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Abstract

Pancreatic islet transplantation is a promising treatment for type 1 diabetes (T1D). Interleu-

kin-35 (IL-35) is a recently discovered cytokine that exhibits potent immunosuppressive

functions. However, the role of IL-35 in islet transplant rejection remains to be elucidated.

In this study, we isolated islet cells of BALB/c mouse and purified CD4+ T cell subsets of a

C57BL/6 mouse. The model for islet transplantation was established in vitro by co-culture of

the islet cells and CD4+ T cells. IL-35 (20 ng/ml) was administered every other day. Follow-

ing co-culture, the islet function and Treg/Th17 ratio were analyzed on days 1, 3, and 5. Fur-

thermore, the Th17/Treg ratio was modulated (1:0–2), and the function of islet cells as well

as proliferation of Th17 cells were analyzed. T cell sorting was performed using the mag-

netic bead sorting method; Treg and Th17 count using flow cytometry; cell proliferation

detection using the carboxyfluorescein diacetate succinimidyl ester (CFSE) method,

and islet function test using the sugar stimulation test. Results showed that Th17 counts

increased in the co-culture system. However, after administration of IL-35, the number of

Treg cells increased significantly compared to that in the control group (50.7% of total CD4+

T cells on day 5 in IL-35 group vs. 9.5% in control group) whereas the proliferation rate of

Th17 cells was significantly inhibited (0.3% in IL-35 group vs. 7.2% in control group on day

5). Reducing the Th17/Treg ratio significantly improved the function of transplanted islets.

Treg inhibited Th17 proliferation and IL-35 enhanced this inhibitory effect. IL-35 mitigates

the function of murine transplanted islet cells via regulation of the Treg/Th17 ratio. This

might serve as a potential therapeutic strategy for in-vivo islet transplant rejection and T1D.

Introduction

Pancreatic islet transplantation (PIT), a treatment for type 1 diabetes (T1D), is a minimally

invasive procedure that can restore normoglycemia and insulin independence without surgical
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complications [1, 2]. Current immunosuppression strategies poses several risks (such as infec-

tion and cancer) to transplant recipients [3–7]. Although a recent report showed that in most

experienced institutions, the 5-year survival rate of transplanted islets reached up to 50% [8],

overall long-term results remain unsatisfactory [9].

Emerging evidences suggest that T helper 17 (Th17) and regulatory CD4+CD25+Foxp3+ T

(Treg) cells have a distinct differentiation pathway, which are different from that of T helper 2

(Th2) cells or T helper 1 (Th1) cells [10–12]. Tregs play an anti-inflammatory role mainly by

releasing inhibitory cytokines such as TGF-β and IL-10 or contact-dependent suppression on

other immune cells, including CD8+, CD4+ T cells and B cells [12]. Increase in Tregs have

been reported to be involved in the development of immune tolerance [13] and solid organ

transplantation (e.g. kidney transplant [14–17], liver transplant [18–22] and heart transplant

[23, 24]). In contrast, Th17 cells, mainly expressed by factors such as retinoic acid receptor-

related orphan receptor γt (RORγt), have been reported to play a potent pro-inflammatory

role by producing the signature cytokine IL-17A [25–29]. A series of studies have reported that

Th17 cells widely contribute to autoimmune diseases and transplant rejection [26, 27, 30–34].

Recent studies found that the balance between Tregs and Th17 plays an important role in the

above diseases, by regulation of the immunologic homeostasis through the secretion of anti-

or pro-inflammatory cytokines, depending on the activation of Forkhead box P3 (FoxP3) and

signal transducer and activator of transcription 5 (STAT5) or RORγt and STAT3, respectively

[30, 31, 33, 35, 36].

IL-35, consisting of IL-12α subunits and Epstein-Barr-virus-induced gene 3 (Ebi3), is a

recently discovered cytokine exhibiting potent immunosuppressive functions [37–40]. It is

secreted by and contributes to the proliferation of Tregs. It not only promotes differentiation

of conventional CD4+T cells into Tregs but also converts Tregs into induced regulatory T

cells (iTr35); the latter lack FoxP3 expression, release IL-35 but not IL-10 or TGFβ, and possess

stronger immunosuppressive properties than Tregs [35, 37–39, 41–45]. Numerous studies

have concentrated on the functions of IL-35 in autoimmune and inflammatory diseases, such

as psoriasis [30], T1D [41], arthritis [42], asthma [44, 46] and leukemia [47].

However, the role of the balance of Treg/Th17 and the therapeutic potential and effects of

IL-35 in islet transplantation has been unclear so far. Hence, here, we aimed to clarify and

examine the role of Treg/Th17 and the kinetic effects of IL-35 in an in vitro mouse islet trans-

plantation model.

Materials and methods

Animals

All animal experiments were approved by the local animal ethics committee at the First Hospi-

tal of China Medical University. Male BALB/c and C57BL/6 mice aged 8–12 weeks and weigh-

ing 23–28 g were used for the study. The mice were supplied by the laboratory animal center

of China Medical University (Shenyang, China) and raised carefully in accordance with inter-

national guidelines (National Institutes of Health 85–23) as well as the current version of the

China Law on the Protection of Animals. The mice were raised in pathogen-free cages and

kept at a relative humidity of 50–70% and temperature of 20–25˚C. Mice was sacrificed using

exsanguination method under anesthesia (1.5% sevoflurane).

Isolation and purification of islets

Pancreatic islets were prepared by the collagenase P (Roche Diagnostics Scandinavia, Bromma,

Sweden) method from overnight fasted BALB/c mice. In brief, a mouse was anesthetized with

1.5% sevoflurane and fixed in the supine position. The skin was disinfected with 75% ethanol
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followed by sterile laparotomy. The common bile duct (CBD) close to the duodenum was

ligated for the retrograde puncture of CBD, followed by a slow perfusion of 3 mL collagenase-

P (pre-chilled at 4˚C) to fully expand the pancreatic body and tail. The heart was excised to

drain the blood and the pancreas was recovered by blunt isolation. The isolating solution

(composed of 500 mL Hanks solution containing 10 mM of HBSS and 15 mM of CaCl2) was

filter-sterilized through a 0.22-μm filter and adjusted to pH 7.2–7.4 prior to storage at 4˚C

until use. The digestive solution, with a final concentration of 1 mg/mL collagenase-P, was

freshly prepared before using the afore-mentioned isolating solution (pH 7.2–7.4). Ficoll-400

density gradient centrifugation was employed to purify the islets as per a previous study [48].

Lymphocyte isolation and CD4+CD25-/+, IL-17A+ T cell sorting

Single splenic lymphocytes were isolated from C57BL/6 mice as previously described [39, 42,

49]. CD4+, CD4+CD25+, IL-17A+, and CD4+CD25- T cells were sorted by using the

Stemcell magnetic sorter (cat: 18000), the human/mouse CD4 T cell negative selection kit (cat:

19852), the human/mouse Treg positive selection kit (cat: 18782), following the manufacturer’s

instructions. All these instruments and kits were from Stemcell Technologies Inc, Shanghai,

China.

Flow cytometry staining

Flow cytometry analysis of CD4+, CD4+CD25+, CD4+IL-17A+ and CD4+CD25+FoxP3+ T

cells were performed according to the Intracellular Cytokine Staining protocol or the Cell Sur-

face Immunofluorescence Staining Protocol described in the T Cell Staining Kit (Biolegend,

San Diego, CA, USA). All flow antibodies and relative reagents were from Biolegend: FITC-

anti-human/mouse CD4 (cat: 100406), PE/Cy5-anti-human/mouse CD25 (cat: 102010),

PE-anti-mouse/rat/human FoxP3 (cat: 320008), and APC-anti-human/mouse IL-17A (cat:

506916). For intracellular staining, single T cells were stimulated for 6 hours with Cell Activa-

tion Cocktail (with Brefeldin A) (2 μl/ml; cat: 423304, Biolegend, San Diego, USA). The stained

cells were counted using the BD FACSCanto II. The data obtained were analyzed using Flow

Jo 7.6 software (Tree Star, Inc., Oregon, USA). Gating strategies were performed following the

manufacturer’s instructions (BD).

Cell proliferation assays

We detected the proliferation of Th17, CD4+CD25- T cells (effector cells) using CFSE labeling

as previously described [50]. Freshly purified T cells were re-suspended in phosphate buffer

saline (0.1% BSA) at 2 x 106 cells/ml and incubated with CFSE (1 μl/ml; Abcam, Cambridge,

UK) for 15 min at 37˚C. These cells were then washed and re-suspended in 1640 Medium for

10 min to stabilize the CFSE staining. Cells were re-suspended in the culture medium after a

final wash step.

Viability and functional assays of islet cell clumps

The glucose-stimulated insulin secretion (GSIS) assay was employed to detect the function of

co-cultured islets as previously described [51]. Krebs–Ringer bicarbonate was used as the base

media. The basal glucose level used was 2.5 mM, following which a glucose level of 16.7 mM

was used to stimulate the islet cells. The insulin concentration of supernatant was analyzed

using an enzyme-linked immunosorbent assay (ELISA) kit (Alpha Diagnostic Intl. Inc., USA)

following the product manual. The insulin staining was performed as previously described

[52].
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In vitro IL-35 and Treg treatment

For in vitro experiments, the cells were categorized into three groups: IL-35 group, Treg group,

and control group. In the IL-35 group, approximately 50 islets and 2 x 105 CD4+ T cells were

co-cultured in 24-well plates. IL-35 (20 ng/ml) (cat: RPC008Mu, CLOUD-CLONE CORP.,

USA) was added to the plate and replenished every time the culture medium was changed

(every other day). In the Treg group, we regulated the ratio of Treg and Th17 cells as 0:1, 0.5:1,

1:1, and 2:1 by increasing the amount of Tregs and co-cultured these T cells (totally 2 x 105

cells) and 50 islets in 24-well plates, separately. IL-35 (20 ng/ml) was added to each replicate of

these plates. In the control group, we only co-cultured 50 islets and 2 x 105 CD4+ T cells with-

out any treatment. All T cells were stimulated with plate-bound anti-CD28 (2 μg/ml) and anti-

CD3 (5 μg/ml) as previously described [42]. IL-2 (500 U/ml) were added to each plate for cell

growth and replenished every time the culture medium was changed (every other day). The

culture medium used was RPMI 1640 (Sigma-Aldrich, St. Louis, MO, USA) supplemented

with 10% fetal calf serum (Sigma-Aldrich), streptomycin (0.1 mg/ml; Sigma-Aldrich), L-gluta-

mine and benzylpenicillin (100 U/ml, Roche Diagnostics Scandinavia, Bromma, Sweden). The

culture medium was changed every second day. The function and survival state of islet cells

were analyzed and the amount of Treg and Th17 in each group were quantified on days 1, 3

and 5 after co-culture. In the plates of the Treg group, we labeled the Th17 cells with CFSE

before co-culture, and then detected the proliferation of these cells on day 5 after co-culture.

Every experiment described above was repeated at least three times.

Statistical analysis

Statistical analysis was performed using the GraphPad Software 6.0 (CA, USA). Comparisons

between two groups were performed using unpaired t-tests. Mann-Whitney Rank Sum Tests

were used for nonparametric observations. A p-value below 0.05 was considered statistically

significant.

Results

IL-35 down-regulated the Th17/Treg ratio in the co-culture system

To determine the role of IL-35 in the CD4+ T cell subset, we purified CD4+CD25+, IL-

17A+, and CD4+CD25- T cells from the spleen of C57BL/6 mice, and cultured these cells in
vitro with plate-bound anti-CD3/CD28 antibodies and appropriate amount of IL-2. Results

showed that in comparison with the control group, IL-35 markedly enhanced the prolifera-

tion of Tregs (50.7% in IL-35 group vs. 9.5% in control group on day 5, P<0.01) under these

conditions with time (Fig 1). In contrast, although the absolute counts of Th17 showed only

a slight increase, their ratio in CD4+ T cells was significantly decreased in the IL-35 group

compared to that in the control group (0.3% vs. 7.2% on day 5, P<0.01) (Fig 2). Thus, a

remarkable difference in the ratio of Th17/Treg in CD4+ T cells was observed under these

conditions, particularly on day 5 after co-culture (1.4% in control group vs. 0.1% in IL-35

group, P<0.01) (Fig 3). Taken together, IL-35 down-regulated the Th17/Treg ratio in the co-

culture system.

IL-35 ameliorated the function of islet cells

We next analyzed the function of islet cells under these conditions. Results showed that at

a low glucose level (2.5 mM), insulin release of islet cells in the IL-35 group was markedly

higher than that in the control group on day 5 (5.3 ng/15 islets�h in IL-35 group vs. 0.7 ng/15

islets�h in control group, P<0.01) (Fig 4a); similar results were observed at a high glucose level
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(16.7 mM) on day 5 (46.2 ng/15 islets�h in IL-35 group vs. 9.8 ng/15 islets�h in control group,

P<0.01) (Fig 4b). Results of acridine orange (AO)/ethidium bromide (EB) staining also

showed that IL-35 delayed the survival of co-cultured islet cells (Fig 5). Altogether, IL-35 treat-

ment evidently ameliorated the insulin secretory function of islet cells.

Increasing Treg ratio in CD4+ T cells ameliorated the function of islet

cells

Next, we decided to determine whether the improved function of islet cells was affected by the

IL-35-mediated regulation of Th17/Treg ratio. For this, we modulated the Th17/Treg ratio

(1:0, 1:0.5, 1:1, 1:2) in the co-culture system. We found that, on day 5, with an increase of Treg

ratio, the proliferation of the CFSE-labeled Th17 cells was suppressed markedly (suppression

ratio rising from 7.82% in 1:0 group to 48.2% in 1:2 group); besides, stronger suppression was

observed when IL-35 was added, compared to that in the control group (Fig 6). Additionally,

we analyzed the function of islet cells in Th17:Treg = 1:0 group and Th17:Treg = 1:2 group and

found that regardless of the glucose level, islet cells in the Th17/Treg = 1:2 group had better

insulin secretory function and survival rate than that in the Th17/Treg = 1:0 group (Fig 7).

Fig 1. IL-35 increased the number of Treg in CD4+ T cells. (A)The ratio of Treg in CD4+ T cells. (B) Representative diagram showing in

comparison with the control group, IL-35 markedly enhanced the proliferation of Tregs (50.7% in IL-35 group vs. 9.5% in control group on

day 5, P<0.01) under these conditions with time. Results are expressed as means ± SEM, from two experiments (n = 3 times/group/

experiment). Unpaired t-tests were performed for comparisons between control- and IL-35- groups on corresponding days. *, ** and

*** denote p < 0.05, p < 0.01, and p < 0.001, respectively.

https://doi.org/10.1371/journal.pone.0189617.g001
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Discussion

Despite decades of investigation, mitigation of transplant immune rejection with less severe

complications remains a challenge. Traditional clinical anti-rejection drugs, such as cyclo-

sporin A and tacrolimus, comprehensively inhibit T cell activity by mainly binding to calci-

neurin of the cells and suppressing IL-2 release, which leads to numerous severe adverse

effects [53]. Thus, it is important to find new drugs that can be specifically directed against spe-

cific T sub-populations on anti-transplanted rejection and result in less adverse effects [3].

Recently, CD4+ T cell sub-populations, Treg and Th17 cells, have drawn increased atten-

tion, and emerging evidence shows that the novel cytokine IL-35 and regulation of the ratio of

these cell types play an important role in the development of autoimmunity and immune toler-

ance [11, 14, 45, 54–57]. Therefore, in the present study, we aimed to explore whether this

mechanism exists in the development of mouse islet transplant rejection.

We found that the cell counts of Th17 and Treg cells were increased in the co-culture

model and an increasing percentage of Tregs could inhibit the proliferation of Th17 cells.

Similar results have been found in other studies, such as those for acute lung injury [31], M.

neoaurum infection [33] and inflammation [58]. On one hand, the proliferation and growth of

Fig 2. IL-35 decreased the prevalence of Th17 in CD4+ T cells. (A)The ratio of Th17 in CD4+ T cells. (B) Representative diagram

showing Th17’s ratio in CD4+ T cells was significantly decreased in the IL-35 group compared to that in the control group (0.3% vs. 7.2% on

day 5, P<0.01). Results are expressed as means ± SEM, from two experiments (n = 3 times/group/experiment). Unpaired t-tests were

performed for comparisons between control- and IL-35- groups on corresponding days. *, ** and *** denote p < 0.05, p < 0.01, and

p < 0.001, respectively.

https://doi.org/10.1371/journal.pone.0189617.g002
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Tregs consume limiting T-cell growth factors such as IL-2 and release inhibitory cytokines

such as IL-10, IL-35, and TGF-β on other immune cells, including Th17. On the other hand,

differentiation of naïve CD4+ T cells towards each subset depends on the local cytokine envi-

ronment. TGF-β is essential for the development of Treg and Th17 and IL-2 inhibits the polar-

ization of Th17 cells. Co-availability of both TGF-β and IL-6 leads to the differentiation of

naïve CD4+ T cells towards Th17; only TGF-β overdose (derived from added Tregs) favors the

differentiation of Th17 into Tregs (Fig 8), thus decreasing the ratio of Th17 in CD4+ T cells.

Furthermore, we found that a decrease in Th17/Treg ratio improved the function of trans-

planted islets, which was consistent with previous reports. Wu et al. [4] found that ex vivo
expanded human Tregs in a humanized mouse model could improve the survival status of an

islet allograft. A study from Canada showed that Treg cells could be recruited to transplanted

islets, to suppress the activation of effector T-cells, and furthermore to induce alloantigen-spe-

cific tolerance [59]. Some results from an international co-operation group (named the ONE

study) supported that Treg therapy can prevent immunological rejection of transplanted

organs without the need for long-term use of pharmacological immunosuppression agents

[60]. However, a study from Korea showed that in the peri-transplantation period, autologous

Tregs infusion failed to induce transplanted immune tolerance in islet xenotransplantation

Fig 3. IL-35 down-regulated the ratio of Th17/Treg in CD4+ T cells. The ratio of Th17/Treg in CD4+ T cells in IL-35 group or control

group on day 1, 3, 5 after co-culturing. A remarkable difference in the ratio of Th17/Treg in CD4+ T cells was observed under these

conditions, particularly on day 5 after co-culture (1.4% in control group vs. 0.1% in IL-35 group, P<0.01). Results are expressed as

means ± SEM, from two experiments (n = 3 times/group/experiment). Unpaired t-tests were performed for comparisons between control-

and IL-35- groups on corresponding days. *, ** and *** denote p < 0.05, p < 0.01, and p < 0.001, respectively.

https://doi.org/10.1371/journal.pone.0189617.g003
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Fig 4. IL-35 ameliorated the function of islets in co-culture system. The amount of insulin release of 15 co-

cultured islets in low glucose level (a) and in high glucose level (b). Results are expressed as means ± SEM, from two

experiments (n = 3 times/group/experiment). Unpaired t-tests were performed for comparisons between control- and

IL-35- groups on corresponding days. *, ** and *** denote p < 0.05, p < 0.01, and p < 0.001, respectively.

https://doi.org/10.1371/journal.pone.0189617.g004
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settings (pig to non-human primates) [9]. The study suggested that there might be certain lim-

itations on Tregs in inducing islet-transplanted tolerance and further study is needed in this

context.

Moreover, we found that IL-35 in vitro treatment could down-regulate the ratio of Th17/Treg

and prevent islet allograft failure. The same trend could be found in stem cell transplantation

Fig 5. IL-35 delayed the survival of co-cultured islets. The islet cells were stained using AO/EB staining kit. The dead islet cells were

labeled with yellow fluorescence, while the living islet cells were labeled with green fluorescence. In control group, most of islet cells were

dead (a); however, the islet cells in IL-35 group were still living (b).

https://doi.org/10.1371/journal.pone.0189617.g005

Fig 6. Treg inhibited the proliferation of Th17 and IL-35 enhanced the suppressive function of Treg. Representative histograms

showing different Th17/Treg ratio (1:0, 1:0.5, 1:1, 1:2) in the co-culture system. With an increase of Treg ratio, on day 5, the proliferation of

the CFSE-labeled Th17 cells was suppressed markedly (suppression ratio rising from 7.82% in 1:0 group to 48.2% in 1:2 group); besides,

stronger suppression was observed when IL-35 was added, compared to that in the control group (suppression ratio rising from 20.5% in

1:0 group to 76.7% in 1:2 group).

https://doi.org/10.1371/journal.pone.0189617.g006
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[61], T1D [41, 43] and acute myeloid leukemia blasts [62]. However, the role of IL-35 in solid

organ transplantation is poorly understood. Studies have demonstrated the role of IL-35 in con-

version of human and murine CD4+CD25- T cells into IL-35-induced Treg (iTr35) cells [63–

65]. Ma et al. showed that rhIL-35 could induce the expression of EBI3 and P35 in CD4+CD25-

T cells (including Th17 cells) and relative Tregs were capable of inducing a further increase in

IL-35 levels [63]. IL-35 treatment activated the phosphorylation of STAT1 and STAT3 in CD4+

T cells, which then allowed the differentiation of naïve CD4+ T cells into Tregs. Additionally,

exogenous IL-35 also favored the conversion of Tregs into iTr35 cells. Interestingly, the induced

iTr35 cells still possessed the ability to release IL-35 and induce a positive feedback to promote

CD4+CD25- T cell differentiation into Tregs and IL-35 production [37–39, 42, 45, 66]. All these

processes are involved in islet transplant rejection (Fig 7). Furthermore, as demonstrated by

Fig 7. Up-regulating the prevalence of Treg ameliorated the function of islets. The function of co-cultured islet cells in Th17:Treg = 1:0

group and Th17:Treg = 1:2 group in low glucose level (2.5mM) or high glucose level (16.7mM). The results showed that regardless of the

glucose level, islet cells in the Th17/Treg = 1:2 group had better insulin secretory function than that in the Th17/Treg = 1:0 group. Results are

expressed as means ± SEM, from two experiments (n = 3 times/group/experiment). Unpaired t-tests were performed for comparisons

between control- and IL-35- groups on corresponding days. *, ** and *** denote p < 0.05, p < 0.01, and p < 0.001, respectively.

https://doi.org/10.1371/journal.pone.0189617.g007
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Kailash et al. [41], IL-35 administration could counteract established T1D. Although the exact

mechanism is still unknown, several mechanisms might be involved. According to Kailash et al.,

Tregs might play a role, thus preventing the autoimmune destruction of β cells of patients. More-

over, it is suggested that IL-35 might promote the differentiation of other pancreatic cells (e.g. α
cells) into β-cells through the GABA pathway [67, 68] or other signaling pathways in vivo. Taken

together, IL-35 might not only improve islet transplanted rejection, but also can help reverse the

destruction of β cells of T1D patients themselves.

Conclusions

IL-35 mitigates the function of murine transplanted islet cells via regulation of the Th17/Treg

ratio. This might serve as a potential and promising therapeutic strategy for islet transplant

rejection and T1D, thus raising the need for conducting more in-vivo studies in this context.
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Fig 8. Model of IL-35 regulating Th17/Treg differentiation.
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