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Abstract 
Linear and generalized linear models are used extensively in many 
scientific fields, to model observed data and as the basis for 
hypothesis tests. The use of such models requires specification of a 
design matrix, and subsequent formulation of contrasts representing 
scientific hypotheses of interest. Proper execution of these steps 
requires a thorough understanding of the meaning of the individual 
coefficients, and is a frequent source of uncertainty for end users. 
Here, we present an R/Bioconductor package, ExploreModelMatrix, 
which enables interactive exploration of design matrices and linear 
model diagnostics. Given a sample data table and a desired design 
formula, the package displays how the model coefficients are 
combined to give the fitted values for each combination of predictor 
variables, which allows users to both extract the interpretation of each 
individual coefficient, and formulate desired linear contrasts. In 
addition, the interactive interface displays informative characteristics 
for the regular linear model corresponding to the provided design, 
such as variance inflation factors and the pseudoinverse of the design 
matrix. We envision the package and the built-in collection of common 
types of linear model designs to be useful for teaching and self-
learning purposes, as well as for assisting more experienced users in 
the interpretation of complex model designs.
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Introduction
Linear and generalized linear models are ubiquitous tools in a 
wide variety of scientific disciplines, and encompass well-known 
special cases such as linear and logistic regression, ANOVA  
and Student’s t-test. Of particular interest to us, they are also 
the basis for many of the most widely used tools for analysis of  
high-throughput biological data. This includes limma1,2 for linear  
modeling of gene expression microarray and similar data, as 
well as edgeR3,4 and DESeq25 for differential expression analysis 
of RNA-seq and other count data, missMethyl6, DMRcate7 and  
minfi8 for differential methylation analysis, DiffBind9 for dif-
ferential binding analysis, msmsTests10 for mass spectrometry, 
and many others. Since the linear model is a special case of the  
generalized linear model, and particularly as the aspects of 
defining the design matrix are shared between the two, we will  
generally refer to generalized linear models in the rest of this  
manuscript.

Fitting a generalized linear model requires observations of a 
response variable y (e.g., inferred abundance levels of a gene) 
as well as a set of continuous or categorical predictor variables  
or sample annotations (e.g. the sample genotype, age, or treat-
ment condition). In addition, in the R statistical programming  
environment, the user provides a design formula, specifying 
which, and how, provided predictor variables should be used to  
model the expected value of the response. The design formula 
in R is a version of a syntax for model specification originally  
proposed in 1973 by Wilkinson and Rogers11. This design  
formula and a specification of a type of contrast coding define 
a numeric N × J design matrix X, where N is the number of  
observations and J the number of model coefficients. The  
expected response values are then modeled by 

                                     ( )1[ ] ,E y g X β−=                                      

where β = (β
1
, . . . , β

J
) are the regression coefficients for 

the respective columns of the design matrix, and g is a link  
function12,13. X β is typically referred to as the linear predictor.  
After fitting the model, statistical tests can be performed to test 
the null hypothesis that a given combination of coefficients 
(referred to as a linear contrast) is zero. In this manuscript, we will  
focus on reference cell coding, or “treatment” coding for con-
trasts, though in general other schemes may also be considered.  
For more details on how R’s design formula functionality is 

implemented, we refer to the reference for statistical modeling  
in S14.

The way that the model is specified, that is, the definition of 
the design matrix, naturally determines how the model coef-
ficients should be interpreted. As an example, consider a  
situation with a linear model and a single categorical predictor  
with two levels. Defining a model including an intercept (a col-
umn of the design matrix with the value 1 for all observa-
tions) implies that the second regression coefficient represents 
the difference between the average response values for the two 
levels of the predictor, while without the intercept, the two 
regression coefficients directly represent the average response  
values for the two  factor levels. Given the versatility of gen-
eralized linear models, determining the proper contrast to 
use for testing a specific biological hypothesis of interest 
requires an understanding of the interpretation of the individ-
ual regression coefficients, and can be challenging for users of  
generalized linear model-based tools.

Here, we present ExploreModelMatrix15, an R package for inter-
active exploration of generalized linear model designs, coef-
ficients, and contrasts. Given a table of predictor variables, the  
user can specify the desired design formula and explore the 
value of the linear predictor for each combination of predictor 
values, expressed in terms of the model coefficients. From this  
type of visualization, it is often straightforward to determine 
the contrast corresponding to a given comparison of interest.  
We envision that ExploreModelMatrix can be useful for both 
research and teaching purposes. Specifically for the latter, the 
application contains several built-in example data sets, cor-
responding to some of the most commonly used experimental  
design setups. The underlying function in ExploreModelMatrix  
that processes the input data and generates visualizations  
can also be directly called by the user, enabling the  
generation of static plots for inclusion in reports and educa-
tional material. It is worth noting that ExploreModelMatrix is  
not intended as a self-contained resource on generalized lin-
ear models, but rather as a complement to existing books and 
courses on the topic, and the application contains a list of  
suggested material for further study.

Methods
Operation
ExploreModelMatrix15 is implemented as an R package16, 
using the Shiny framework17. The package is available via  
Bioconductor18 (from release 3.11 onwards), with the current 
development version accessible via GitHub. The package has  
been tested with R version 3.6 and later.

An instance of the interactive application is launched by calling 
the ExploreModelMatrix() function. This function accepts 
two optional arguments; a data.frame with one row per  
observation and each column corresponding to a measured pre-
dictor variable (below referred to as the sample data table), 
and a design formula. If the ExploreModelMatrix()  
function is called without any arguments, the user can either 
explore one of the built-in designs, or load a sample data table 

           Amendments from Version 1
The manuscript has been revised in response to the reviewers’ 
comments, specifically by:

* clarifying the target audience and the purpose of the package

* adding an additional use case (and a corresponding new Figure 2)

* updating Figure 1 to represent the current version of the 
software

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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Figure 1. Screenshot of the ExploreModelMatrix interface. This example shows a model with two predictors (genotype and treatment), 
each with two levels, and with the assumption that their effects are additive. Red circles with letters were added to be able to refer to specific 
parts of the interface in the text.

from a tab-separated text file. The design formula can always  
be specified or modified interactively in the application. If 
the user wishes to generate the visualizations independently  
of the interactive interface, this can be achieved via the  
VisualizeDesign() function, which is also called internally 
by ExploreModelMatrix().

Implementation
The user interface of ExploreModelMatrix consists of a side 
bar with control widgets and a main window containing a set of 
fixed, but collapsible, panels, each illustrating a different aspect 
of the design matrix or the associated standard linear model  
(Figure 1). A more detailed explanation of each panel is  
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accessible via the guided tour of the interface, implemented via 
the rintrojs package19 and accessible by clicking on the question 
mark icon in the top right corner (represented by the letter O in  
Figure 1). In addition, clicking on the question mark icon 
within a specific panel opens up the guided tour at the  
corresponding step.

Given a sample data table and a design formula, either  
provided by the user or obtained via one of the built-in designs, 
ExploreModelMatrix will first check that the two objects 
are compatible, i.e., that the terms in the design formula  
use only variables that are present in the sample data table, 
and that the design formula is supported by the package. If 
no problems are detected, ExploreModelMatrix will create a  
design matrix using the model.matrix() R function. The full 
sample data table, a summary of its columns, and the resulting  
design matrix are all displayed in the application interface 
for convenience (see G-I in Figure 1). In addition, the rank  
of the design matrix is calculated (J). If the design matrix is 
not full rank, ExploreModelMatrix will display a warning,  
together with an indication of the coefficients that are not  
estimable (using the nonEstimable() function from the 
limma R package1,2). In addition, ExploreModelMatrix will 
inform the user if the number of rows (observations) in the design 
matrix is the same as its rank, in which case there are no resid-
ual degrees of freedom, and the variance or dispersion cannot  
be estimated.

Expressed in terms of the model coefficients, the panel in the 
first row of the application (F) illustrates, in graphical and 
tabular form, the value of the linear predictor in a generalized  
linear model, for each combination of levels for the predictors 
used in the design formula. This provides an intuitive under-
standing of the interpretation of each of the model coefficients,  
and can be helpful for specifying appropriate contrasts.

The panels in the lower part of the interface (K, L, N) should 
largely be interpreted in the context of standard linear mod-
els, where coefficient estimates are obtained using least squares  
fitting. The pseudoinverse P=(XT X)−1 XT20–22 represents the way 
each observed response value would contribute to the coefficient 
estimates. More precisely, in such a linear model represented by 

                                          ,y X β ε= +                                          

the estimated regression coefficients are given by 

( ) 1ˆ .β
−

= =T TX X X y Py

ExploreModelMatrix also estimates variance inflation factors 
and correlations among the coefficient estimates. Finally, the  
co-occurrence plot in the bottom left panel (M) shows the number 
of observations in the data set for each combination of levels  
of the predictor variables.

The controls in the left-hand sidebar can be used to inter-
actively modify the studied design as well as the display  

parameters of the panels. The text box in the top (A) allows the 
user to type in a design formula (starting with the ~, or “tilde” 
character), and the displayed figures will be updated accord-
ingly. The dropdown menu immediately below (B) contains 
the built-in example designs. To use the sample data table pro-
vided either as an argument to ExploreModelMatrix()  
or uploaded into the app at run time, select --- here. The next 
section of controls (C) lets the user control which level should be  
considered the “baseline” or reference level for each categorical  
or factor variable in the model. ExploreModelMatrix will  
convert each character variable to a factor when a sample 
data table is loaded; by default the baseline level will be the  
first in alphabetical order.

In cases where the design matrix is not of full rank, it may 
be desirable to exclude a subset of the columns in the design  
matrix (for example, columns with all zero values or columns that  
are linear combinations of other columns). This can be done in 
the “Drop columns” section (D). As mentioned above, in the  
case of a non-full rank design matrix, ExploreModelMatrix will 
indicate which coefficients are not estimable and thus candi-
dates for being dropped. The final group of controls (E) provide  
the ability to change the way the panels are displayed, e.g. by 
setting the height of the plot panels and changing the size and  
display mode of the text.

Use case
Figure 1 illustrates the ExploreModelMatrix output for a fac-
torial design with two predictors (genotype and treatment).  
We consider the effects of the two predictors to be additive, 
which is indicated by the design formula (~ genotype + treat-
ment). From the graphical representation of the fitted values (also 
shown in Figure 2A), we can, for example, conclude that the 
intercept in the model directly represents the fitted value for the 
‘genotype A, control’ group of samples. Similarly, the fitted value  
for the ‘genotype A, treated’ group is given by the sum of the 
intercept and the treatmenttrt coefficient. If we are inter-
ested in performing a hypothesis test to compare the treated  
and control groups for the samples with genotype A, we 
need to formulate a suitable linear contrast. Using the  
ExploreModelMatrix representation, the estimated effect size 
can be obtained by subtracting the fitted value for the ‘genotype 
A, control’ group from that of the ‘genotype A, treated’ group. 
The result is simply treatmenttrt, which indicates that a  
significance test for the difference between the two treatment 
groups in genotype A samples can be obtained by testing whether 
the coefficient treatmenttrt is zero. Interestingly, performing  
the same exercise in the genotype B samples yields the same  
result, indicating that the treatmenttrt coefficient repre-
sents the treatment effect in each of the two genotypes. This is a 
result of using an additive model. Changing the provided design 
formula to include an interaction between the two predictors  
(~ genotype + treatment + genotype:treatment; Figure 2B) 
changes the interpretation. Now, while the treatment effect in the 
genotype A samples is still represented by the treatment-
trt coefficient, the treatment effect in the genotype B samples is  
represented by the sum of the treatmenttrt and geno-
typeB:treatmenttrt coefficients. The interaction effect, that 
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is, the difference between the treatment effects in the two genotype  
groups, is represented by the genotypeB:treatmenttrt 
coefficient. This example illustrates how the ExploreModelMatrix 
interface can be used to interpret coefficients in generalized  
linear models and create contrasts of interest.

To further illustrate how ExploreModelMatrix15 can be used to 
interpret the coefficients in a complex experimental design, we 
consider the example of differential allele-specific expression  

analysis with RNA-seq data. Generalized linear models for 
count data often use the log link function, and we assume this 
to be the case in some of the interpretations below. This type of 
experiment contains different groups of subjects (e.g., from dif-
ferent experimental conditions), where each subject contributes  
two columns in the read count matrix: one representing the read 
counts for the reference allele, and one representing those for 
the alternative allele, for each considered gene. Typical sci-
entific questions of interest are whether there are differences 

Figure 2. Values of the linear predictor, in terms of the model parameters, for the two-factor example design, with and without 
an interaction term.
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between the expression of the two alleles within each condition,  
and whether there are differences in the allele-specific expres-
sion patterns between the conditions. Similar setups can be 
observed, for example, in differential methylation experiments 
(where the two columns for each sample would correspond to  
methylated and unmethylated read counts for a feature), or in 
situations where individuals from different groups are each  
given the same set of treatments.

The sample data table considered here is provided in Table 1. 
In addition to the columns containing the subject identi-
fier, the condition and the count type (reference or alternative  
allele), we include a column corresponding to a within-condition  
relabeling, or dummy encoding, of the subject identifier. Note 
that this dummy subject identifier has only three levels, com-
pared to six for the original subject identifier. This design 
setup is available among the example designs provided within  
ExploreModelMatrix, denoted “Two crossed, one nested fac-
tor (manuscript example)”. We will illustrate two equivalent  
ways of setting up the design formula, and show how ExploreMod-
elMatrix can help in the interpretation of the model coefficients.

First, we specify the design formula 

∼condition + condition:subjectdummy + condition:count,

including an overall condition effect, a term to account for  
sample-specific effects, and an interaction between the condition  
and count type columns to capture allele-specific expression 
within each condition. In R’s design formula syntax, a “:” between 
two variable names indicates the addition of an interaction  
term between these two variables, which may have a different 
effect on columns of X depending on whether these are numeric 

or factor variables, and what other terms are in the design. Given  
this design formula together with the sample data table from 
Table 1 as the input arguments, the ExploreModelMatrix 
functions determine the composition of the linear predictor for 
each combination of predictor variables shown in Figure 3A 
(corresponds to panel (F) in Figure 1, shown here separately for  
increased readability). The Rank panel in the application fur-
ther indicates that the design matrix is of full rank and that the 
residual degrees of freedom is non-zero, allowing also estima-
tion of variances or dispersions for use in statistical hypoth-
esis tests involving the estimated coefficients. The illustration in  
Figure 3A can be used to extract appropriate contrasts for sta-
tistical testing. For example, comparing the values of the linear 
predictor for each sample in the control group, we can see that 
the conditioncontrol:countalt coefficient repre-
sents the allele-specific expression effect (alt/ref expression 
log-ratio) in this group. Similarly, the conditiontreated: 
countalt coefficient represents the allele-specific expression 
in the treated group. As a consequence, the condition-dependent 
allele-specific expression effect is obtained as the difference 
between the allele-specific effects within the respective con-
ditions, that is, by conditiontreated:countalt -  
conditioncontrol:countalt.

Next, we illustrate an alternative way of setting up the  
design matrix, by specifying the design formula as 

∼ condition*count + subject.

Here, we use the original subject ID (not the dummy encoded), 
and include main effects for condition and count type as well 
as an interaction between the condition and the count type. In 
R’s design formula syntax, a “*” between two variable names 
indicates the addition of both main effects and an interaction 
term  between these two variables. Upon changing the design  
formula in ExploreModelMatrix, we are notified that the 
design matrix is no longer full rank, as a consequence of hav-
ing different subjects in the different conditions. Dropping the  
subjectS4 column results in a full-rank design matrix, and 
the composition of the linear predictor is shown in Figure 3B. 
The rank of the design matrix, as well as the residual degrees 
of freedom, are the same as with the previous formulation.  
However, the composition of the linear predictor for each com-
bination of input variables is different. Comparing the alternative 
and reference allele groups for the control condition shows that 
with this formulation, the allele specificity in the control group 
is encoded by the countalt coefficient. Similarly, the allele 
specificity in the treated group is represented by the sum of the 
countalt and conditiontreated:countalt coeffi-
cients. Consequently, the difference in allele specificity between 
the treated and control group is now directly encoded in the  
conditiontreated:countalt coefficient.

Both model formulations can be used to analyze this type of 
data, and the purpose of ExploreModelMatrix is not to select 
the ‘best’ among a set of plausible models, but rather to assist 
the user in the interpretation of a chosen model. The exam-
ple above stresses that knowing how to interpret a given  

Table 1. Sample data table for the allele-specific 
differential expression use case.

subject count condition subjectdummy

S1 ref control D1

S1 alt control D1

S2 ref control D2

S2 alt control D2

S3 ref control D3

S3 alt control D3

S4 ref treated D1

S4 alt treated D1

S5 ref treated D2

S5 alt treated D2

S6 ref treated D3

S6 alt treated D3
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Figure 3. Values of the linear predictor, in terms of the model parameters, for the allele-specific expression use case. A. Using 
the design formula ~ condition + condition:subjectdummy + condition:count. B. Using the design formula ~ condition*count + subject.
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References

coefficient in a generalized linear model is critical, that identi-
cally labelled coefficients can have different meanings depend-
ing on the chosen design formula, and that ExploreModelMatrix  
can help the user interpret the resulting coefficients for  
a given choice of design formula and set up an appropriate  
contrast.

Summary
We have described the ExploreModelMatrix R/Bioconductor 
package15, which enables interactive exploration for increased 
understanding of model coefficients in linear and general-
ized linear models. To the best of our knowledge, this is the first  
package of its kind, and we envision applications for both 
research and educational purposes. The application requires mini-
mal input and can be launched from a local R session, as well 
as be deployed on a Shiny server. An example instance of the  
latter is available at http://shiny.imbei.uni-mainz.de:3838/
ExploreModelMatrix/, and the process for deploying an instance 

of the application on a Shiny server is documented in one of the  
vignettes accompanying the software.
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Software availability
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The authors have addressed my main concerns and the manuscript is now suitable for publication 
in F1000Research.  
 
However, in order to ensure the utility of ExploreModelMatrix both as a guided and self-learning 
teaching tool, I would strongly encourage the authors to eventually conduct a user study, perhaps 
in a classroom setting, to assess whether their tool and the features of their tool achieve their 
stated goal of "helping users interpret a given design and to understand how changing the design 
influences the way they would perform a given comparison of interest." 
 
For example, I still find the "Choose reference levels" dropdown panels with the options ordered 
alphabetically rather by the given level ordering to be confusing from a user standpoint, 
particularly given that the fitted values plot does use the level ordering. While the authors suggest 
that the alphabetical ordering "was intentionally designed in this way" as they "reasoned that it's 
typically easier to find the desired level in a list of the options are listed alphabetically", which 
ordering is more intuitive for users is best assessed through an actual user study (rather than 
based on an N=1 feedback from myself).
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, Applied Statistics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 12 October 2020

https://doi.org/10.5256/f1000research.29479.r71435

 
Page 10 of 25

F1000Research 2020, 9:512 Last updated: 02 NOV 2020

https://doi.org/10.5256/f1000research.29479.r71434
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0212-5451
https://doi.org/10.5256/f1000research.29479.r71435


© 2020 D'Agostino McGowan L. This is an open access peer review report distributed under the terms of the 
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.

Lucy D'Agostino McGowan   
Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, NC, USA 

Thank you for addressing the points of my review, this paper and package will provide a nice 
teaching tool.
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Understanding how to set up a design matrix is a significant challenge in genomic data science, 
especially for new analysts. The manuscript by Soneson et al. presents the ExploreModelMatrix R 
package which aims to give the user better intuition on this for any arbitrary design. 
 
This is great contribution and would be really useful in a teaching setting (e.g. when running an 
Intro to RNA-seq analysis course) to help participants understand how a linear model is 
parameterised and how this can be changed to suit different biological questions. At the other 
extreme it is also helpful in the interpretation of coefficients in more complicated designs that 
include interactions. 
 
The ExploreModelMatrix output is provided via a shiny app which allows the user to interactively 
change either their own design based on the data.frame supplied, or choose from a series of 
standard examples, which was easy to navigate. I particularly liked the interactive tour of the 
different elements of the interface provided by rintrojs. 
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Overall, I really enjoyed using this package and list a few optional suggestions below to help 
further improve the work.

It might be useful to add a sentence about the intended audience of the package to the 
abstract. 
 

1. 

Can a window be given to show what the line of code looks like to make the design matrix? 
Just thinking about beginners, who could start the app with ExploreModelMatrix(), choose 
an example design and then immediately see what code they would need to run at the R 
command prompt to create the design they're interested in (again helpful for teaching). 
This would provide a concrete output that the user could take forward in their analysis with 
a simple copy and paste. Likewise, if they provided their own data frame they will know 
what to do with it in terms of specifying model.matrix(). 
 

2. 

Would it be possible to create a dummy x vs y plot (perhaps by simulating data) to show 
what a fit might look like for theoretical y? This might be rather complicated to implement in 
practice given the wide array of models one could envisage, however, such a display would 
provide an intuitive view of what the coefficients represent graphically.   
 

3. 

If a model is parameterised without an intercept, it will generally be necessary to define 
contrasts between coefficients. Is there a way to point this out to the user in the app, or can 
a module be added to help set-up contrasts to show how this is done and again provide 
code that the analyst could then use in their analysis? 
 

4. 

On page 3, column 2, paragraph 4, line 2 there appears to be a formatting problem with 
th'e' in 'the ExploreModelMatrix()' 
 

5. 

In the 'Use cases' section, I wondered whether the simple example that features in Figure 1 
could be stepped through (again to appeal to beginners) in addition to the complex ASE 
analysis example of Table 1 and Figure 2 which is likely to be more niche. 
 

6. 

In the interactive tour of the interface, the rendering of some equations hasn't occurred 
properly in steps 19 and 22. 
 

7. 

When you 'Flip coordinates' in the Fitted values / Co-occurrence plot, the y-axis labels aren't 
preserved in the flip (not sure if this is intentional) 
 

8. 

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
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and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Gene expression analysis

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 07 Sep 2020
Charlotte Soneson, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland 

Understanding how to set up a design matrix is a significant challenge in genomic data 
science, especially for new analysts. The manuscript by Soneson et al. presents the 
ExploreModelMatrix R package which aims to give the user better intuition on this for any 
arbitrary design. This is great contribution and would be really useful in a teaching setting 
(e.g. when running an Intro to RNA-seq analysis course) to help participants understand 
how a linear model is parameterised and how this can be changed to suit different 
biological questions. At the other extreme it is also helpful in the interpretation of 
coefficients in more complicated designs that include interactions. 
The ExploreModelMatrix output is provided via a shiny app which allows the user to 
interactively change either their own design based on the data.frame supplied, or choose 
from a series of standard examples, which was easy to navigate. I particularly liked the 
interactive tour of the different elements of the interface provided by rintrojs. 
Overall, I really enjoyed using this package and list a few optional suggestions below to help 
further improve the work. 
 
Thank you for your constructive comments and careful evaluation of the software. Point-by-point 
responses are provided below.  
 
It might be useful to add a sentence about the intended audience of the package to the 
abstract. 
 
We have added a sentence about this in the abstract. 
  
Can a window be given to show what the line of code looks like to make the design matrix? 
Just thinking about beginners, who could start the app with ExploreModelMatrix(), choose 
an example design and then immediately see what code they would need to run at the R 
command prompt to create the design they're interested in (again helpful for teaching). 
This would provide a concrete output that the user could take forward in their analysis with 
a simple copy and paste. Likewise, if they provided their own data frame they will know 
what to do with it in terms of specifying model.matrix(). 
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This is an interesting point and something that we may consider in a future version. One 
challenge is that different analysis packages require the design to be specified in different ways 
(e.g., as a design formula, or as a design matrix), and in some cases will automatically deal with 
e.g. non-estimable parameters. Thus, it is not obvious how to provide this code to make it as 
useful as possible.   
 
Would it be possible to create a dummy x vs y plot (perhaps by simulating data) to show 
what a fit might look like for theoretical y? This might be rather complicated to implement in 
practice given the wide array of models one could envisage, however, such a display would 
provide an intuitive view of what the coefficients represent graphically. 
 
We agree that such plots are often instructive for the user, and some examples are included e.g. 
in the Data Analysis for the Life Sciences book, which we now also refer to in the application as an 
additional resource. Implementing them in a very general context, on the other hand, is a non-
trivial task, and furthermore there is a risk that a user is misled if the coefficients estimated from 
the simulated response are different (perhaps with opposite signs) compared to those obtained 
from their actual data. For these reasons, we currently consider this out of scope for 
ExploreModelMatrix.  
  
If a model is parameterised without an intercept, it will generally be necessary to define 
contrasts between coefficients. Is there a way to point this out to the user in the app, or can 
a module be added to help set-up contrasts to show how this is done and again provide 
code that the analyst could then use in their analysis? 
 
We have expanded on the use case section in the manuscript to provide additional guidance on 
how the ExploreModelMatrix interface can be used to generate contrasts.  
  
On page 3, column 2, paragraph 4, line 2 there appears to be a formatting problem with 
th'e' in 'the ExploreModelMatrix()' 
 
Thanks for pointing this out. We hope that this has been resolved in typesetting of the revised 
version.  
  
In the 'Use cases' section, I wondered whether the simple example that features in Figure 1 
could be stepped through (again to appeal to beginners) in addition to the complex ASE 
analysis example of Table 1 and Figure 2 which is likely to be more niche. 
 
In the revised manuscript, we have added a paragraph walking through the design in Figure 1 
and showing how ExploreModelMatrix can be used to interpret coefficients and generate 
contrasts of interest.  
  
In the interactive tour of the interface, the rendering of some equations hasn't occurred 
properly in steps 19 and 22. 
 
This is correct - unfortunately the rintrojs package currently doesn't support proper rendering of 
equations via e.g. MathJax. We have initiated a discussion with the developer and hope that a 
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solution can be engineered - in the meantime, we hope that the non-rendered equations still 
provide some help with the interpretation.    
  
When you 'Flip coordinates' in the Fitted values / Co-occurrence plot, the y-axis labels aren't 
preserved in the flip (not sure if this is intentional) 
  
We were not able to reproduce this behaviour - when the coordinates are flipped, the labels are 
flipped as well. If you would be willing to open an issue in the GitHub repository with a 
reproducible example, that would be super helpful!  
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Summary 
 
This article describes an R package and corresponding shiny application, ExploreModelMatrix, that 
can be used to explore design matrices for linear models. I can see this having a lot of utility for 
helping partitioners understand their design for simple research questions or for pedagogical use 
in the classroom. While I see this being extremely useful, the current design falls somewhere in 
the middle, a bit basic for complex research questions and a bit too complex for those with little 
statistical background. My suggestions assume that the primary user will be in the latter group. 
 
Major Comments

The main take away seems to be from the "fitted values" boxes (both the plot and the table 
at the top of the application display this information). These seem to show the exact same 
content, so it feels repetitive to have both. The table is much more legible, but I can also see 
the utility of visualizing this. Perhaps these should be a single box with two tabs, one with 
the table and one with the plot. I find the content in these depictions of the fitted values 
confusing, the variable names here are referring to the beta coefficients from the model, 
not the variable values themselves. To someone familiar with R / model output this may be 
obvious, but I'm not sure that is the case for the target user. Additionally, the use of : to 
indicate an interaction is not something I would expect novice users to know. If this is 
meant to help users interpret/calculate fitted values after they fit their models, perhaps the 
"pseudo" model output could be printed above the "fitted values" plot/table. This would 
explain where the values that are being plugged into each of these variable names come 

1. 
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from. Additionally, this fitted values plot becomes quickly illegible, it would be great to have 
some simple defaults built in to expand the plot space if there are several inputs (see #5). 
 
There are several terms used in the application that may not be familiar to those without 
statistical/mathematical backgrounds. It would be great to have definitions provided to 
explain the plots/terms. For example, you could have a question mark next to each term 
that will pop up an explanation when the user hovers. Terms that need defining in the 
application: Design Matrix, Pseudoinverse of the design matrix, Variance inflation 
factors, Co-occurrence plot.  
 

2. 

Several of the boxes output `code` type texts (for example "Design matrix" and "Sample 
table summary") I am not sure what the utility of this being in this format is. If this was 
something the user could copy and paste into R, for example, this design choice would 
make sense, but I don't believe that is the purpose. 
 

3. 

The first argument of the R function is `sampleData`, however everywhere else in the 
application/documentation this is referred to as a `sample table`. This should be consistent.  
 

4. 

There are several pieces for the user to control that could have some better defaults based 
on user inputs (for example the height of the plots, the size of the text, etc). Especially for a 
novice user, it would be great if the defaults for these values were reactive (updated based 
on the user input) and were mostly correct, allowing for tweaking only if absolutely 
necessary. In that case, you could hide these options in an "Advanced plot settings" tab in 
the sidebar, rather than having them visible when the user first opens the application. I 
think this would greatly improve the user experience.

5. 

 
Minor Comments

The "Rank" box outputs text using the textOuput() function, this means that you end up with 
a [1] prepending the text (which may be confusing to a novice user). Using renderUI() 
and uiOutput() instead would remove this [1]. 
 

1. 

If you remove the value from some of the numeric inputs, you end up with an error that is 
hard to parse ("An error has occurred. Check your logs or contact the app author for 
clarification."). You can check for whether the values needed for each value/plot are input 
using the validate() function and provide better error messages if not. (It looks like this is 
done for the formula input, just needs to be done for other inputs, for example, plot height, 
text size, etc.)

2. 

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes
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Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Biostatistics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 07 Sep 2020
Charlotte Soneson, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland 

Summary 
 
This article describes an R package and corresponding shiny application, 
ExploreModelMatrix, that can be used to explore design matrices for linear models. I can 
see this having a lot of utility for helping partitioners understand their design for simple 
research questions or for pedagogical use in the classroom. While I see this being extremely 
useful, the current design falls somewhere in the middle, a bit basic for complex research 
questions and a bit too complex for those with little statistical background. My suggestions 
assume that the primary user will be in the latter group. 
 
Thank you for your constructive comments. Please find point-by-point responses to each 
comment below.  
 
Major Comments 
 
The main take away seems to be from the "fitted values" boxes (both the plot and the table 
at the top of the application display this information). These seem to show the exact same 
content, so it feels repetitive to have both. The table is much more legible, but I can also see 
the utility of visualizing this. Perhaps these should be a single box with two tabs, one with 
the table and one with the plot.  
 
This is a good idea, and also frees up more of the horizontal screen space for the plot. In the 
revised version of the package (v1.1.5, available on GitHub and in the devel branch of 
Bioconductor), these two representations are now shown in a single box with two tabs. 
 
I find the content in these depictions of the fitted values confusing, the variable names here 
are referring to the beta coefficients from the model, not the variable values themselves. To 
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someone familiar with R / model output this may be obvious, but I'm not sure that is the 
case for the target user. Additionally, the use of : to indicate an interaction is not something 
I would expect novice users to know. If this is meant to help users interpret/calculate fitted 
values after they fit their models, perhaps the "pseudo" model output could be printed 
above the "fitted values" plot/table. This would explain where the values that are being 
plugged into each of these variable names come from. Additionally, this fitted values plot 
becomes quickly illegible, it would be great to have some simple defaults built in to expand 
the plot space if there are several inputs (see #5). 
 
The main motivation for this representation is to simplify the interpretation of the beta 
coefficients and the generation of appropriate contrasts. The actual values of the predictor 
variables are given as row and column names, and when combined provide a "label" for each 
box in the plot. For example, in the example shown in Figure 1, to find the estimated genotype 
effect in the control group, one would take the fitted value for the "genotype B" control samples 
((Intercept) + genotypeB) and subtract the fitted value for the "genotype A" control samples 
((Intercept)). The result (genotypeB) is the coefficient (column) in the design matrix to test for 
significance. Thus, it is essential that what is shown in the figure/table are the coefficient names 
(as generated by R's model.matrix()), since they are directly referred back to the column names of 
the design matrix. It is, in a way, less important to understand exactly why the coefficients are 
named as they are - the important thing is to be able to extract the proper combination of them 
for testing. We have addressed the automatic space allocation for the panel depending on the 
number of predictors and levels - see comment below.  
  
There are several terms used in the application that may not be familiar to those without 
statistical/mathematical backgrounds. It would be great to have definitions provided to 
explain the plots/terms. For example, you could have a question mark next to each term 
that will pop up an explanation when the user hovers. Terms that need defining in the 
application: Design Matrix, Pseudoinverse of the design matrix, Variance inflation factors, 
Co-occurrence plot.  
 
The tour provided with the application (accessible via the question mark icon in the top-right 
corner) provides some of these descriptions and additional help for interpretation. In the revised 
version, we have expanded on these and also added links to external documentation. In addition, 
we have added a question mark to each panel. Clicking on this will open the corresponding step 
of the built-in tour.  
  
Several of the boxes output `code` type texts (for example "Design matrix" and "Sample 
table summary") I am not sure what the utility of this being in this format is. If this was 
something the user could copy and paste into R, for example, this design choice would 
make sense, but I don't believe that is the purpose. 
 
The original purpose of this formatting was to display the output as it would be shown in R, to 
make it easier for users to make the connection. For the sample table summary, it is also 
important to display the class of each column (to see, for example, if a column that displays as 
numbers is really a factor). In the revised version of the package, the user has the choice of 
whether to display the design matrix as a data table or as 'regular' R output. 
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The first argument of the R function is `sampleData`, however everywhere else in the 
application/documentation this is referred to as a `sample table`. This should be consistent.  
 
We have updated the application to be more consistent by replacing 'sample table' by 'sample 
data table'. We have also updated the text in the manuscript for consistency.  
  
There are several pieces for the user to control that could have some better defaults based 
on user inputs (for example the height of the plots, the size of the text, etc). Especially for a 
novice user, it would be great if the defaults for these values were reactive (updated based 
on the user input) and were mostly correct, allowing for tweaking only if absolutely 
necessary. In that case, you could hide these options in an "Advanced plot settings" tab in 
the sidebar, rather than having them visible when the user first opens the application. I 
think this would greatly improve the user experience. 
 
In the revised package, we have implemented a reactive panel size for the fitted values plot, 
which changes with the total number of displayed 'rows' (number of panels x number of levels of 
the predictor shown on the y-axis). It is still possible to tweak if desired. We now also collapse all 
plot settings in the sidebar by default.  
 
Minor Comments 
 
The "Rank" box outputs text using the textOutput() function, this means that you end up 
with a [1] prepending the text (which may be confusing to a novice user). Using renderUI() 
and uiOutput() instead would remove this [1]. 
 
We have changed the renderPrint() in these statements to renderText(), which removes the [1]. 
  
If you remove the value from some of the numeric inputs, you end up with an error that is 
hard to parse ("An error has occurred. Check your logs or contact the app author for 
clarification."). You can check for whether the values needed for each value/plot are input 
using the validate() function and provide better error messages if not. (It looks like this is 
done for the formula input, just needs to be done for other inputs, for example, plot height, 
text size, etc.) 
 
This has been fixed, and the app now displays more informative messages if numeric inputs are 
not properly specified.   
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Executive Summary 
 
Choosing between different model designs is a common first step in hypothesis testing. Here, 
Soneson et al. created an R/Bioconductor package called ExploreModelMatrix that provides an 
interactive Shiny interface for exploring such model designs. While the potential utility of such a 
package in a guided teaching setting is evident, its utility in a research setting is currently limited 
by its inability to accommodate larger, more complex designs common to real biological research. 
Most pressingly, it remains unclear how each of the explorer's modules can be used to guide a 
non-mathematical user to choose the appropriate model design.  
 
--- 
 
Major comments:

Overall, it is unclear to me who is intended to be the target user for this package. The 
authors suggest that ExploreModelMatrix can be use in biological research or teaching, 
where many users will not be formal mathematicians. 
 
However, if I try to model using redundant variables, I get a warning "The design matrix is 
not full rank," which is a difficult message to interpret, particularly for non-mathematicians.  
 
Likewise, if the number of observations in the design matrix is the same as its rank, I get a 
warning "The residual degrees of freedom is 0. Values such as variances or dispersions can 
not be estimated from data with this design," which again is a difficult message to interpret, 
particularly for non-mathematicians.  
 
A more actionable jargon-free set of recommendations would be important for users.  
 

1. 

In biological research, it is not uncommon to have dozens of patients and dozens of cell-
types for multiple treatments across multiple time points for example. For designs with 
more than a few options per predictor, the current interface becomes quickly unusable. For 
example: 
 
``` 
celltype <- factor(sapply(1:10, function(x) rep(paste0('celltype', x), 30))) 
patient <- as.factor(sample(1:10, 300, replace=TRUE)) 
levels(patient) <- paste0('patient', 1:10) 
names(celltype) <- names(patient) <- paste0('cell', 1:300) 
 
sampleData <- data.frame(patient, celltype) 
head(sampleData) 
ExploreModelMatrix(sampleData = sampleData, 
                   designFormula = ~ patient + celltype) 
``` 
 

2. 
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The 'Fitted values', 'Pseudoinverse of design matrix', and 'Correlation plot', all become 
overlapping and illegible, rendering the interface unusable.  
 
Testing two different design formula (one with and one without intercepts): 
 
``` 
ExploreModelMatrix(sampleData = sampleData, 
                   designFormula = ~ genotype + treatment) 
ExploreModelMatrix(sampleData = sampleData, 
                   designFormula = ~ 0 + genotype + treatment) 
``` 
 
I was unable to achieve the author's stated goals of "extract[ing] the interpretation of each 
individual coefficient, and formulat[ing] desired linear contrasts" and ultimately deciding 
which design was best suited for my data. It is not clear how the 'variance inflation factors', 
'Pseudoinverse of design matrix', 'Co-occurrence plot', and 'Correlation plot' should be used 
to inform my decision.  
 
A video tutorial or walkthrough showing how this could be done would be useful. 

3. 

 
--- 
 
Minor comments:

I was unable to install the package using the instructions provided: 
 
``` 
> BiocManager::install("ExploreModelMatrix") 
Bioconductor version 3.9 (BiocManager 1.30.10), R 3.6.0 (2019-04-26) 
Installing package(s) 'ExploreModelMatrix' 
Warning message: 
package ‘ExploreModelMatrix’ is not available (for R version 3.6.0)  
``` 
 
Instead, I had to use: 
 
``` 
devtools::install_github('csoneson/ExploreModelMatrix') 
``` 
 

1. 

The "Choose reference levels" dropdown panels order the options alphabetically rather by 
the given level ordering. The fitted values plot does use the correct order though.  
 

2. 

All the functions and utilities that are available are not clear. For example, the "Flip 
coordinates" toggle was very useful and it took me awhile to find it. Again, video tutorial or 
walkthrough highlighting these features will be very helpful. 
 

3. 

If the annotation names ("subjectdummy", "condition", "count", etc) is too long, the Fitted 
values visualization becomes illegible as the text overlaps each other without wrapping. 

4. 
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
No

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
No
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Executive Summary 
 
Choosing between different model designs is a common first step in hypothesis testing. 
Here, Soneson et al. created an R/Bioconductor package called ExploreModelMatrix that 
provides an interactive Shiny interface for exploring such model designs. While the potential 
utility of such a package in a guided teaching setting is evident, its utility in a research 
setting is currently limited by its inability to accommodate larger, more complex designs 
common to real biological research. Most pressingly, it remains unclear how each of the 
explorer's modules can be used to guide a non-mathematical user to choose the 
appropriate model design.  
 
Thank you for your constructive comments. We provide point-by-point responses below. 
Generally, we would like to emphasize that the main purpose of the application is to help users 
interpret a given design, and to understand how changing the design influences the way you 
would perform a given comparison of interest, rather than choosing a design for a specific 
experiment (the latter needs to be guided by insights and expectations about the system at hand, 
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and possibly in consultation with a statistical collaborator).  
 
--- 
Major comments: 
Overall, it is unclear to me who is intended to be the target user for this package. The 
authors suggest that ExploreModelMatrix can be use in biological research or teaching, 
where many users will not be formal mathematicians. 
However, if I try to model using redundant variables, I get a warning "The design matrix is 
not full rank," which is a difficult message to interpret, particularly for non-mathematicians.  
Likewise, if the number of observations in the design matrix is the same as its rank, I get a 
warning "The residual degrees of freedom is 0. Values such as variances or dispersions can 
not be estimated from data with this design," which again is a difficult message to interpret, 
particularly for non-mathematicians.  
A more actionable jargon-free set of recommendations would be important for users.  
 
In the revised version, we have expanded on these messages and added links to external 
documentation. We have also expanded the built-in tour, which provides additional 
interpretation assistance for the different concepts. 
  
In biological research, it is not uncommon to have dozens of patients and dozens of cell-
types for multiple treatments across multiple time points for example. For designs with 
more than a few options per predictor, the current interface becomes quickly unusable. For 
example: 
``` 
celltype <- factor(sapply(1:10, function(x) rep(paste0('celltype', x), 30))) 
patient <- as.factor(sample(1:10, 300, replace=TRUE)) 
levels(patient) <- paste0('patient', 1:10) 
names(celltype) <- names(patient) <- paste0('cell', 1:300) 
sampleData <- data.frame(patient, celltype) 
head(sampleData) 
ExploreModelMatrix(sampleData = sampleData, 
                   designFormula = ~ patient + celltype) 
``` 
The 'Fitted values', 'Pseudoinverse of design matrix', and 'Correlation plot', all become 
overlapping and illegible, rendering the interface unusable.  
 
It is true that with a large number of levels for each factor, the available screen space can be too 
small. There are several ways around this. First, the size of the displayed text as well as of the 
panels can be modified. In the revised package we have implemented a reactive panel height for 
the fitted values plot, which should avoid the need for the user to change it manually. 
Furthermore, by combining the plot and table representations of the fitted values in one panel, 
the full width of the application is used for the plot. Second, if the number of levels becomes very 
large, it may be better to use the non-interactive interface where the output can be written to a 
file of arbitrary dimensions. Third, in order to understand a given type of model, it is often 
possible to work with a reduced version, with fewer levels per predictor but the same underlying 
structure.  
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Testing two different design formula (one with and one without intercepts): 
``` 
ExploreModelMatrix(sampleData = sampleData, 
                   designFormula = ~ genotype + treatment) 
ExploreModelMatrix(sampleData = sampleData, 
                   designFormula = ~ 0 + genotype + treatment) 
``` 
I was unable to achieve the author's stated goals of "extract[ing] the interpretation of each 
individual coefficient, and formulat[ing] desired linear contrasts" and ultimately deciding 
which design was best suited for my data. It is not clear how the 'variance inflation factors', 
'Pseudoinverse of design matrix', 'Co-occurrence plot', and 'Correlation plot' should be used 
to inform my decision.  
A video tutorial or walkthrough showing how this could be done would be useful.  
 
The main purpose of the application is to help users interpret a given design, and to understand 
how changing the design influences the way you would perform a given comparison of interest, 
rather than choosing a design for a specific experiment (the latter needs to be guided by insights 
and expectations about the system at hand). In the example above, the fitted values panel will 
inform the user about, e.g., the contrast required to compare two of the treatment groups. 
Neither design is more 'suitable' for the data, but depending on which one is selected, the 
contrast needs to be adapted. 
 
--- 
Minor comments: 
I was unable to install the package using the instructions provided: 
``` 
> BiocManager::install("ExploreModelMatrix") 
Bioconductor version 3.9 (BiocManager 1.30.10), R 3.6.0 (2019-04-26) 
Installing package(s) 'ExploreModelMatrix' 
Warning message: 
package ‘ExploreModelMatrix’ is not available (for R version 3.6.0)  
``` 
Instead, I had to use: 
``` 
devtools::install_github('csoneson/ExploreModelMatrix') 
``` 
  
ExploreModelMatrix was added to Bioconductor in release 3.11 (the current release, since April 
2020). Thus, in order to install it via BiocManager::install() you need to have the most recent 
Bioconductor release. We now mention this in the manuscript, and we have expanded a bit on the 
installation instructions in the README to clarify this point.  
 
The "Choose reference levels" dropdown panels order the options alphabetically rather by 
the given level ordering. The fitted values plot does use the correct order though.  
 
This was intentionally designed in this way - if the user wants to choose a new reference level, the 
current level ordering doesn't matter, and we reasoned that it's typically easier to find the desired 
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level in a list if the options are listed alphabetically.  
  
All the functions and utilities that are available are not clear. For example, the "Flip 
coordinates" toggle was very useful and it took me awhile to find it. Again, video tutorial or 
walkthrough highlighting these features will be very helpful. 
 
The application contains a walkthrough (accessible via the question mark in the top-right corner), 
pointing out useful features. Moreover, we have added a question mark button to each panel, 
which will open up the corresponding step in the tour. We have also moved the "Flip coordinates" 
toggle inside the panel with the fitted values plot for easier access.  
  
If the annotation names ("subjectdummy", "condition", "count", etc) is too long, the Fitted 
values visualization becomes illegible as the text overlaps each other without wrapping.  
 
This is difficult to manage automatically, since the actual width of the panel depends on the size 
of the browser window (as opposed to the height, which is set in pixels). It is best remedied by 
changing the font size of the displayed text in the side bar. We have intentionally kept the full 
coefficient name on a single line, to avoid misinterpretations and make it easier to match it back 
to the column names of the design matrix.  
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