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Abstract: The blastocyst expresses paternally derived alloantigens and induces inflammation during
implantation. However, it is necessary for the onset of pregnancy. An abnormal response might result
in a pathological course of pregnancy or pregnancy failure. On the other hand, a state of maternal
immune tolerance is necessary to ensure the normal development of pregnancy by suppressing
inflammatory processes. This article discusses recognized mechanisms and the significance of
inflammatory processes for embryo implantation and pregnancy establishment. We would also
like to present disorders involving excessive inflammatory response and their influence on events
occurring during embryo implantation. The chain of correlation between the processes responsible
for embryo implantation and the subsequent physiological course of pregnancy is complicated. Many
of those interrelationships are still yet to be discovered. Undoubtedly, their recognition will give
hope to infertile couples for the emergence of new treatments that will increase the chance of giving
birth to a healthy child.
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1. Introduction

The union of the sperm nucleus with the ovum nucleus causes the fusion of the
hereditary genetic material in the fertilization process. In physiological conditions, it occurs
in the ampulla of the fallopian tube. In humans, after 6–7 days and a series of cell divisions,
which result in two-, four-, and eight- cell embryo development, we observe the formation
of the cavitated blastocyst. The fluid-filled blastocyst is formed with the trophoblast cells
and inner cell mass (embryoblast) under the zona pellucida.

The adherence of the embryo to the inner surface of the uterine wall (endometrium)
is called implantation. It is an extraordinarily complex process. It is preceded by the
hatching of the blastocyst and divided into apposition, epithelial adhesion, and blastocyst
invasion in the endometrial stroma. The invading trophoblast differentiates: syncytiotro-
phoblast (the outer layer) is in contact with the maternal blood; cytotrophoblast (the inner
layer), forming a cytotrophoblastic shell, reduces in time to create the placental mem-
brane. Maternal-derived uterine epithelium (decidua) and fetal-derived placenta form the
maternal–fetal interface.

The body’s immune system is educated and programmed to recognize and respond to
foreign structures. The situation is much more complicated at the maternal–fetal interface.
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The mechanisms functioning there are not only designed to protect against pathogens but
also provide a support system (created by cells and cytokines) for the mother to protect
the embryo and preserve the pregnancy. This system is further modulated by the fetus,
which through cytokines of trophoblast origin activates the mother’s immune response,
making it possible to maintain the pregnancy under changing environmental conditions [1].
The uterine microbiome also influences the mother’s immune environment, ensuring
proper tissue function and immune adaptation of the mother’s endometrium to accept the
embryo [2].

During pregnancy, we can distinguish three distinct stages of the immune response
(immune phases) [3] (Figure 1). During the first phase, the inflammatory environment
establishes the protective surroundings for an implanting embryo. During the second
phase, the uterine surrounding promotes fetal growth, thus the immunological reaction
is not so intensive. Proinflammatory environments in the uterus appear once again at the
moment of parturition.
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The immune microenvironment at the maternal–fetal interface is determined by the
presence of cells of the maternal immune system and the secretion of modulating factors by
trophoblast cells. Since the secretory molecules modulate the pro- and anti-inflammatory
environment of the uterus during pregnancy, we decided to summarize the current knowl-
edge of acute inflammation and the molecules engaged in this process at the maternal–fetal
interface. Particular attention was paid to regulation at the molecular level by the nuclear
factor kappa-light-chain-enhancer of activated B cells (NFκB) under physiological condi-
tions. The contributions of prostaglandins—the main regulators of inflammation—were
not neglected. Aspects concerning the pathological state of chronic inflammation in the
endometrium and its influence on fertility were also considered.

2. Inflammation-Related Molecules at the Maternal–Fetal Interface

Before blastocyst invasion, endometrial stromal cells secrete pro-inflammatory cy-
tokines such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) [4,5] to ini-
tiate inflammation in the uterine mucosa. The early detection of these cytokines in the
endometrium was demonstrated to be the molecular marker of implantation [5]. Both
cytokines interact through a feedback loop: IL-1β is the mediator of the immune and
inflammatory responses, and its secretion is induced by TNF-α [6,7]. On the other hand,
there is an increase in the number of T- helper lymphocytes (Th1) and the synthesis
of pro-inflammatory cytokines (IL-1β, interleukins 6 and 8 (IL-6 and IL-8), TNFα and
interferon-gamma (IFNγ)) during embryo implantation in the uterine mucosa. Maternal
immune response cells such as natural killer (NK) cells, macrophages, and dendritic cells
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synthesize pro-inflammatory cytokines [6–12] (Table 1). However, this does not apply to
neutrophils [13]. Neutrophils are the first immune cells recruited at the site of infection and
usually amplify the inflammatory signal that attracts other immune cells. The mechanisms
that prevent neutrophil infiltration into the endometrium are unclear. One likely cause is
the suppression of the cytokine signaling involved in their recruitment [11,14].

Table 1. Secreted cytokines that mediate inflammation and their role in the implantation process.

Pregnancy Secreted Factor Role Reference

Preimplantation

TNFα Induction of IL-1β secretion. [6,7]

IL-1β

Promotion/propagation of decidualization and
modulation of maternal NK cells, secretion of

chemokines, and other factors required for implantation.
Enhanced glycoprotein fucosylation.

Regulation of the synthesis/secretion of trophoblastic
matrix metalloproteinases MMP-2, MMP-3, and MMP-9

involved in trophoblast invasion.

[15–21]

Implantation

IL-1β
Promotion/propagation of decidualization and
modulation of maternal NK cells, secretion of

chemokines, and other factors required for implantation.
[15,18,20]

IL-6 Stimulation of migration and trophoblast invasion. [22,23]

IL-8 Stimulation of migration and trophoblast invasion. [24,25]

TNFα

Protection of the maternal tissue against excessive
trophoblast invasion through the mechanism based on

trophoblastic cell apoptosis.
Regulation of synthesis/secretion of trophoblastic

matrix metalloproteinases MMP-2, MMP-3, and MMP-9
participating in trophoblast invasion.

[26–29]

IFNγ

Protection of the maternal tissue against excessive
trophoblast invasion through the mechanism based on

trophoblastic cells apoptosis.
[9,29–31]

Abbreviations: tumor necrosis factor α (TNF-α); interleukin 1β (IL-1β); interleukin 6 (IL-6); interleukin 8 (IL-8);
interferon gamma (IFNγ).

2.1. Involvement of the Transcription Factor—NFκB in the Inflammatory Response

The accumulation of immune cells at the maternal–fetal interface and the secretion
of inflammatory mediators during implantation occur under the control of NFκB. NFκB
is a transcription factor involved in the regulation of the expression of genes associated
with the onset of inflammation and generation of the immune response. It is also in-
volved in response to heat stress, apoptosis, and tissue repair. Generally, the NFκB signal
transduction pathway is modulated by cytoplasmic inhibitory proteins like inhibitor of
nuclear factor-kappa B (IkB), interferon regulatory factor 6 (LPS), TNF, IL-1, or oxidative
stress [32–34]. The level of NFκB increases during implantation and then subsequently
decreases, which determines the maintenance of pregnancy. The re-increase of NFκB before
delivery promotes the synthesis of prostaglandins (PGs), cytokines, and chemokines and
stimulates uterine contractions [35,36].

Studies have demonstrated the action of NFκB factor and estrogen receptor signaling.
Activated NFκB signaling initiates and maintains an inflammatory effect at the cellular
level [37,38], while estrogens trigger anti-inflammatory responses [39]. This interaction is
integrated by IL-1 [14,15].

Estradiol (E2), which co-operates with estrogen receptors and IL-1β, affecting NFκB
signaling, acts synergistically to increase the activity of estrogen response elements (ERE) in
the DNA of the endometrial epithelial cells. This interaction increases the expression of the
pool of genes involved in implantation, including genes coding prostaglandin E synthase,
involved in the synthase of PGE2 [40].
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Another steroid interacting with the NFκB factor is progesterone. The decrease in
progesterone synthesis by steroidogenic cells is observed at the beginning of pregnancy.
Elevated blood levels of progesterone reduce the expression of its receptors and FκB
factor during the peri-implantation period in pigs and rodents [41–45]. Elevated levels of
progesterone and estradiol as pregnancy develops (Figure 2.) lead in turn to the increased
expression of NFκB inhibitor alpha (NFκBIA) and reduce NFkB activation [35,46]. The
inability of NFκB to induce gene expression results in the inhibition of IL-2, IL-4, and IFNγ

production by T lymphocytes [47]. These processes are essential for immunosuppression
and the maintenance of maternal tolerance of the fetus during pregnancy [48,49]. Pregnancy-
specific suppression of NFκB expression plays a role in reducing the production of cytokines
by Th1 lymphocytes and maintaining the cytokine profile necessary for pregnancy initiation.
On the other hand, NFκB levels in maternal T cells can be regulated not only by maternal
steroid hormones or cytokines but also by placental cytokines.
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Figure 2. Changes during pregnancy development. Elevated levels of estradiol (E2) together with
interleukin 1β (IL-1β) and progesterone (P4) reduce nuclear factor kappa-light-chain-enhancer of
activated B cells (NFκB) activation, leading to an increase in the activity of estrogen response elements
(ERE) in the DNA of endometrial luminal epithelium. This triggers an increase in the expression
of prostaglandin E synthase (PGES) and production of prostaglandin E (PGE2). Reduced NFκB
activation causes the inhibition of interleukin 2 (IL-2), interleukin 4 (IL-4) and interferon gamma
(IFNγ) production in T lymphocytes. ↑: increase; ↓: decrease.

Under the control of NFκB are also the nucleotide-binding oligomerization domain-
containing 1 and 2 (NOD1 and NOD2) genes expressed in human fetal membranes and
term myometrium at labor. The NOD1 and NOD2 ligands, through NFκB activation,
significantly increase proinflammatory and pro-labor mediators in human fetal membranes
and myometrium [50]. Shorter gestation was predicted by genome-wide analyses of
maternal blood samples when increased NF-κB activity in monocytes was observed [51].

Undoubtedly, the abnormal level of NFκB expression might predispose pregnant
women to the pathological course of pregnancy with such consequences as delayed fetal
growth, pregnancy-related hypertension, and premature delivery [36,52,53]. Premature
or aberrant activation of NFκB factor associated with regulation of pro-inflammatory
cytokines action may cause preterm labor [34]. Increased NFκB expression resulting
from reduced BCL2 expression was observed in pregnancies complicated by intrauterine
growth restriction (IUGR) and preeclampsia [53]. Oxidative stress through increased
placental levels of TNFα, COX-2, and thromboxane likely activate placental NF-κB in
preeclampsia [52].

2.2. Involvement of PGs in the Inflammatory Response

PGs are produced at the time of acute inflammatory reaction. The primary PGs
involved in the inflammatory response are prostaglandin E2 (PGE2) and prostaglandin
F2α (PGF2α). Studies have shown that in humans, concentrations of PGE2 and PGF2α
significantly increase in the fluid obtained from the uterine cavity during the implanta-
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tion window [54,55]. The PGs are believed to play a significant role in decidualization
and trophoblast invasion [39]. PGE2 supports the luteal function of the corpus luteum,
essential for embryo development and early implantation. Moreover, it induces the ex-
pression of chemokines important for trophoblast apposition and adhesion during im-
plantation [56]. PGE2 has been shown to increase trophoblast adhesion ability via ad-
hesion factors, including integrins [57]. Other studies have demonstrated that increased
PGE2 synthesis in endometrial stromal cells contributed to the successful establishment of
pregnancy in mammals [58]. Moreover, inhibition of PGE2 synthesis or expression of its
receptor disturbed embryo adhesion [54]. Other authors claim that efficient PG synthesis
in the endometrium improved implantation rates in patients with repeated implantation
failures [59]. Therefore, normalized secretion of PGE2 by endometrial cells is relevant for
the receptivity of the endometrium [60] and significantly correlates with the outcome of
pregnancy. When the secretion of PGE2 is stable—it improves the effectiveness of embryo
implantation. But when it is excessive—the chance for embryo implantation declines [61].

PGF2α can affect a variety of processes, usually acting in opposition to PGE2. PGF2α
has been documented to induce: luteolysis [62], proliferation of endometrial epithelial
cells [63], and constriction of spiral arterioles as well as contraction of the myometrium [64–66].
Moreover, in the endometrial luminal epithelium, PGF2α was found to control sodium and
potassium ion transport [67] and induce the expression of endometrial connexins [68,69].
PGF2α causes vasoconstriction and induces hypoxia of endometrial cells. It causes the
formation of new blood and lymphatic vessels through a beneficial impact on the produc-
tion of vascular endothelial growth factor (VEGF) [70] and adrenomedullin [71]. Estrogen
was found to stimulate the synthesis of PGF2α while progesterone was found to inhibit
it [72,73]. Physiological changes in steroid hormone concentrations during the estrous cycle
and pregnancy result in fluctuating levels of PGF2α: the highest levels are observed during
implantation and before menstruation [74].

During early pregnancy, PGF2α increases the proliferation of human trophoblast
cells [75] and promotes the association of molecules on trophoblast cells to the extracellular
matrix protein, specifically fibronectin. Fibronectin expression is increased in the decidua
during the first trimester of pregnancy [76–78]. Moreover, PGF2α promotes the process
of implantation, but its impact can be controlled by the opposing effects of PGE2 [57].
PGF2α causes increased expression of mRNA and subsequent interleukin 6 (IL6) protein
production in syncytiotrophoblast cells. The highest expression of IL6 occurs in the middle
secretory phase of the menstrual cycle, which corresponds to the time of implantation,
which in turn increases the amount of PGF2α in the uterine lumen [79,80]. Moreover, IL6
regulates the activity of matrix metalloproteinases [81] and stimulates the expression of
integrins in trophoblast cells and processes such as invasiveness and migration [22,82].
PGF2α also acts indirectly through IL6 and can regulate implantation-related changes and
immunological processes such as host defense [83].

On the other hand, pregnancy is associated with an anti-inflammatory condition. The
levels of PGF2α metabolite (PGFM) and PGF2α in the decidua were significantly lower in
the first trimester of pregnancy, comparable to the secretory phase of the menstrual cycle,
when there was earlier elective termination of pregnancy [84]. Increased PGF2α production
was shown to cause impaired uterine contractions, resulting in abnormal semen migration,
defective transport of fertilized ova, and impaired implantation [85,86]. In women with
intramural fibroids, higher levels of PGF2α were found both in the fibroids themselves
and in the endometrium, leading to lower pregnancy and implantation rates, even if the
fibroids did not distort the uterine cavity [86]. Excessively high levels of PGF2α in decidua
may trigger a pregnancy loss cascade and lead to miscarriages [87–89].

During implantation, strengthened PGE2 signaling and inhibition of PGF2α signaling
within the endometrium were found [61].

The transformation of arachidonic acid to PG precursors is possible due to the action
of COX enzymes. Interestingly, COX-2, which is engaged in inflammatory processes, is
also involved in the oxidation of endogenous cannabinoid (arachidonoylethanolamide;
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AEA) [90]. In this way, AEA seems to be capable of modulating PG production [90]. Low
levels of serum AEA at the time of implantation were observed in women subjected to
in vitro fertilization (IVF) or intra-cytoplasmic sperm injection procedure (ICSI) [91]. The
expression of the components of the endocannabinoid system is found in the human
placenta at the 30th, 34th, and 40th week of gestation [92]. In the amnion, AEA was found
to be responsible for the PGE2 concentration increase [93]. However, it could also cause
opposite effects on uterine PGE2 and PGF2α biosynthesis by inhibiting PGE2 production
and increasing PGF2α levels [94].

Abnormal PG synthesis was found to be associated with repeated implantation failure
in patients undergoing in vitro fertility treatment [59]. Therefore, the measurement of
PGs 24 h before the planned embryo transfer allows for the prediction of a favorable
outcome [54,55].

3. Inflammation-Related Molecules in Pathologically Altered Endometrium

Acute inflammation of the endometrium is essential for successful implantation [95]
while chronic inflammation is destructive and can lead to infertility [96–98]. Chronic
inflammation is caused by endometriosis, chronic endometritis (CE), and hydrosalpinx.
Thus, we will briefly characterize these disorders.

Endometriosis is caused by hereditary as well as environmental factors [99]. It affects
approximately 190 million women worldwide. The estimated overall prevalence of en-
dometriosis in the population ranges from 0.8% to 6% and is higher among Asian women.
The incidence of endometriosis appears to be significantly higher in infertile women than
in fertile ones, ranging from 20% to 50%. Differences are also observed depending on the
duration of infertility and the age of patients [100,101].

Endometriosis is a disease triggered by inflammation induced by estrogens. The local
concentration of estrogens and androgens is extremely high compared to peripheral blood
concentrations and causes changes in cytokine expression (Figure 3), disrupting the normal
function of the endometrium in endometriosis [102–104]. Released cytokines involved
in immune responses and responsible for inflammation are TNF, IL-1, IL-6, IL-8, IL-10,
and TGF-B1 [99]. Other characteristic features of inflammation observed in endometriosis
are the infiltration of lymphocytes; synthesis of eicosanoids and metalloproteinases; and
atypical changes in the populations of T, B, Treg, and NK lymphocytes. In women with
endometriosis, a decrease in gene expression coding for endometrial proteins crucial for
proper implantation [96,105], including αVβ3 integrin [105,106], L-selectin ligand [107–109],
and HOXA10 protein [110–112], was observed.

Moreover, many studies have shown abnormal decidualization and changes in the
morphology of the endometrium [113–118]. The observed changes in the expression of
endometrial genes are caused by excessive estrogenic activity [119,120]. In patients with
endometriosis, it was demonstrated that the increase in the expression of estrogen receptor
(ESR1) occurred during implantation [119,121]. Changes in progesterone receptor (PR) ex-
pression and reduction in the effects of progesterone have also been demonstrated [122–125].
What is more, endometriosis-associated progesterone desensitization contributed to the
increased proliferation and survival of cells [126,127] and increased ESR2 levels [121,128].
Insensitivity to progesterone signaling leads to the pro-inflammation condition, as pro-
gesterone plays an important role in reducing inflammation in the endometrium [122].
The severity of the inflammatory process and diminished sensitivity of receptors to pro-
gesterone differ between women diagnosed with endometriosis [122,129,130]. Increased
inflammatory response and reduced progesterone sensitivity are related to a higher risk of
implantation failure [129–131]. These factors shift the implantation window towards the
rest of the menstrual cycle and shorten its duration [130].
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interleukin 6; KRAS: gene encoding K-Ras protein with GTPase activity; SIRT 1: Sirtuin 1; STAT3:
signal transducer and activator of transcription 3.

Molecular factors involved in cytokine synthesis (as NF-κB factor) and cytokines (as
IL-1, IL-2, IL-6, IL-8, IL-33, TNF-α) are potential targets for therapies directed against en-
dometriosis. Extensive laboratory studies utilizing pharmacological inhibitors of NF-κB fac-
tor (for example: methyl ester of 2-cyano-3,12-dioxooleana-1,9-dien-28-oicacid, dienogest,
thalidomide, genistein, ginsenoside, gossypol), and inhibitors of cytokines (for exam-
ple: resveratrol, tocilizumab, pyrvinium pamoate, nobiletin, S, R)-3-(4-hydroxyphenyl)-
4,5-dihydro-5-isoxazole acetic acid methyl ester [132]) have been conducted. Potential
therapies are also being investigated by analyzing the hormone-controlled mechanisms
of endometriosis. The most effective solution seems to be lowering estradiol levels by
indirectly inhibiting its synthesis using medications such as linzagolix, relugolix, and
elagolix [132].

There are treatments for endometriosis that also serve as therapy for endometriosis-
associated pain at the same time. Considering their effects on fertility, they have advantages
and disadvantages. An improvement in pregnancy rate is offered by the surgical removal
of endometriosis lesions or short-term immunotherapy using glucocorticosteroids [99].
Adhesiolysis enhances the chance of spontaneous pregnancy [133]. Therapy with progestins
and oestro-progestins influences endometriosis but does not tweak the fertility rate [134].
TNF antagonist treatment seems to be effective but is not recommended for routine usage.
The effects of fertility treatment may be worsened by endometriosis immunosuppressive
therapy [99].

Another disease characterized by interminable inflammation is chronic endometritis
(CE). It is caused by the imbalance between the coexistence of microorganisms on the
endometrial surface and the proper function of the immune system manifested by im-
munocompetent cells in the uterine stroma. Most cases of CE are asymptomatic. Studies
have shown that the incidence of CE is 2.8–66.8% in infertile women, 14–67.5% in women
with recurrent implantation failure, and 9.3–67.6% in women with recurrent pregnancy
loss [135,136].

In approximately 70% of cases, more than one pathogen is responsible for the occur-
rence of CE. Common bacteria such as Streptococcus spp., Escherichia coli, Enterococcus faecalis,
Klebsiella pneumoniae, Staphylococcus spp., and Corynebacterium and Mycoplasma/Ureaplasma spp.
are present in the uterine cavity of CE patients. Their presence was detected by microbial
cultures or by PCR tests [137–143].

CE is diagnosed based on endometrial biopsy and plasma cell presence generated
by stimulation of B lymphocytes [144]. The presence of B cells was confirmed in the
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endometrium throughout the menstrual cycle. They were found mainly in the basal
layer and accounted for only a minor percentage (<2%) of all immune cells in the normal
endometrium [136,142]. In CE, the B cells number increases significantly in all layers of the
endometrium [136,143].

The immunohistochemical staining of specific surface antigens CD38 and CD138
allows for the detection of plasma cells [144] and the diagnosis of CE with four times
greater sensitivity compared to the histopathological evaluation of endometrial tissue
sections stained only with hematoxylin and eosin [145]. (Figure 4).
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CE can also be diagnosed during hysteroscopic evaluation of the uterine cavity [137,146].
The features indicating the presence of CE are micropolyps, stromal oedema, and fo-
cal or diffuse hyperaemia. Hysteroscopic evaluation is more sensitive in the diagnosis
of CE than in uterine cavity culture [137]. Some studies found that the proportion of
CD56 + CD16– NK cells in the endometrium in the secretory phase was similar in women
with unexplained infertility, in CE and control subjects [147,148]; other studies have de-
scribed significantly higher levels of CD56 + CD16– NK cells in the endometrium of women
with CE compared with those without CE [149–153]. Histologically confirmed CE may
favor the formation of micropolyps characterized by the accumulation of leukocytes (CD45),
macrophages (CD68), plasma cells (CD138), and NK (CD56+) cells, whose activity leads to
excess abnormal proliferation of endometrium [149,150]. The distribution of endometrial
immunocompetent cells is altered with the menstrual cycle, and the Th1/Th2 balance
is Th1-predominant from the menstrual to the proliferative phase, shifting to Th2 pre-
dominant from the implantation phase to early pregnancy [151]. The studies revealed
that non-CE endometrium showed Th2 predominance in the implantation phase, but CE
endometrium showed Th1 predominance [151]. Moreover, increased IL-17 and decreased
IL-10 and TGF-β expressions in the endometrium of CE patients were found. This suggests
that CE induces a propensity to Th17 over Treg immunity in the endometrium, which
consequently leads to poor reproductive outcomes [152].

Women with CE have been found to have increased expression of the insulin-like
growth factor-binding protein 1 (IGFBP1) gene in the endometrium, with a simultane-
ously decreased expression of the insulin-like growth factor 1 (IGF1) genes, IL-11 and
CCL4 [153,154]. IGF1 mediates the stimulatory effect of estrogens on the proliferation of
endometrial cells, while IGF2 mediates progesterone action during the secretory phase, fa-
cilitating embryo implantation and invasion [17,153,155]. Increased secretion of IGFBP1 by
the endometrial stromal cell during decidualization counteracts the effect exerted by IGF2,
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which has a negative impact on embryo implantation. Increased expression of the IGFBP1
gene and decreased expression of the IGF1 gene are responsible for unfavorable conditions
for embryo implantation and development. IL-11 is a cytokine with anti-inflammatory
properties. IL-11 production is highest during decidualization [156,157]. On the other hand,
decreased levels and abnormal IL-11 signaling can disrupt trophoblast invasion [158–160].

High expression of the gene encoding transcriptional repressor BCL6 (B-cell lym-
phoma 6) in the endometrium allows the detection of endometritis associated with en-
dometriosis [161]. Elevated BCL6 and aromatase levels are associated with progesterone
resistance and estrogen dominance in women with endometriosis [129]. As a repressor
of the genes, BCL6 may be responsible for progesterone resistance by reducing the secre-
tion of progesterone-mediated factors, including the transcription factor that recognizes
nucleotide sequence identified in the promoter of a gene encoding chicken ovalbumin
upstream promoter-transcription factor 2 (COUP-TFII) [162]. COUP-TFII regulates many
genes responsible for the decidualization of the endometrial stromal cells, including those
involved in cell adhesion, angiogenesis, and inflammation. COUP-TFII also plays an
important role in controlling the expression of inflammatory cytokines [163,164].

During early pregnancy, the trophoblast recruits NK cells and macrophages into
the endometrium via chemokines such as CCL4 and stimulates them to produce pro-
inflammatory cytokines [153,158,165,166]. Reduced CCL4 activity in women with CE may
result in implantation failure or abnormal placental development [153,167,168].

Regarding treatment, personalized oral, systemic antibiotic therapy is considered
to be efficient in the therapy of CE [169,170]. Antibiotics such as doxycycline [171] or a
combination of levofloxacin and tinidazole [172] are effective in CE treatment. Moreover,
they are also considered potentially successful in the improvement of fertility, which was
shortly summarized elsewhere [170].

Another disease that can also cause chronic endometritis is hydrosalpinx. Fluid from
the fallopian tubes entering the uterine cavity may have a direct embryotoxic effect [173,174].
This fluid contains inflammatory mediators such as cytokines, PGs, mucosa debris and
toxins, impairing blood flow through the uterine spiral arteries [175–177]. Moreover, hy-
drosalpinx mechanically disturbs the contact between the embryo and the endometrial
surface [173,174]. The effect of hydrosalpinx on the endometrium is chronic endometritis,
which negatively affects endometrial receptivity [178,179]. Patients with hydrosalpinx
showed a statistically significant increase in the number of many different plasma cells and
lymphocytes infiltrating the endometrial stroma, together with the increased expression
of IL-2 protein. It is indicative of a generalized inflammation [178,180]. The increased
expression of mRNA and NF-κB protein, which promotes inflammatory processes and
adversely affects implantation, has also been found [179]. Endometrial HOXA10 implanta-
tion factor expression is also reduced in a woman with hydrosalpinx. The salpingectomy
procedure regulates HOXA10 expression, improves implantation and reduces early preg-
nancy loss [181]. Hydrosalpinx, tubal occlusion, and hysteroscopic insertion of Essure are
currently recommended therapies to lower the hydrosalpingeal fluid amount [169].

4. Conclusions

Both similarities and dissimilarities characterize inflammatory processes occurring
during embryo implantation and pathological states. Their course and severity are tightly
controlled by numerous mechanisms. Specific molecules involved in both types of processes
are observed. Their lack of expression may lead to implantation failures, miscarriages, and
pregnancy pathologies. Knowledge of these processes will allow for their proper control,
and regulation will allow for their appropriate course, which will affect the quality of our
reproductive health.
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