairs were 
selected (FDR < 0.05): cg14270302-PRRT1, cg24138857-
PRRT1, cg23145336-PRRT1, cg20636526-PRRT1 (Sup-
plementary Table 7). The chromosomal location of each 
methylation site and its target gene are shown in Fig. 5A 
to D, respectively.

Fig. 3 Modeling and evaluation. (A) 5-fold cross-validation ROC-AUC for Machine learning models (boxplot). (B) ROC analysis of the 10 epigenetic signa-
tures for GSE109887. (C) ROC analysis of the 10 epigenetic signatures for GSE132903
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Fig. 4 SHAP summary plots. (A) SHAP model interpretation. (B) SHAP model interpretation of AD individual sample GSM2973309. (C) SHAP model inter-
pretation of AD individual sample GSM2973332. (D) SHAP interactive panel of AD diagnosis (according to sample similarity)
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This study identified two motifs (TFBM) that are co-
regulated by these four methylation sites (Fig. 6A), where 
the first three transcription factors for MAZ_HUMAN.
H11MO.0. A are TFAP2E, ATOH1, HMGA1 (Fig.  6B). 
For VEZF1_HUMAN.H11MO.0.C, the first three 
transcription factors are TFAP2E, ZNF335, HMGA1 
(Fig. 6C).

Experimental validation
Luciferase reporter assay
The results demonstrate that MAZ markedly elevates 
the expression level of luciferase under the control of the 
PRRT1 gene promoter segment (Fig. 7A).

Fig. 5 Location of methylation site in chromosomes and target gene. (A) Location of methylation site cg14270302 in chromosomes and target gene 
PRRT1. (B) Location of methylation site cg24138857 in chromosomes and target gene PRRT1. (C) Location of methylation site cg23145336 in chromo-
somes and target gene PRRT1. (D) Location of methylation site cg20636526 in chromosomes and target gene PRRT1
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Fig. 7 Luciferase reporter assay and ChIP-qPCR analysis of PRRT1 promoter region in HEK293T cells. (A) Luciferase activity was detected after co-transfect-
ed with PGL6-PRRT1 and transcription factors overexpression plasmid or control vector (n = 3). (B) ChIP-qPCR of PRRT1 promoter region with anti-MAZ 
antibody or IgG control in HEK293T cells

 

Fig. 6 Identification of motif co-regulated by 4 methylation sites in PRRT1. (A) The four colored ellipses in the figure represent the motif regulated by four 
high methylation site-gene pairs (cg14270302-PRRT1, cg23145336-PRRT1, cg24138857-PRRT1, cg20636526-PRRT1). (B) Transcription factor near Motif 
MAZ. (C) Transcription factor near Motif VEZF1
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ChIP-qPCR
The results reveal that the IgG group shows virtually no 
enrichment, while the IP group exhibits about 3.8% of the 
input sample’s enrichment (Fig. 7B).

Expression of PRRT1 in AD cell models
An AD cell model was established by treating SH-SY5Y 
cells with Aβ1-42. CCK8 assay results indicate that SH-
SY5Y cells exposed to varying concentrations of Aβ1-42 
(0.25µM, 0.5µM, 1µM, 2µM, and 5µM) exhibited viabili-
ties of 91.79%, 79.67%, 51.73%, 36.96% and 28.34%. We 
selected a concentration of IC50 to establish an AD cel-
lular model. Subsequently, the protein expression levels 
of PRRT1 was examined. The results revealed a notable 

reduction in PRRT1 protein levels in the AD group when 
contrasted with the control group (Supplementary 
Fig. 10A-10B).

Targeted regulation of PRRT1 effects viability in AD cells
We employed siRNA to suppress the expression of 
PRRT1 in SH-SY5Y cells and evaluated the efficacy of 
three distinct PRRT1 siRNAs using immunoblotting 
(Fig. 8A). The results demonstrated that si-PRRT1-3 had 
the highest efficiency; consequently, this study utilized 
si-PRRT1-3 for subsequent experiments. CCK8 assay 
was used to explore the viability and IC50 concentration 
of SH-SY5Y cells treated with different Aβ1-42 concentra-
tions (Supplementary Fig.  11). Then, IC50 concentration 

Fig. 8 Targeted regulation of PRRT1 can influence cell viability, phosphorylated tau production, and autophagy in Aβ1-42-treated SH-SY5Y cells. (A) West-
ern blot analysis to assess the effects of the plasmid and three types of siRNAs on PRRT1 expression. (B) Comparison of cell viability among the groups in 
SH-SY5Y cells. (C) (D) Comparison of flow cytometry apoptosis analysis among different groups of SH-SY5Y cells. (E) (F) Western blot analysis of p-Tau, Tau, 
and LC3 expression in each group of SH-SY5Y cells (n = 3)
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of Aβ1-42 was used to construct an AD cell model for sub-
sequent experiments.

The impact of intervention targeting PRRT1 on 
Aβ-treated SH-SY5Y cells was assessed using CCK8 
assays. The results (Fig. 8B) revealed a substantial rise in 
cell viability within the control group relative to the Aβ 
group (p < 0.0001), and the viability in the Aβ + PRRT1 
group was notably higher than in the Aβ + vector group 
(p < 0.01). Additionally, the viability in the Aβ + si-PRRT1 
group was significantly lower compared to the Aβ + si-NC 
group (p < 0.0001).

Overexpression of PRRT1 significantly reduces apoptosis 
rate in AD cells
The effect of overexpressing PRRT1 on apoptosis in AD 
cells was evaluated through flow cytometry apopto-
sis assays. The findings indicated that overexpression of 
PRRT1 could reduce the apoptosis rate in AD cells. Fig-
ure  8C illustrates a notable reduction in the apoptosis 
rate within the Aβ + PRRT1 group when compared to the 
Aβ + vector group (p < 0.0001).

Overexpression of PRRT1 reduces phosphorylated tau 
production and affects autophagy in AD cells
Changes in phosphorylated tau and autophagy in AD 
cells were detected (Fig.  8E). The results revealed that 
overexpression of PRRT1 reduced the production of 
phosphorylated tau in Aβ-treated SH-SY5Y cells com-
pared to the Aβ + vector group (p < 0.001) (Fig.  8F). In 
comparison to the control group, the Aβ group exhib-
ited a significant increase in LC3 I and LC3 II expression 
levels, whereas the Aβ + PRRT1 group showed a notable 
decrease compared to the Aβ + vector group (Fig. 8F).

Overexpression of MAZ upregulates PRRT1 expression, 
improves viability, and reduces apoptosis rate in AD cells
Immunoblotting detection showed that overexpres-
sion of MAZ in Aβ-treated SH-SY5Y cells also upregu-
lated PRRT1 expression (Fig. 9A). CCK8 assays (Fig. 9B) 
showed a significant decrease in cell viability within the 
Aβ group relative to the control group (p < 0.0001); how-
ever, the viability in the Aβ + MAZ group was signifi-
cantly improved when compared to the Aβ + vector group 
(p < 0.001).

Flow cytometry apoptosis detection indicated that 
overexpression of MAZ could reduce the apoptosis rate 
in AD cells. Figure 9C shows a significant decrease in the 
apoptosis rate in the Aβ + MAZ group compared to the 
Aβ + vector group (p < 0.0001).

Overexpression of MAZ reduces phosphorylated tau 
production and affects autophagy in AD cells
The impact of overexpressing MAZ on phosphory-
lated tau production in Aβ-treated SH-SY5Y cells was 

examined by immunoblotting (Fig. 9E). The results indi-
cated that the Aβ + MAZ group could reduce phosphory-
lated tau production compared to the Aβ + vector group 
(Fig. 9F).

Additionally, relative to the control group, the Aβ 
group exhibited a significant rise in LC3 I and LC3 II 
expression levels, along with an increased LC3 II/LC3 I 
ratio. In contrast, the Aβ + MAZ group showed notably 
reduced expression of LC3 I and LC3 II compared to the 
Aβ + vector group (Fig. 9F).

MAZ improves AD cell viability and reduces apoptosis rate 
via PRRT1
CCK8 assays showed that the Aβ + MAZ group had a 
significantly increased cell viability over the Aβ group, 
whereas the Aβ + si-PRRT1 group exhibited a markedly 
decreased viability compared to the Aβ group. Further-
more, the viability in the Aβ + MAZ group was notably 
higher than in the Aβ + MAZ + si-PRRT1 group (Fig. 10B).

Flow cytometry analysis for apoptosis indicated that 
the Aβ + MAZ group had a significantly reduced apop-
tosis rate when compared to both the Aβ group and the 
Aβ + MAZ + si-PRRT1 group. The apoptosis rate in the 
Aβ + MAZ + si-PRRT1 group was also significantly lower 
than in the Aβ + si-PRRT1 group (Fig. 10C).

MAZ reduces phosphorylated tau production and affects 
autophagy via PRRT1
Immunoblotting detection (Fig.  10F) showed that the 
Aβ + si-PRRT1 group had significantly elevated levels of 
phosphorylated tau compared to the Aβ group (p < 0.01). 
It also showed a notable difference in LC3 I expression 
levels between the Aβ group and the Aβ + si-PRRT1 
group (p < 0.0001). Additionally, the LC3 I expression 
level in the Aβ + MAZ + si-PRRT1 group was significantly 
higher than in the Aβ + MAZ group (p < 0.05) but lower 
than in the Aβ + si-PRRT1 group (p < 0.001). Moreover, 
the LC3 II expression in the Aβ + si-PRRT1 group was 
significantly increased when compared to the Aβ group 
(p < 0.001), and the LC3 II level in the Aβ + MAZ + si-
PRRT1 group was significantly reduced compared to the 
Aβ + si-PRRT1 group (p < 0.01).

Single-cell transcriptome analysis
Figure  11 presents the cell trajectory analysis of PRRT1 
expression in the GSE157827 dataset, including facet 
plots, pseudo-time plots, and cell state plots. The PRRT1 
is highly expressed in each cell state (Fig. 11C).

In the GSE157985 dataset, cell annotations are dis-
played in Fig.  12A. Figure  12B shows that the expres-
sion of Prrt1 is higher in Ex_Neuron and In_Neuron. In 
both AD and control groups, the expression of Prrt1 was 
notably different across three cell subsets: Astrocytes, 
Ex_Neuron, In_Neuron (Fig. 12C). We found that these 
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cell types exhibit significant heterogeneity within the 
AD brain tissue. We hypothesize that this heterogeneity 
among cell types may lead to diverse responses across 
different cell types during the disease process, thereby 
affecting disease progression and therapeutic outcomes. 
Consequently, interventions targeting specific cell types 
could be potential therapeutic strategies for improving 
AD.

Discussion
Advantages of multi-omics analysis in identifying AD 
biomarkers
Research has shown that aging is often accompanied 
by DNA methylation imbalance, and epigenetic repro-
gramming can reverse aging [29]. In a multi-omics 
study based on DNA methylome, transcriptome, and 
metabolome, researchers found that natural aging 
mice undergoing single-cycle transient reprogramming 
could drive changes in epigenetics, transcriptome, and 
metabolomics, improving aging phenotypes [30]. As a 

Fig. 9 Overexpression of MAZ enhances cell viability, diminishes phosphorylated tau production, and modulates autophagy in Aβ1-42-treated SH-SY5Y 
cells by upregulating PRRT1 expression. (A) Western blot evaluation of the impact of MAZ overexpression on PRRT1 expression. (B) Comparison of cell 
viability among the groups in SH-SY5Y cells. (C) (D) Comparison of flow cytometry apoptosis analysis among different groups of SH-SY5Y cells. (E) (F) 
Western blot analysis of p-Tau, Tau, and LC3 expression in each group of SH-SY5Y cells (n = 3)
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neurodegenerative disease, the pathogenesis of AD is also 
closely related to methylation [4].

Although single-omics analysis methods can provide 
information on biological processes that differ between 
disease and normal groups, there are still some limita-
tions. Multi-omics analysis helps to find upstream driv-
ing factors and downstream regulatory mechanisms that 
affect key disease factors, providing new ideas for basic 
research and precision medicine of diseases. Compared 
with single-omics, multi-omics has shown advantages in 
identifying AD biomarkers. In this study, we first used 
epigenomics and transcriptomics to dig deeper into the 
epigenetic signatures related to AD from a deeper level, 

using differential methylation sites, differential meth-
ylation sites and transcriptome gene negative correlation 
analysis, differential expression gene analysis, WGCNA 
and other comprehensive analysis to screen AD epigen-
etic signatures. Through the integration of epigenomic 
and transcriptomic multi-omics analysis, hypermethyl-
ation low-expression genes and hypomethylation high-
expression genes were analyzed respectively, and 10 
epigenetic signatures were identified. Then, this study 
used the AlzData database to verify that compared with 
the normal group, the expression profile of these genes in 
the human brain transcriptome samples showed a signifi-
cant decline in AD, and these analysis results showed that 

Fig. 10 MAZ regulates cell viability, phosphorylated tau production, and autophagy in SH-SY5Y cells treated with Aβ1-42 in a PRRT1-dependent manner. 
(A) Western blot analysis of MAZ and PRRT1 expression in each group of SH-SY5Y cells. (B) Comparison of cell viability among the groups in SH-SY5Y 
cells. (C) (D) Comparison of flow cytometry apoptosis analysis among different groups of SH-SY5Y cells. (E) (F) Western blot analysis of p-Tau, Tau, and LC3 
expression in each group of SH-SY5Y cells (n = 3)
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Fig. 11 Cell trajectory plot displayed by PRRT1 expression in GSE157827. (A) Faceted cell trajectory plots displayed by PRRT1 expression. (B) Plots of PRRT1 
expression changes with pseudo-time. (C) Plots of PRRT1 expression changes with cell state
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Fig. 12 Single cell analysis of Prrt1 expression in hippocampus of AD mouse model. (A) The expression of Prrt1 in each cell type (scatter plot). (B) The 
expression of Prrt1 in each cell type (violin plot). (C) The expression of the Prrt1 in all cell types between AD and control groups
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these 10 genes were likely to be involved in the pathogen-
esis of AD. Furthermore, the results of univariate ROC 
curve analysis showed that the ROC-AUC of BAIAP2, 
ENC1, PRRT1, SEMA4F, R3HDM1 in multiple GEO data 
sets were all greater than 0.7, suggesting that these genes 
have good clinical diagnostic value.

Explainable machine learning-driven biomarker 
identification
In this study, we employed an optimized random forest 
algorithm to construct an AD diagnostic model using 10 
epigenetic signatures. The model achieved an ROC-AUC 
of 0.829 in the test set and 0.708 in the external valida-
tion set (GSE132903), indicating its promising clinical 
application prospects. We then utilized SHAP to inter-
pret and visualize the AD diagnostic model, which clearly 
presented the primary factors driving and inhibiting AD 
progression in each subject, as well as showcasing inter-
actions between epigenetic signatures, thereby aiding in 
the identification of features playing significant roles in 
AD development [16, 31, 32]. This study found that alter-
ations in the expression of these 10 genes are key factors 
in the development and advancement of AD.

Through the SHAP explainable AD diagnostic model 
established based on the random forest algorithm, AD 
can be effectively predicted and important influencing 
factors of the disease can be identified. According to this 
model, AD treatment plans can be accurately guided, and 
by influencing or changing epigenetics, such as dietary 
adjustments and other interventions, the occurrence of 
the disease can be delayed or prevented [33–35]. This 
strategy can provide accurate guidance and individual-
ized treatment for the prevention, diagnosis, and treat-
ment of the disease. Since DNA methylation plays a role 
in the etiology of AD, it is suggested that epigenetic treat-
ment strategies be adopted for AD patients or high-risk 
populations. Research has discovered that some natu-
ral compounds can regulate DNA methylation status, 
thereby alleviating pathological characteristics of AD, 
such as epigallocatechin gallate (EGCG) and quercetin, 
which can competitively inhibit DNMT1 and lead to the 
re-expression of genes silenced by DNMT1-mediated 
methylation [36]. A systematic review and meta-analysis 
of AD proposed several intervention suggestions, includ-
ing controlling diabetes, hypertension, and other medical 
histories, advocating physical exercise, improving life-
style or diet [37], providing guidance for the prevention 
of AD.

Furthermore, we developed an interactive SHAP panel 
for AD diagnosis that includes all samples, which can be 
used for disease diagnosis and visual analysis of clinical 
sample subjects. Based on sample similarity, it is possi-
ble to analyze which disease-affecting features are pres-
ent in similar patients and whether these features are 

responsible for the identification of AD, thus helping 
medical professionals gain a deeper understanding of 
disease factors and provide corresponding interventions. 
Therefore, employing machine learning algorithms to 
establish an explainable AD diagnostic model by SHAP 
can more effectively identify disease biomarkers and pro-
vide a decision-making basis for precision treatment of 
the disease.

To apply the research findings to clinical practice, the 
following steps need to be completed: (1) Validate the 
model’s performance on a larger independent dataset. 
(2) Conduct clinical trials to assess the model’s effective-
ness in real clinical settings. (3) Collaborate with clini-
cal experts to optimize model parameters to better suit 
clinical needs. In the process of translating research find-
ings into clinical applications, the challenges we may face 
include: (1) Data quality and availability: ensuring the 
model’s robustness across data from different hospital 
sources. (2) Patient privacy and ethical issues: ensuring 
compliance with relevant laws and regulations when col-
lecting and using patient data.

Epigenetic mechanism of PRRT1
To further investigate the potential upstream transcrip-
tion factors of the 10 epigenetic signatures discussed in 
this study, we utilized the ELMER R package to integrate 
gene expression and methylation data, analyzing the 
potential upstream transcription factors of these genes. 
We specifically identified four hypermethylated site-gene 
pairs upstream of PRRT1, with Motifs shared by all four 
methylation sites. Notably, two Motifs were found to be 
commonly regulated by these four methylation sites. For 
MAZ_HUMAN.H11MO.0.A, the top three transcription 
factors were TFAP2E, ATOH1 and HMGA1, while for 
VEZF1_HUMAN.H11MO.0.C, the top three transcrip-
tion factors were TFAP2E, ZNF335 and HMGA1. Subse-
quent luciferase reporter assays suggested an interaction 
between the transcription factor MAZ and the promoter 
region of PRRT1. Further ChIP-qPCR indicated an inter-
action between MAZ and PRRT1, implying that the 
transcription factor MAZ may participate in AD patho-
genesis by promoting the transcriptional expression of 
PRRT1. Given the novelty of the mechanism involving 
PRRT1 and the transcription factor MAZ, which has not 
been previously reported in the literature, our findings 
point toward a new direction for exploring the regulatory 
role between the transcription factor MAZ and its target 
gene PRRT1, offering innovative application value.

In conjunction with existing literature, bioinformat-
ics analysis from our study, and experimental results, we 
analyzed the potential biological functions of the epigen-
etic signature PRRT1 as follows.

PRRT1 (Proline-Rich Transmembrane Protein 1) 
is a protein-coding gene known to regulate basal and 
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plasticity-induced AMPA receptor trafficking [38]. 
Transmembrane proteins play crucial roles in cell sig-
naling [39], substance transport [40], and cell adhesion 
[41], and are key in the pathogenic mechanisms of many 
diseases [42, 43]. The role of transmembrane proteins 
in neurological disorders has gained attention in recent 
years, with studies indicating that PRRT1 is essential for 
the development of excitatory synapses and cognitive 
function plasticity [44]. Our explainable AD diagnostic 
model suggests that PRRT1 is a significant factor influ-
encing the progression of AD. Univariate ROC curve 
analysis showed an ROC-AUC of 0.786 for PRRT1 in 
the GSE109887 dataset, indicating its potential clinical 
diagnostic value. Given the unclear role of PRRT1 in AD 
pathogenesis, we assessed its expression in an AD cell 
model. Our experimental results showed significantly 
lower membrane protein expression levels of PRRT1 in 
the AD cell model compared to controls, corroborating 
the SHAP model interpretation that low expression of 
PRRT1 increases the risk of AD. Therefore, we conducted 
further experiments to explore the role of PRRT1 in AD 
and the regulatory mechanism of transcription factor 
MAZ on PRRT1. Firstly, we demonstrated that PRRT1 
is involved in the pathogenesis of AD. Our experimental 
results revealed that knockdown of PRRT1 affects AD cell 
viability, while overexpression of PRRT1 improves cell 
viability and reduces apoptosis. Moreover, overexpres-
sion of PRRT1 influences autophagy and decreases the 

production of phosphorylated tau. Next, our study found 
that overexpression of MAZ in AD cells also increased 
the protein expression level of PRRT1. Additionally, over-
expression of MAZ improved AD cell viability, reduced 
apoptosis rate, and decreased the production of phos-
phorylated tau, as well as affecting autophagy. Finally, our 
rescue experiments revealed that MAZ regulates cell via-
bility, phosphorylated tau production, and autophagy in 
SH-SY5Y cells treated with Aβ1-42 in a PRRT1-dependent 
manner.

Existing evidence suggests that impaired autophagy 
in AD can be improved by enhancing mitochondrial 
autophagy, reversing AD pathological features and mem-
ory functions in AD animal models [45]. Overexpres-
sion of PRRT1 was found to improve neuronal viability 
and reduce apoptosis, impacting autophagy. Thus, we 
speculate that PRRT1 may improve AD conditions by 
affecting autophagy. Excessive phosphorylated tau lead-
ing to the formation of neurofibrillary tangles is another 
major pathological feature of AD, making targeted Tau 
protein therapy a hotspot in AD research [46]. Studies 
have identified the transmembrane protein TREM2 as a 
significant risk gene implicated in AD pathogenesis [47]. 
A study recently showed that soluble TREM2 activates 
transgelin-2 in AD, improving Tau protein phosphory-
lation and cognitive deficits [48]. Alector Therapeutics 
has developed the monoclonal antibody AL002 aiming 
to activate the TREM2 signal and improve cell viability, 

Fig. 13 Diagram of the transcriptional regulation of PRRT1 by MAZ in SH-SY5Y cells. In the AD cell model, the transcription factor MAZ mediates apoptosis 
and autophagy by binding to the target gene PRRT1
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thereby ameliorating AD conditions; however, the drug 
is still in phase II clinical trials, and its clinical benefits 
remain uncertain [49]. In the cell trajectory analysis of 
single-cell transcriptomics, we can observe that PRRT1 
is highly expressed in different cell states, indicating that 
this gene is an important participant in the progression of 
AD disease. Our research demonstrates that overexpres-
sion of PRRT1 reduces the production of phosphorylated 
tau and improves AD conditions, providing new insights 
into the molecular pathological mechanisms of AD and 
offering novel avenues for targeting the transmembrane 
protein PRRT1 in AD diagnosis and treatment.

Single-cell analysis showed that Prrt1 was predomi-
nantly localized in neurons within the hippocampus of 
an AD mouse model. Furthermore, there were notable 
differences in its gene expression between the AD and 
control groups in cell types of neurons. The lack of ani-
mal experimentation is a limitation of this study. Con-
sequently, this study requires further experimental 
validation of the molecular mechanisms in animal mod-
els. Additionally, according to our research findings, 
we speculate that in AD, the hypermethylation of DNA 
methylation sites cg14270302, cg23145336, cg24138857 
and cg20636526 affects the interaction between tran-
scription factor MAZ and target gene PRRT1, thereby 
mediating phenotypes such as apoptosis and autophagy. 
Therefore, exploration of the fine-tuned regulation on 
the interaction between MAZ and target gene PRRT1 by 
the coordinated action of histone modification and DNA 
methylation would also be conducted.

Conclusion
This study identified several AD epigenetic signatures 
through multi-omic analyses and explainable machine 
learning, mapped the epigenetic landscape of DNA 
methylation and transcription factor regulation on epi-
genetic signature of PRRT1, and experimentally explored 
the transcriptional regulatory mechanisms of PRRT1. 
It was revealed that the interaction between transcrip-
tion factor MAZ and target gene PRRT1 mediates apop-
tosis and autophagy in AD, a previously unreported 
mechanism (Fig.  13). Based on our research findings, 
we speculate that in AD, the hypermethylation of DNA 
methylation sites cg14270302, cg23145336, cg24138857 
and cg20636526 affects the interaction between tran-
scription factor MAZ and target gene PRRT1, thereby 
mediating phenotypes such as apoptosis and autophagy. 
This discovery enriches the AD biomarker map and 
broadens our understanding of potential pathogenic 
mechanisms in AD.

Meanwhile, the explainable machine learning mod-
els ensure transparency and biological coherence in our 
findings. In the SHAP interaction panel for AD individual 
patients (Fig.  4C), an interactive relationship between 

PRRT1 and CDK5 can be observed. The abnormal activa-
tion of CDK5 is closely related to the excessive phosphor-
ylation of tau, which is one of the important pathological 
features of AD. This interaction synergistically promotes 
disease progression. Such an interactive relationship is of 
significant importance for understanding the onset and 
development of the disease. Machine learning explains 
the heterogeneity of the pathogenesis in AD patients 
through the interactions among genes between differ-
ent patients, pointing out directions for finding potential 
therapeutic targets and precise treatment.

This integrative strategy offers a robust framework for 
future studies aiming at epigenetic targets in AD and 
demonstrates the power of combining multi-omics data 
with advanced computational analyses in elucidating dis-
ease mechanisms.
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