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Tissue-specific autoimmunity requires recognition of selected antigens presented by 

susceptible major histocompatibility complex (MHC) alleles. However, it remains unclear 

why certain self-antigens dominate the response and are indispensable for triggering 

autoreactivity. We address this question by examining spontaneous presentation of insulin, a 

self-antigen essential for initiating autoimmune type 1 diabetes (T1D) in the non-obese 

diabetic (NOD) mice1,2. A major set of pathogenic CD4 T cells specifically recognizes the 

12-20 segment of the insulin B-chain (B:12-20), an epitope generated from direct 

presentation of insulin peptides by antigen presenting cells (APCs)3,4. These T cells do not 

respond to APCs given insulin protein, whose processing leads to presentation of an 

alternative segment, 13-21, a one residue shift4. CD4 T cells to B:12-20 escape thymic 

negative selection and cause diabetes, while those to B:13-21 are weakly involved in the 

autoimmune process3–5. Although presentation of B:12-20 is evident in the islets3,6, insulin-

specific germinal centres can be formed in various lymphoid tissues, suggesting widespread 

presentation7,8. Here, using live imaging we document insulin recognition disseminated 

throughout various lymph nodes (LNs). Furthermore, we identify catabolized insulin 

fragments containing defined pathogenic epitopes in beta-cell granules of mice and humans. 

Upon glucose challenge, these fragments are released into the circulation and recognized by 

CD4 T cells, imprinting an activation state manifested by transcriptional reprogramming and 

enhanced diabetogenicity. Therefore, a tissue like pancreatic islets by releasing catabolized 

products imposes a constant threat to self-tolerance. These findings reveal a novel self-
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recognition pathway underlying a primary autoantigen and provide a foundation for 

assessing antigenic targets that precipitate pathogenic outcomes by sensitizing lymphoid 

tissues systemically.

Based on previous studies demonstrating constrained T-cell migration during limited antigen 

recognition9–12, we imaged insulin presentation in peripheral LNs by two-photon 

microscopy of LN explants following transfer of insulin-specific T cells (Fig. 1a). These 

were transferred together with wild-type (WT) CD4 T cells as a control, each labelled with a 

different fluorescent probe (Fig. 1b). We tracked the two sets of individual T cells within the 

same region of LNs and quantified their motility (Extended Data Fig. 1a). Examination of a 

control CD4 T cell (10E11) recognizing hen egg-white lysozyme (HEL) confirmed that 

limited antigen recognition insufficient to trigger cell division can be assessed by a decrease 

in the mean track velocities of T cells (Fig. 1c, Extended Data Fig. 1b, Supplementary Video 

1).

Widespread presentation of insulin peptides was manifested by reduced motility of the B:

12-20-reactive 8F10 T cells in the pancreatic (pLN), inguinal (iLN), mesenteric (mLN) and 

axillary (aLN) LNs of NOD mice, relative to WT CD4 T cells (Fig. 1d, Supplementary 

Video 2). Such presentation was constant from day 1 to 5 (Extended Data Fig. 1c). It was 

unaffected by switching the labelling of the fluorescent probes (Extended Data Fig. 1d). The 

diffused pattern of motility arrest rather than cluster formation indicated that presentation of 

insulin peptides was limiting and not restricted to selected APCs. Reduced 8F10 T cell 

motility was also found in mice lacking B cells (μMT) or XCR1+ dendritic cells (DCs; 

Batf3−/−) (Extended Data Fig. 1e).

Three experiments interrogated key parameters of antigen recognition by 8F10 T cells. First, 

we examined the B16A mouse that lacks both insulin-1 and insulin-2 but expresses a 

proinsulin transgene with a tyrosine-to-alanine substitution at the 16th position of the B-

chain1. This mutant insulin is bioactive but not immunogenic to B:12-20- or B:13-21-

specific T cells. There was no motility arrest of the 8F10 T cells in the B16A recipients, 

demonstrating specific epitope recognition (Fig. 1e, Supplementary Video 3). Second, we 

investigated whether a prior recirculation through the pLN was required for insulin 

recognition in other sites. Surgical removal of pLNs (pLNrem) did not influence the motility 

arrest of 8F10 T cells in the iLNs (Fig. 1f). Third, motility arrest of 8F10 T cells was 

detected in the diabetes-resistant B6 mice harbouring the I-Ag7 haplotype (B6g7) (Fig. 1g) 

but not the NOD.H2b hosts (Extended Data Fig. 1f). Thus, peripheral insulin presentation to 

8F10 T cells requires I-Ag7 and is not restricted to the NOD strain.

The 4F7 T cells specific to the B:13-21 epitope also showed a significant velocity decrease 

in the pLNs and iLNs of NOD recipients (Extended Data Fig. 1g). In contrast, the 8.3 CD8 T 

cells recognizing the islet-specific glucose-6-phosphatase-related protein (IGRP)13, an 

antigen expressed in the endoplasmic reticulum of beta-cells, showed reduced motility in the 

pLN but not in the iLN (Extended Data Fig. 1h). Thus, insulin epitopes, but not those from 

this cell-associated antigen, are systemically available.
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Considering that the low concentrations of circulating insulin (~40 pM) may depend on 

insulin receptor (IR)-mediated uptake by APCs, we examined the effects of S961, an IR 

antagonist14. In culture assays, S961 substantially impaired the ability of ConA-activated 

macrophages to present insulin (Extended Data Fig.1i). In vivo blockade of IR was 

manifested by a sustained increase of blood glucose levels in mice infused with S961 via 

osmotic pumps (Extended Data Fig. 1j), permitting two-photon imaging (Extended Data Fig. 

1k). A significant reduction in 4F7 T cell velocity was observed in mice given PBS (Fig. 1h, 

Supplementary Video 4). Although motility was also arrested after S961 administration, the 

reduction was significantly less than in the control mice (Fig. 1h, Supplementary Video 4). 

Therefore, blockade of IR-mediated uptake of insulin partially abrogated recognition of the 

4F7 T cells, suggesting free insulin peptides as an additional source of the B:13-21 epitope. 

In contrast, the motility arrest of 8F10 T cells remained at a comparable level in recipients 

given PBS or S961 (Fig. 1i, Supplementary Video 5), indicating that B:12-20 was 

independent of IR-mediated uptake of insulin. Therefore, this epitope must derive from 

insulin peptides reaching the peripheral lymphoid organs. Importantly, APCs expressing 

autoimmune regulator (Aire)15 were not a major source of insulin peptides (Extended Data 

Fig. 1l).

Insulin peptides were identified in beta-cell granules by peptide-specific monoclonal 

antibodies (MoAbs) and mass spectrometry analysis. The MoAb AIP reactive to B:9-23 was 

previously studied3,6, and a new MoAb (clone 6F3.B8) was generated by immunization with 

the entire insulin B-chain (B:1-30). The two MoAbs were not cross-reactive and neither 

recognized native insulin (Extended Data Fig. 2a–d). Notably, presentation of B:1-30 

activated insulin-reactive T cells without the need of internal processing (Extended Data Fig. 

2e).

We previously identified B:9-23 in a set of LAMP1-positive vesicles in beta-cells3. These 

vesicles were distinct from the insulin-containing dense core granules and could be 

separated from them by differential centrifugation6. They are compatible with the 

crinophagic-bodies that result from fusion of the dense core granules to lysosomes as a 

means to maintain cellular homeostasis16–18. Importantly, they contained peptides 

preferentially reactive to 8F10 T cells6. Immunofluorescent staining with AIP showed a 

punctate pattern of B:9-23 in beta-cells from NOD.Rag1−/− or B6g7.Rag1−/− mice (Fig. 2a). 

In contrast, the B:1-30 staining by 6F3.B8 was more diffuse in nearly all the beta-cells and 

costained with insulin (Fig. 2b). Using double immunogold-labelling antibodies, B:1-30 was 

detected in granules containing insulin (Fig. 2c). Many granules (106 out of 317, 33%) 

contained both B:1-30 and insulin (Fig. 2d), and the rest had insulin only (Fig. 2e). The AIP 

staining of islets was not satisfactory after labelling with immunogold.

The regular secretory granules obtained by 25,000 xG centrifugation (25k) contained 

significantly higher amounts of insulin than the 5,000 xG fraction (5k) representing the 

crinophagic-bodies (Fig. 2f). B:1-30 was primarily found in the 25k but not the 5k fraction, 

however, its concentration was about 10 times lower than that of insulin (Fig. 2f). In 

contrast, B:9-23 was significantly more abundant in the 5k granules (Fig. 2f).
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The peptidome in the two sets of granules was analyzed by nanoflow liquid 

chromatography-tandem mass spectrometry (nLC-MS/MS) in B6g7, B6 and 3-week old 

female NOD mice. Consistent among all the three strains, the 25k granules mostly contained 

C-peptides, the intact B:1-30, and a few small peptides from the B-chain (Fig. 2g–h, 

Supplementary Table 1, Extended Data Fig. 3a). In striking contrast, the 5k granules besides 

C-peptides had more diverse short sequences covering the entire B-chain (Fig. 2g–h, 

Supplementary Table 1). Importantly, peptides relevant to the 9-23 region, such as B:9-23 

and B:11-23 (Extended Data Fig. 3b), were exclusively identified in the 5k granules of all 

the three mouse strains. Manual interrogation of unassigned spectra only identified two 

putative hybrid peptides in the 5k granules (Extended Data Fig. 3c), a C-peptide- islet 

amyloid polypeptide (IAPP) fusion, and insulin-2 C-peptide N-terminus fused with the C-

terminus of insulin-1 C-peptide. Peptides from other proteins were identified in much 

smaller amounts relative to insulin. These will be the subject of future analysis.

Examination of the two sets of beta-cell granules from human islets revealed a striking 

similarity of peptide segregation with mice (Extended Data Fig. 4a, Supplementary Table 1). 

The human 25k granules contained the intact B-chain and a limited number of short 

sequences. However, diverse short peptides were found in the 5k set, and a sequence 

representing B:11-30 (Extended Data Fig. 4b) contained the HLA-DQ8-binding B:11-23 

determinant recognized by peripheral T cells in T1D subjects19.

Insulin was secreted from islets stimulated with 25 mM glucose (Fig. 3a), along with much 

lower concentrations of peptides reactive with 6F3.B8 (Fig. 3b) or AIP (Fig. 3c). Secretion 

of insulin or insulin peptides was not affected when complete protease inhibitors were used 

during glucose challenges (Extended Data Fig. 5a), indicating that the peptides were not 

generated extracellularly.

The insulin peptides released from beta-cells were characterized by nLC-MS/MS. Most 

sequences were derived from the C-peptide, along with B-chain-derived sequences relevant 

to the 9-23 region and spanning the B-chain/C-peptide (B-C) junction (Fig. 3d, 

Supplementary Table 2). Many of the peptides were identical or relevant to previously 

identified pathogenic epitopes using diabetogenic T cells as probes1,3,4,20–22 (Fig. 3e, 

Extended Data Fig. 5b–e). Strikingly, the intact B-chain shared identical sequences with 

those identified in the 25k granules, whereas B:9-23 and B:11-23 were identical to those in 

the 5k granules (Fig. 3e, Supplementary Table 2). Synthetic versions of B:9-23-associated 

peptides activated both B:12-20- and B:13-21-reactive T cells (Extended Data Fig. 6). 

Overall, these peptides with potential immunogenicity showed a low relative abundance 

(Fig. 3f, Supplementary Table 2).

Using an antibody capture approach, we identified B:9-23 with oxidized cysteine to cysteic 

acid in the urine (Fig. 3g), a modification which can occur during sample preparation 

(Extended Data Fig. 7a). This finding indicates the presence of B:9-23 in the circulation. 

Indeed, fluorochrome-labelled B:9-23 upon intravenous injection was rapidly displayed by I-

Ag7-expressing APCs in the spleen but not thymus (Extended Data Fig. 7b–c).
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The widespread presentation of insulin peptides in lymphoid tissues influenced the biology 

of the T cells. We generated a bone marrow (BM) chimera model in which a low number of 

BM stem cells from CD45.2 8F10 mice deficient with T-cell receptor alpha chain 

(8F10TCRα−/−) were transferred into non-lethally irradiated NOD or B16A hosts (CD45.1) 

(Fig. 4a). This approach resulted in the development of a limited number of 8F10 T cells 

(0.5–2%) within the endogenous CD4 T-cell repertoire (Extended Data Fig. 8a). The 8F10 T 

cells were then isolated from iLNs of either host and subjected to RNA sequencing 

(RNAseq) (Fig. 4a).

A difference in the transcriptomes of 8F10 T cells sourced from the NOD (8F10-NOD) or 

B16A (8F10-B16A) hosts was revealed by hierarchical clustering using Pearson’s 

correlation (Fig. 4b). Gene set enrichment analysis (GSEA) showed a significant correlation 

of transcripts upregulated in the 8F10-NOD T cells with biological pathways involving 

oxidative phosphorylation (OXPHOS), Myc targets, fatty acid metabolism, mTOR complex 

1 (mTORC1) signaling, and DNA repair (Extended Data Fig. 8b). Remarkably, the four top-

ranked gene sets (Fig. 4c) were metabolic pathways involving transcripts encoding key 

kinases, intermediates, and transcriptional factors (Extended Data Fig. 8c) shown to support 

T cell proliferation and functions23.

The metabolic reprogramming in 8F10-NOD T cells was associated with an effector-like 

phenotype (Fig. 4d). The sets of 8F10-NOD-upregulated genes were those reported to be 

highly expressed in CD4 T cells upon stimulation24, or in CD8 T cells at the peak of 

expansion versus the contraction phase25, or in CD8 effectors versus exhaustion26. The 

transcripts enriched in the three pathways (Extended Data Fig 9a) displayed little 

overlapping (Fig. 4e). By GSEA, neither T cell set correlated with anergic CD427 or tolerant 

CD8 T cells28 (Extended Data Fig. 9b).

Functional analysis at the 6-week time point revealed a higher capacity of effector cytokine 

(TNFα and IFNγ) production (Extended Data Fig. 10a) and cell proliferation (Extended 

Data Fig. 10b) in 8F10-NOD T cells. Neither T cell set expressed molecules associated with 

anergy and exhaustion26,27,29 (Extended Data Fig. 10c). These results were consistent in T 

cells analyzed 9 weeks after BM chimera (Extended Data Fig. 10d–f). Importantly, when the 

two sets of T cells were transferred into NOD.Rag1−/− recipients, diabetes onset was 

accelerated by the 8F10-NOD set (Fig. 4f). Therefore, 8F10 T cells acquired an effector-like 

phenotype during peripheral antigen recognition, supported by transcriptional 

reprogramming and superior diabetogenicity.

In summary, peptide exocytosis is a natural response of beta-cells and represents a 

mechanism of communication between the islets, an organ lacking lymphatics, and the 

lymphoid tissues. It may apply to other endocrine organs that also contain crinophagic 

granules. The released peptides may permit a more targeted identification of the T cell 

responses; a repertoire that may be extensive given the different exocytosed moieties. 

Previous studies have shown that ablation of all LNs eradicated the pathogenic T cell 

repertoire and abolished diabetes30, emphasizing the importance of the entire lymphatic 

system in the interactions with T cells. Finally, to note, the biological outcomes depicted 

here with 8F10 T cells may vary with other insulin-reactive T cells with divergent TCR 
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affinities. Comprehensive understanding requires an analysis of the entire insulin-reactive T 

cell pool at different stages of the disease.

Methods

Mice

NOD/ShiLtJ (NOD), NOD.129S7(B6)-Rag1tm1Mom/J (NOD.Rag1−/−), NOD.Cg-

Tg(Ins2*Y16A)1EllIns1tm1JjaIns2tm1Jja/GseJ (NOD.B16A), NOD.Cg-

Tg(TcraTcrbNY8.3)1Pesa/DvsJ (8.3), NOD.129S2(B6)-Ighmtm1Cgn/DoiJ (μMT), NOD.C-

(Ptprc-D1Mit262)/WehiJ (NOD.CD45.2), NOD.B10Sn-H2b/J (NOD.H2b) and B6.NOD-

(D17Mit21-D17Mit10)/LtJ (B6g7) mice were originally obtained from the Jackson 

Laboratory. NOD.10E11 TCR transgenic mice (TCRα: TRAV5D-4/TRAJ42; TCRβ: 

TRBV13-3/TRBD2/TRBJ2-7) were generated using a previous protocol5. NOD.4F7 TCR 

transgenic mice, NOD.Aire−/−, and NOD.TCRα−/− mice were generated by one of us 

(M.S.A). The 8F10 or 10E11 mice expressing the CD45.2 allotype were generated by 

intercrossing the original TCR transgenic line (CD45.1) with the NOD.CD45.2 mice and the 

CD45.2.NOD.8F10 mice were further crossed with the NOD.TCRα−/− mice for generating 

the CD45.2 8F10TCRα−/− mice. B6.Rag1−/− mice were used to intercross with B6g7 mice to 

generate B6g7.Rag1−/− mice. All the mice were bred and maintained under specific 

pathogen-free conditions in our animal facility. All experiments were approved by the 

Division of Comparative Medicine of Washington University School of Medicine in St. 

Louis (Accreditation number A3381-01).

Human pancreatic islets

De-identified human primary islets isolated from deceased donors were obtained from Prodo 

Laboratories. Experiments were determined to be Not Human Subject Research by 

Washington University Human Research Protection Office (IRB ID # 201801183; 

Federalwide Assurance #FWA00002284). In total, islets from three donors were used: 

Donor 1 (Female, 57 years, BMI 21.35), Donor 2 (Female, 49 years, BMI 33), Donor 3 

(Male, 28 years, BMI 34.7). Purity of the islets was between 85~98%. Islets were cultured in 

CMRL media supplemented with 10% FBS and 50% L-cell conditioned media31 for 

recovery. The granules were isolated from ~1500 islets after 1–3 days of culture.

Antibodies

The following fluorescently conjugated antibodies were purchased from BioLegend: anti-

B220 (RA3-6B2), anti-CD11c (N418), anti-CD4 (RM4-5), anti-CD45 (30-F11), anti-

CD45.1 (A20), anti-CD45.2 (104), anti-CD8a (53-6.7), anti-F4/80 (BM8), anti-Vβ8.1/8.2 

(KJ16-133.18), anti-CD44 (IM7), anti-CD62L (MEL-14), anti-CD25 (PC61.5) and anti-

TNFα (MP6-XT22). Unconjugated or Alexa Fluor 647-labelled Rabbit anti-insulin MoAb 

(C27C9) was purchased from Cell Signaling Technology. Unconjugated mouse anti-insulin 

MoAb (E11D7) was purchased from Millipore. Alexa Fluor 594 F(ab)2 donkey anti-mouse 

IgG and HRP-conjugated goat anti-mouse IgG (Fcγ portion specific) were purchased from 

Jackson ImmunoResearch.
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Flow cytometry and cell sorting

Flow cytometry analysis was done as previously described7. The samples were examined 

using a FACSCanto II (BD Biosciences) and the data were analyzed using FlowJo software 

(Tree Star Software). CD4+ T cells from iLNs were enriched by CD4+ T cell isolation kit 

(Miltenyi Biotech), the 8F10 T cells were sorted as 

CD45.2+CD45.1−CD4+CD8−B220−CD11c− using FACSAria II (BD Biosciences).

CFSE and CMTMR labelling

For two-photon imaging, naïve CD4 T cells were purified by two rounds of MACS negative 

selection using the naïve CD4+ T cell isolation kit (Miltenyi Biotech) to remove non-CD4 

and CD44+ T cells. The CD25+ cells were further removed from the flow-through portion 

using the CD25 microbead kit (Miltenyi Biotech). The naive 8.3 or WT CD8 T cells were 

purified similarly by using the naïve CD8+ T cell isolation kit. Flow Cytometry analysis 

confirmed that >95% of the cells were CD4+/CD8+CD25−CD62LhiCD44−. CFSE or 

CMTMR labelling was performed using the Vybrant CFDA SE Cell Tracer Kit and the 

CellTracker Orange CMTMR Dye (both from ThermoFisher Scientific), respectively. In 

brief, T cells (107/ml in PBS) were incubated with 10 μM CFSE or 8 μM CMTMR for 25 

min at 37°C with a gentle shake after 10 min. Under these conditions, T cells were labelled 

with satisfactory intensities without significant cell death. Ice-cold PBS was then added to 

quench the labelling.

Adoptive transfer

CFSE- or CMTMR-labeled T cells were 1:1 mixed and were injected intravenously. For all 

the two-photon experiments, 2×106 T cells with either label were transferred. Varying T cell 

numbers in preliminary experiments determined that this amount resulted in a stable 

0.5~0.8% reconstitution of the transferred T cells in the endogenous CD4 T cell pool, which 

was sufficient for two-photon imaging without causing obvious intraclonal competition. All 

the recipient mice were 3–4-week-old female mice unless otherwise mentioned. For 

experiments in Fig. 4f, FACS-sorted 8F10 T cells from pooled iLNs of 8–10 NOD or B16A 

mice were adoptively transferred i.v. into 4–6-week old NOD.Rag1−/− recipients (105 cells 

per mouse).

Two-photon imaging

LNs were removed, attached to coverslips, placed in CO2-independent media (Gibco) at RT 

and immediately imaged in a perfusion chamber to simulate blood flow (36.5°C DMEM 

medium; 95% O2 and 5% CO2). Two-photon microscopy images were collected using a 

customized Leica SP8 Two-Photon Microscope (Leica Microsystems) equipped with a 25x 

and 0.95 numerical aperture water-immersion objective and a Mai Tai HP DeepSee Laser 

(Spectra-Physics) tuned to 840 nm. Fluorescence emission was guided directly to external 

hybrid photodetectors (Leica/Hammamatsu). For signal separation, we used three separate 

dichroic beam splitters without bandpass filters (Semrock): 484-nm edge BrightLine 

(FF484-FDi01), 495-nm edge BrightLine (FF495-Di03), and 560-nm edge BrightLine 

(FF560-Di01). The mirrors were arranged in dendritic fashion. Stacks were collected with 

2.5 microns between images with 25–30 images per stack.
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For cell tracking, two or three regions of one LN were randomly selected and cropped. Cells 

were tracked manually in 3D volume using Imaris 8.41 software (Bitplane). We tracked the 

first 11 time points from each track (representing 5 min and 10 velocities between the time 

points). Each dot represents the mean velocity out of the 10 that were tracked. We also 

calculated the meandering index and the motility coefficient for each track. Note that we 

chose tracks with the same length since the track length impacts these last two parameters. 

The meandering index and the motility coefficient data are not shown for space reasons 

however the results amply confirm the velocity data. The mean track velocities (μm/min) 

were calculated for individual tracks as previously described11.

Surgical removal of pancreatic lymph nodes

NOD mice (3-week old) were anesthetized with a 4% mixture of Isoflurane in oxygen. The 

two pLNs were exposed by gently retracting the spleen, pancreas, stomach, and intestines, 

and were grasped with blunt forceps. Using an ophthalmic cautery on low power, the blood 

vessels on either side of the pLNs were cauterized and the pLNs were removed. The sham 

surgery was performed with the same procedures except that the pLNs were exposed without 

removal.

S961 administration

The S961 peptide (sequence: 

GSLDESFYDWFERQLGGGSGGSSLEEEWAQIQCEVWGRGCPSY) was synthesized by 

LifeTein, LLC, with an intrachain disulphide bridge between Cys33 and Cys40 (underlined). 

S961 (20 nMol/week) or control PBS was filled into the Alzet osmotic pump (2001 model, 

Durect) and inserted subcutaneously at the back of anaesthetized mice through an incision 

between scapula. Blood glucose levels were monitored twice a day (Chemstrip 2GP; 

Roche); the mice with a level above 250 mg/dl for two consecutive measurements were 

considered diabetic.

Competitive ELISA assay

96-well ELISA plates were coated with human insulin solution (1 μg/well) or peptides B:

1-30 or B:9-23 (2 μM), and were blocked with 3% BSA overnight at 4°C. Soluble 

competitive inhibitors, including different synthetic peptides and biological samples, were 

pre-incubated with the E11D7 (100 ng/ml), 6F3.B8 (20 ng/ml), or AIP (4 ng/ml) MoAbs for 

30 min and the mixture was then added to the plate-bound antigens for 1h at room 

temperature. In the absence of soluble competitive inhibitors, these concentrations of the 

MoAbs resulted in about a 50% binding to the plate-bound antigens. HRP-conjugated goat 

anti-mouse IgG (1:10000) antibody was then added for 1h; the responses were developed 

using the OptEIA TMB Substrate (BD). The data (O.D at 450 nm) were collected using an 

iMark Microplate Reader (Bio-Rad Laboratories). For quantitating the biological samples, 

each experiment was paired with a standard curve in which serially diluted amounts of 

soluble antigens were used to suppress the binding of their cognate MoAbs to the same 

antigen in the plate-bound form. The degree of inhibition by the biological samples was 

calculated relative to the blocking curve used by the specific antigen using an equation 

generated by linear regression of the standard curve.
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Immunofluorescence microscopy

Mouse islets were isolated as previously described7. The islets were blocked with normal 

goat serum, fixed with 4% methanol-free formaldehyde, permeabilized with 0.2% saponin 

(Sigma), and stained with the AIP or 6F3.B8 (50 μg/ml) for 45 min on ice. The samples 

were then stained with Alexa Fluor 594 F(ab)2 donkey anti-mouse IgG (30 μg/ml), Alexa 

Fluor 647 Rabbit anti-insulin (20 μg/ml), and Alexa Fluor 488 anti-mouse CD11c (40 μg/ml) 

for 45 min on ice and mounted using the Prolong Diamond mountant (ThermoFisher). The 

samples were viewed using the Eclipse E800 microscope (Nikon) equipped with the EXi 

Blue fluorescence camera (Qimaging).

Electron microscopy with Immunogold

Islets were fixed in 4% paraformaldehyde (Polysciences) in 100mM PIPES/0.5mM MgCl2, 

pH 7.2 for 1h at 4°C. Samples were embedded in 10% gelatin and infiltrated overnight with 

2.3M sucrose/20% polyvinyl pyrrolidone in PIPES/MgCl2 at 4°C. Ultrathin sections of 50 

nm were incubated with a blocking solution supplemented with 5% FBS and 5% normal 

goat serum for 30 min and subsequently incubated with rabbit anti-insulin (C27C9) and 

mouse anti-B-chain (6F3.B8) antibodies for 1h at RT. Sections were subsequently incubated 

with goat anti-mouse IgG conjugated to 18nm colloidal gold and goat anti-rabbit IgG 

antibody conjugated to 12 nm colloidal gold for 1h. Sections were stained with uranyl 

acetate and lead citrate and viewed on a JEOL 1200 EX transmission electron microscope 

(JEOL USA Inc) equipped with an AMT 8-megapixel digital camera and AMT Image 

Capture Engine V602 software (Advanced Microscopy Techniques). All labelling 

experiments were conducted in parallel with controls omitting the primary antibody. These 

controls were consistently negative.

Insulin secretion assay

Islets were equilibrated in DMEM media supplemented with 10% FBS and 5.5 mM glucose 

for 24h in 24-well plates. The media were then replaced with 300 μl pre-warmed Krebs-

Ringer-HEPES balance solution containing 0.2% BSA with 2.5 mM or 25 mM glucose. 

After 1h incubation, the culture supernatants were collected for the competitive ELISA 

assay or mass spectrometry analysis.

Beta-cell granule isolation

Mouse and human islets were dispersed using the non-enzymatic dispersion solution 

(Sigma). Cells were resuspended in PBS and lysed by passing them through a Cell 

Homogenizer (Isobiotec). The lysate was centrifuged twice for 10 min at 500 xG, 4°C to 

pellet cell debris. The supernatant was centrifuged for 10 min at 5000 xG, 4°C. The 5000 xG 

spin was repeated on the supernatant and the two pellets were combined. This fraction is 

highly enriched in peptide-containing vesicles compatible with the crinophagic-bodies, and 

as such have been labelled. This fraction may also contain other organelles except for the 

insulin-containing ones. The supernatant after the 5000 xG spin was centrifuged for 30 min 

at 25000 xG, 4°C to pellet secretory granules. This supernatant was discarded, and the 

25000 xG pellet was suspended in 100 ul PBS. The micro-centrifuge used for the granule 

isolation was an Eppendorf 5417R (Eppendorf) utilizing an FA45-24-11 fixed angle rotor. 
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Fractions were frozen at −80°C and thawed at 37°C for five cycles to release the contents of 

granules. After freeze/thaw, complete protease inhibitor cocktail was added to the sample 

which then was concentrated by speed-Vac to <100ul. The sample was passed through C18 

zip-tips (Pierce) and peptides then were eluted in 0.1% formic acid/95% acetonitrile and 

then dried with a Speed-Vac.

Sample preparation for mass spectrometry analysis

All the biological samples were treated with 2.5% trifluoroacetic acid (TFA) for a final 

concentration of 0.36% (v/v), and the peptides were purified using the C18 zip-tips, eluted 

with 0.1% formic acid in 95% acetonitrile, and lyophilized. For peptide capture, TFA 

adjusted mouse urine (12 ml) was cleaned up using C18 Sep-Pak cartridges (Waters). The 

analytes retained by the cartridge sorbent were eluted with methanol, lyophilized, and 

reconstituted with 2 ml sterile PBS. The material was then incubated with a 1:1 mixture of 

sepharose pre-conjugated with AIP or 6F3.B8 MoAbs (1 ml slurry total) for 72h at 4 °C with 

gentle rotation. The urine/sepharose mixture was poured into a Bio-Rad Econo column and 

after extensive wash, the antibody-bound material was eluted with 10% acetic acid and 

lyophilized.

Mass Spectrometry

A Dionex UltiMate 1000 system (Thermo Scientific) was coupled to an Orbitrap Fusion 

Lumos (Thermo Scientific) through an Easy-Spray ion source (Thermo Scientific). Peptide 

samples were loaded (30 μL/min, 1 min) onto a trap column (100 μm × 2 cm, 5 μm Acclaim 

PepMap 100 C18, 50 °C), eluted (300 μL/min) onto an Easy-Spray PepMap RSLC C18 

column (2 μm, 25cm × 75 μm ID, 50 °C, Thermo Scientific) and separated with the 

following gradient, all % Buffer B (0.1% formic acid in ACN): 0–40 min, 2%–22%; 40–50 

min, 22%–35%; 50–60 min, 35–95%; 60–70 min, isocratic at 95%; 70–71 min, 95%–2%, 

71–85 min, isocratic at 2%. Spray voltage was 1900V, ion transfer tube temperature was 

275°C, and RF lens was 30%. MS scans were acquired in profile mode and MS/MS scans in 

centroid mode, for ions with charge states 2–7, with a cycle time of 3 sec. For HCD, MS 

spectra were recorded from 375–1500 Da at 120K resolution (at m/z 200), and MS/MS was 

triggered above a threshold of 2.5e4, with quadrupole isolation (1.6 Da) at 30K resolution, 

and collision energy (CE) of 30%. Dynamic exclusion was used (35 s). For high SA EThcD, 

MS spectra were acquired from 350–1500 Da at 60K resolution, and MS/MS spectra were 

triggered for ions above a threshold of 5e4 with quadrupole isolation (0.7 Da) at 15K 

resolution. Fragmentation employed calibrated charge dependent ETD, with SA (40%) 

applied in the HCD cell. Dynamic exclusion was used (60 s). For low SA EThcD, MS 

spectra were recorded from 375–1500 Da at 120K resolution (at m/z 200), and MS/MS 

spectra were acquired for ions above a minimum intensity threshold of 2.5e4 at 15K 

resolution. ETD reaction time was fixed at 100 ms, with SA (15%) applied in the HCD 

collision cell.

MS Data Analysis

Data files were uploaded to PEAKS 8.0 (Bioinformatics Solutions) for processing, de novo 

sequencing and database searching. Resulting sequences were searched against the UniProt 

Mouse Proteome database (downloaded 6/8/2017; 25,144 entries) with mass error tolerances 
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of 20 ppm and 0.02 Da for parent and fragment, respectively, no enzyme specificity and no 

fixed or variable modifications. The Common Repository for Adventitious Proteins database 

(cRAP, www.thegpm.org/crap/) was used to identify contaminant proteins. FDR estimation 

was enabled. Peptides were filtered for 10logP ≥ 20, and proteins were filtered for −10logP 

≥ 30 and one unique peptide. For all experiments, this gave an FDR of <1% at the peptide-

spectrum match level. Peptides matching to insulin-1 and insulin-2 were manually verified 

by visual inspection. For relative quantification, peak areas for all manually verified peptides 

were exported from PEAKS, normalized to the total ion current, and log2 transformed.

T cell stimulation and antigen presentation assay

In Extended Data Fig 1i, ConA-stimulated peritoneal macrophages were treated with 0.2 or 

1 μM S961 for 1h at 37°C and were then cultured with the IIT-3 T cell hybridoma that 

recognizes the 13-21 peptide, in the presence of serially diluted insulin (I9278; Sigma). In 

Extended Data Fig. 2e, C3g7 cells were treated with chloroquine for 2h at 37°C, washed, 

pulsed with the antigens, and cultured with T cell hybridomas. After incubation for 18h, the 

culture supernatants were assayed for IL-2 production.

Bone marrow chimera

The female donor 8F10.TCRα−/− (CD45.2) mice were injected i.p with Fluorouracil (200 

mg/Kg), and the bone marrow cells were isolated from the femur and tibia on day 5. The 

cells were adoptively transferred into sublethally irradiated (600 rads) 3-week old female 

NOD or B16A hosts (104/mouse).

RNAseq analysis

Total RNA was isolated using the Ambion RNAqueous-Micro kit (Thermo Fisher 

Scientific). RNAseq library preparation and sequencing was performed as previously 

described32. The differential expression analysis was done with the DESeq2 package 

(version 1.18.1) The multifactor analysis was used to account for donor effect. Specifically, 

paired 8F10-NOD and 8F10-B16A samples from one isolation (4 pairs in total) were treated 

as one donor group. Gene set enrichment pathways analysis was done using the Broad 

Institute’s GSEA software and MSigDB Hallmark or C7 immunological signatures 

databases. The latter included datasets: GSE2872624, GSE1000001_1577_200_UP25, 

GSE965026, and GSE3202528. All heat maps are in log2 scale. The gene expression matrix 

counts were adjusted for donor effect with Combat (sva package) only for heat maps and 

clustering.

Statistics

The one-way ANOVA with Sidak’s multiple comparisons test was used to determine 

significant differences among multiple groups with unpaired biological replicates. The two-

tailed unpaired Student’s t-test was used to determine significant differences between two 

groups with unpaired biological replicates. The two-tailed paired Student’s t-test was used to 

calculate P values of each paired independent experiments. The log-rank test was used to 

determine the significant difference of diabetes incidence.
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Data availability

The RNAseq data have been deposited in the Gene Expression Omnibus under accession 

number GSE114824. The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 

PXD009919 and 10.6019/PXD009919.

Extended Data

Extended Data Figure 1. Probing peripheral antigen presentation by two-photon imaging
The Figure contains further information of the motility assay. a, Representative 3D 

reconstructions of two-photon z-stacks visualizing CFSE-labelled anti-HEL 10E11 TCR 

transgenic and CMTMR-labelled WT CD4 T cells in an iLN explant on day 3 post transfer. 

The dashed-line box depicts a region in which individual T cells were tracked. This region is 

magnified in panels (right) showing the T cell movement over a 7.5-min time interval, and 

the quantification was performed over a 5-min interval. The cyan and purple tracks denote 

10E11 and WT T cells, respectively. Mice were injected with 10 μg HEL. b, NOD mice 

(CD45.1) were injected i.p with indicated amounts of HEL, and 6h later, naïve CFSE-

labelled 10E11 (CD45.2) T cells were transferred. On day 3, CFSE dilution of the 

transferred T cells (CD45.2+CD45.1−CD4+Vβ8.1/8.2+) in the iLNs was measured by flow 

cytometry. Data are representative of two independent experiments. c, Mean track velocities 

(μm/min) of 8F10 and WT CD4 T cells in iLNs from NOD recipients on day 1 or day 5 post 

transfer. d, CFSE-8F10 plus CMTMR-WT or CMTMR-8F10 plus CFSE-WT T cells were 

separately transferred into two cohorts of NOD recipients, and their mean track velocities in 
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iLNs on day 3 were compared in paired two-photon imaging analysis. e, Mean track 

velocities of 8F10 and WT CD4 T cells in NOD.μMT or NOD.Batf3−/− recipients on day 3 

post transfer. f, Mean track velocities of 8F10 and 10E11 T cells in NOD.H2b recipients 24 

h post transfer. g, h, Mean track velocities of 4F7 and WT CD4 (g) or 8.3 and WT CD8 (h) 

T cells in NOD recipients on day 3 post transfer. i, Response (mean ± s.e.m) of the B:13-21-

specific IIT-3 T cells to ConA-activated peritoneal macrophages treated with or without 

S961 prior to insulin pulse. j, Blood glucose levels (mean ± s.e.m) of 3-week old NOD mice 

infused with S961 or PBS via osmotic pumps. k, The scheme of the experiments in Fig. 1h 

and i. l, Mean track velocities of 8F10 and WT CD4 T cells in iLNs of Aire−/− recipients. 

Data summarize two (c, d, f, l) or three (e, g, h) independent experiments. Each dot 

represents individual T cell tracks, and the bar denotes the mean. ns, not significant; ****, P 

< 0.0001; one-way ANOVA with Sidak’s multiple comparisons test (c, d, g, h) or two-tailed 

unpaired Student’s t-test (e, f, l).

Extended Data Figure 2. Analysis of insulin peptide-specific monoclonal antibodies and 
presentation of the intact B-chain
a–c, Competitive ELISA responses depicting the binding of the anti-insulin MoAb (E11D7) 

to plate-bound insulin (a), anti-B:9-23 MoAb (AIP) to plate-bound B:9-23 (b), and anti-B:
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1-30 MoAb (6F3.B8) to plate-bound B:1-30 (c) in the presence of serially-diluted amounts 

of the indicated soluble antigens as a competitive inhibitor. The inhibition by a specific 

soluble antigen indicates the specificity of the MoAb to this antigen. d, Competitive ELISA 

responses depicting the binding of 6F3.B8 to plate-bound B:1-30 in the presence of soluble 

unmodified B:1-30 or B:1-30 in which the two cysteines were changed into serines (B:1-30 

C to S). The results indicate the intrachain between the two cysteines does not influence the 

specificity of the 6F3.B8 MoAb. Data (mean) are representative of two independent 

experiments. e, Responses of the B:13-21-specific IIT-3 (left) or the B:12-20-specific 9B9 

(right) T cell hybridoma to C3g7 APCs treated with or without 100 μM chloroquine for 2h 

and pulsed with indicated antigens after extensive wash. The C3g7 cell is a B cell lymphoma 

line expressing I-Ag7 used as APCs. The results of the effects of chloroquine indicate that 

reactivity to insulin, but neither to B:9-23 nor B:1-30 require internal processing. Data 

(mean ± s.e.m) are representative of two independent experiments.

Extended Data Figure 3. nLC-MS/MS analysis of mouse beta-cell granules
a, MS spectra of mouse insulin-1 B:1-30 with intramolecular disulphide bonds (left) and 

mouse insulin-2 B:1-30 with oxidized methionine on the 29th position (right). b, MS spectra 
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of mouse insulin B:9-23 (left) and B:11-23 (right) which were exclusively identified in the 

5k granules of B6g7, B6 and NOD mice. c, MS spectra of two hybrid peptides identified in 

the 5k granules. The sequence (EVEDTPVRSGSNPQM, left) represents a C-peptide 

(underlined)-islet amyloid polypeptide (IAPP) fusion, and the sequence 

(EVEDPQVAEVARQ, right) represents a fusion of insulin-2 C-peptide N-terminus 

(underlined) with the C-terminus of insulin-1 C-peptide.

Extended Data Figure 4. nLC-MS/MS analysis of human beta-cell granules
a, Peptide coverage of insulin B-chain identified in human 25k (red) and 5k (blue) beta-cell 

granules using nLC-MS/MS analysis. Shown is the alignment o1f individual peptides (each 

line) with the human insulin B:1-30 segment. Data summarizes results from four 

independent runs using human islets from three individual donors. b, An MS spectrum 

showing a sequence representing human insulin B:11-30 identified in the 5k granules. The 

cysteinylation on the 19th position is noted.

Wan et al. Page 15

Nature. Author manuscript; available in PMC 2019 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 5. Analysis of insulin peptides secreted from islets upon glucose challenge
a, Insulin secretion assay was performed as described in Fig. 3a–c, except that the Complete 

Protease Inhibitor cocktail (Sigma) was added during the 25 mM glucose challenge. The 

supernatants were then collected for the competitive ELISA assay. Data (mean ± s.e.m) are 

from two independent experiments. b, MS spectra of four secreted peptides that contain the 

B:12-20 and/or B:13-21 epitope as listed in Fig. 3e. Secreted B:1-30 sequences are identical 

to those in Extended Data Fig. 3a, and B:9-23 and B:11-23 share identical sequences with 

those in Extended Data Fig. 3b. c, An MS spectrum of the secreted insulin B:15-23 MHC-I 

(Kd)-binding peptide. d, An MS spectrum of the secreted insulin A:14-20 MHC-I (Db)-

binding peptide. e, An MS spectrum showing a representative B-C spanning peptide (B25-

C23).
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Extended Data Figure 6. T cell responses to B:9-23-associated peptides
Responses (mean ± s.e.m) of three insulin-reactive T cell hybridomas to insulin peptides 

associated with the 9-23 region of the B-chain as identified in Fig. 3e. The C3g7 cells were 

used as APCs.
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Extended Data Figure 7. Characterization of circulating B:9-23 and its localization into 
lymphoid organs
a, Unmodified synthetic B:9-23 (3 pmoles) was spiked into 1 ml PBS, purified by C18 tips, 

lyophilized, and analyzed by nLC-MS/MS. The data show the appearance of unmodified B:

9-23 (left) together with oxidation of the cysteine on the 19th position to cysteic acid (right). 

b,c, Alexa Fluor 488-conjugated B:9-23 peptide (100 μg) was injected intravenously into 4-

week old B6, B6g7 and NOD mice. 1h later, the spleens and thymi were harvested, digested 

by liberase and DNase, and the binding to splenic and thymic APCs was measured by flow 

cytometry. b, Representative FACS plots showing the binding of B:9-23 to splenic XCR1+ 

and Sirpα+ DC subsets as well as the B cells (upper). The bar graph summarizes cumulative 

results from individual mice (each point) pooled from three independent experiments. ns, not 

significant; **, P < 0.05; ***, P < 0.01; ****, P < 0.005, two-tailed unpaired Student’s t-

test. c, Representative FACS plots showing the binding of B:9-23 to thymic XCR1+ and 

Sirpα+ DC subsets as well as to the CD45− cells expressing MHCII. Data (mean ± S.D) 

were calculated using five individual mice per strain from two independent experiments.
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Extended Data Figure 8. RNAseq analysis of 8F10 T cells developed in NOD or B16A hosts
a, Representative FACS plots (upper) showing the sorting strategy and the level of recovery 

of the 8F10 T cells from iLNs of NOD or B16A recipient mice 6 weeks post BM chimera. 

The scatter plot (lower) shows the percentage of recovered 8F10 T cells among total CD4 T 

cells from four independent experiments. ns, not significant; two-tailed paired Student’s t-

test. b, Biological pathways that are significantly enriched in the 8F10-NOD versus 8F10-

B16A samples using GSEA and Hallmark database. c, Heatmaps of all the enriched genes in 

individual metabolism pathways depicted in Fig. 4c.
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Extended Data Figure 9. 8F10 T cells exhibit an effector but not anergy or exhaustion phenotype 
at the transcription level during peripheral antigen recognition
a, Heat maps showing all the enriched genes of the three immunological pathways illustrated 

in Fig. 4d. b, Enrichment plots of GSEA performed on differentially expressed genes in 

8F10 T cells from NOD-iLN versus B16A-iLN condition using datasets characterizing CD4 

T cell anergy and CD8 T cell tolerance.
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Extended Data Figure 10. Functional analysis of 8F10 T cells developed in NOD or B16A hosts
BM chimera was constructed as in Fig. 4a, and the T cells were examined after 6 (a-c) or 9 

(d-f) weeks. (a, b, d, e) Bulk CD4+ T cells were purified from iLNs of individual NOD or 

B16A mice (3/group) by two rounds of MACS negative selection. For examining cytokine 

repertoire (a, d), half of the individual T cell samples were combined. The rest were kept as 

individual samples, labelled with CFSE (1.5 μM), and used for measuring cell proliferation 

(b, e). In either case, T cells were mixed with NOD.Rag1−/− splenocytes (1:2 ratio) and 

stimulated with B:9-23 for 16 (a, d) or 72 (b, e) hours. a, Representative FACS plots 

showing intracellular cytokine staining of the 8F10 T cells from NOD-iLN or B16A-iLN, 

after stimulation with B:9-23 for 16h (Brefeldin A was added for the last 4h). Production of 

IL-4, IL-17A, IL-5, and IL-10 was not detected. Data are representative of two independent 

experiments with 3 mice combined per experiment. b, Representative FACS plots (upper) 

showing CFSE dilution of the 8F10 T cells stimulated by B:9-23 or the control HEL11-25 

peptide for 72h. The results of 6 individual mice from 2 independent experiments were 

summarized in the Box and whiskers plot (lower). **, P < 0.01, two-tailed unpaired 

Student’s t-test. c, Representative FACS plots showing ex vivo surface staining of FR4 and 

CD73 as well as CD39 and TIGIT on endogenous CD4+ or 8F10 T cells in the iLNs of NOD 

or B16A mice. Data are representative of three individual mice analyzed in two independent 
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experiments. d–f, Experiments were performed in week 9 following the procedures 

described in a–c. The data (d–f) are from a single experiment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Peripheral insulin presentation is systemic, epitope-specific, and occurs physiologically
a, Summary of the antigen-specific T cells examined. b, The scheme of the two-photon 

imaging model. The panels (c–i) show mean track velocities (μm/min) of: c, 10E11 and WT 

CD4 T cells in recipients given the indicated amounts of HEL. d, e, 8F10 and WT CD4 T 

cells in NOD (d) or B16A (e) recipients. f, 8F10 and WT CD4 T cells in NOD mice after 

surgical removal of the pLNs (pLNrem) or control surgery (sham). g, 8F10 and 10E11 CD4 T 

cells in B6g7 recipients 24h post transfer. h, i, 4F7 and WT (h) or 8F10 and WT (i) CD4 T 

cells in NOD mice infused with S961 or PBS. Data are pooled results from at least three 

independent experiments. Each dot represents individual T cell tracks, and the bar denotes 

the mean. ns, not significant; **, P < 0.001; ****, P < 0.0001; one-way ANOVA with 

Sidak’s multiple comparisons test.
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Figure 2. Intrinsic generation of insulin peptides in beta-cell granules
a, b, Immunofluorescence microscopy of isolated islets stained for B:9-23 (a) or B:1-30 (b), 

as well as CD11c and insulin. Data are representative of 50 islets per group in three 

independent experiments. c, Immunogold electron microscopy showing anti-B:1-30 (large 

gold) and anti-insulin (small gold) in a representative beta-cell. A representative granule that 

contains both B:1-30 and insulin (d) or insulin only (e) is depicted. The arrowhead in (d) 

denote the B:1-30 peptide. Data are representative of 317 granules analyzed in three 

independent experiments. f, Competitive ELISA showing quantification of insulin, B:1-30 

and B:9-23 in granules isolated by 5,000 xG (5k) or 25,000 xG (25k) centrifugation; islets 

were from B6g7 mice. Each line represents one paired experiment using 4–8 mice. ns, not 

significant; *, P < 0.05, **, P < 0.01; two-tailed paired Student’s t-test. g, Peptide coverage 

of insulin B-chain by sequences identified in 25k (red) and 5k (blue) beta-cell granules using 

nLC-MS/MS analysis. Shown is the alignment of individual peptides (each line) with the 

insulin-2 B:1-30 segment. Data are from four independent analyses using islets from 8–10 

1mice per strain. h, Log2 peak area showing the relative abundance of individual insulin B-

chain peptides (purple) identified in the 25k and 5k granules among all the insulin peptides 

including the C-peptides (box). The dashed-line boxes denote B:1-30 with a high abundance.
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Figure 3. Secretion of insulin peptides into the circulation upon glucose stimulation
a–c, Competitive ELISA showing quantification of insulin (a), B:1-30 (b) and B:9-23 (c) 

secreted from islets of B6g7 mice after stimulation with 2.5 mM or 25 mM glucose. Each 

point represents an independent experiment. ns, not significant; *, P < 0.05, **, P < 0.01; 

***, P < 0.005; two-tailed paired Student’s t-test. d, A 10×10 dot plot representing the 

coverage of insulin peptide sequences identified by nLC-MS/MS in culture supernatants of 

islets stimulated with 25 mM glucose. Each dot represents 1% coverage of the total. e, 

Summary of selected insulin peptides containing defined immunogenic epitopes. The 

underlined epitopes include B:12-20 (red), B:13-21 (blue), B:15-23 (green), and A:14-20 

(black). In B–C spanning peptides, the residues of the B-chain were in bold. f, Log2 peak 

area showing the relative abundance of individual B:9-23-associated peptides (blue), B–C 

spanning peptides (red) and the A:14-20 peptide (cyan) among all insulin peptides (box). g, 

The MS spectrum of a peptide sequence identified in mouse urine containing all residues of 

the insulin B:9-23 peptide with oxidation of the cysteine to cysteic acid (lower case c).
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Figure 4. Acquisition of an effector-like phenotype by 8F10 T cells during antigen recognition
a, The scheme of the experimental design for b–f. b, Pearson’s correlation matrix showing 

hierarchical clustering of the 8F10-NOD and 8F10-B16A T cell RNAseq samples. c, GSEA 

enrichment plots showing a significant correlation (determined by false discovery rate 

[FDR] q < 0.05) of genes upregulated in the 8F10-NOD samples with four Hallmark 

datasets associated with metabolism pathways. d, GSEA enrichment plots showing a 

significant correlation of genes upregulated in the 8F10-NOD samples with three 

immunological signature datasets depicting T cell activation and effector function. e, A Venn 

diagram showing the number of overlapping genes of three gene sets in (d). f, Diabetes 

incidence of NOD.Rag1−/− recipients adoptively transferred with 8F10 T cells isolated from 

the iLNs of NOD or B16A mice 6 weeks after BM chimera. **, P < 0.005; log-rank test. 

Data represent cumulative results of three independent transfers.
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