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Abstract: Crack detection on dam surfaces is an important task for safe inspection of hydropower
stations. More and more object detection methods based on deep learning are being applied to crack
detection. However, most of the methods can only achieve the classification and rough location
of cracks. Pixel-level crack detection can provide more intuitive and accurate detection results for
dam health assessment. To realize pixel-level crack detection, a method of crack detection on dam
surface (CDDS) using deep convolution network is proposed. First, we use an unmanned aerial
vehicle (UAV) to collect dam surface images along a predetermined trajectory. Second, raw images
are cropped. Then crack regions are manually labelled on cropped images to create the crack dataset,
and the architecture of CDDS network is designed. Finally, the CDDS network is trained, validated
and tested using the crack dataset. To validate the performance of the CDDS network, the predicted
results are compared with ResNet152-based, SegNet, UNet and fully convolutional network (FCN).
In terms of crack segmentation, the recall, precision, F-measure and IoU are 80.45%, 80.31%, 79.16%,
and 66.76%. The results on test dataset show that the CDDS network has better performance for crack
detection of dam surfaces.
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1. Introduction

With the rapid development of water conservancy projects, to meet the needs of power generation,
shipping and irrigation, lots of hydropower stations are built. The dam is an important hydraulic
structure of hydropower stations. Cracks caused by structural deformation, earthquakes, water flow
impact and other factors have potential safety hazards for the normal operation of dam. Therefore,
regular crack detection plays a crucial part in the maintenance and operation of existing dams.
According to the morphological and apparent features of cracks, deterioration, and the potential causes
can be inferred, which provides reasonable guidance for structural health diagnosis [1]. The crack
detection of traditional human-based visual inspection is inefficient, subjective, and time-consuming.
Therefore, automatic and efficient crack detection is highly essential for a structural health assessment
of dams.

Automatic crack detection methods based on computer vision have been widely studied. Most
of these methods adopt image processing technology and machine learning algorithm which can
detect some simple types of structural damage [2,3]. Liu et al. [4] presented a method for tunnel crack
detection and recognition using features of crack intensity and the support vector machine algorithm.
Sinha and Fieguth [5] proposed a statistical filter for detection of cracks in the pipes by a two-step
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approach. Nishikawa et al. [6] developed multi-sequential image filter for detecting crack using several
simple image filters. Cha et al. [7] proposed a vision-based method for structural damage detection
by Hough transform and support vector machine. Shi et al. [8] proposed an automatic road crack
detection method based on random structured forests. Zalama et al. [9] presented Gabor filters for road
crack detection using AdaBoost algorithm. Li et al. [10] developed a method for bridge crack detection
by active contour model and greedy search-based support vector machine. Yamaguchi et al. [11]
introduced a crack detection method based on percolation model and length criterion. The accuracy of
crack detection was still potentially to be improved [12]. Hence, three kinds of improvements were put
forward: increasing the adaptation of global transforms [13–15], devising crack specific filters [16], and
combing multiple global and local detectors [17,18]. These methods extract features from images using
hand-picked feature and then evaluate whether the extracted features indicate defect. However, the
results of the above methods have been inevitably affected by subjective factors.

In recent years, convolutional neural networks (CNN) have made great progress in image
classification and target recognition [19–22]. Crack detection methods based on CNN have shown
better performance than traditional image processing technology and machine learning methods [23,24].
Li et al. proposed a new application scenario for applying YOLOv3 to crack detection on dam surfaces
and share its effects [25]. Makantasis et al. [26] proposed a tunnel crack detection method using deep
convolutional neural network and multi-Layer perceptron. In order to enhance accuracy of traditional
crack detection methods, Nhat-Duc et al. [27] developed a crack detection method employing edge
detection algorithms and CNN. Feng et al. [28] proposed a deep active learning system to maximize
the performance of crack detection, difficult cases were labeled by human experts in the training
epoch. Using UASs with self-navigation abilities and improving image-processing algorithms to
provide results near real-time could revolutionize the bridge inspection industry by providing accurate,
multi-use, autonomous three-dimensional models and damage identification [29].

Khaloo et al. [30] proposed that a combination of multiple drone platforms and multi-scale
photogrammetry technology was used to create two comprehensive and high-resolution 3D point
clouds of the dam and the surrounding environment. Dorafshan et al. [31] investigated the feasibility
of using a Deep Learning Convolutional Neural Network (DLCNN) in inspection of concrete decks and
buildings using small Unmanned Aerial Systems. Undeniably, these methods achieve excellent accuracy
of crack classification, but crack locating is highly necessary for crack detection. The Region-Based
deep learning method has been used for detecting cracks. Kim et al. [32] suggested a bridge crack
detection method combining unmanned aerial vehicles and region with convolutional neural networks
(R-CNN)-based transfer learning. Cha et al. [33] proposed a region proposal network method for
damage detection based on Faster R-CNN framework [34]. Xue et al. [35] proposed a fully convolutional
network method for shield tunnel lining defects using GoogLeNet and Faster R-CNN. Li et al. [36]
designed a supervised deep convolutional neural network and proposed novel training methods to
optimize its performance on simultaneous concrete defect detection. Extensive experiments showed
that the proposed method is effective with a detection accuracy of 80.7% and a localization accuracy of
86% at 0.41 s per image. Chen et al. [37] developed a deep convolutional neural network combined
with Naïve Bayes to detect crack patches of nuclear power plants. Although previous researchers have
proposed highly accurate methods for automatic crack detection, the existing detection methods cannot
be used to analyze the images of dams directly owing to the lack of generalization capability of these
methods. To achieve higher detection performance for cracks, a fully convolutional network (FCN)
method is used to detect cracks at the pixel level. Yang et al. [38] proposed an FCN by feeding multiple
types of cracks to semantically identify and segment pixel-wise cracks at different scales. Dung et
al. [39] proposed a crack detection method using VGG16-based encoder to extract feature, achieving
about 90% in average precision. Bang et al. [40] proposed a pixel-level detection method for identifying
road cracks in black-box images using a deep convolutional encoder–decoder network. The encoder
consists of convolutional layers of the residual network for extracting crack features, and the decoder
consists of deconvolutional layers for localizing the cracks in an input image. Li et al. [41] proposed
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a damage detection method based on the FCN to detect four concrete damages: cracks, spalling,
efflorescence, and holes. This method can indeed detect multiple concrete damages at the pixel
level in realistic situations. Various deep learning methods have been applied to crack detection
infrastructures, but successful application of these methods for detection crack on dam surface has
been rarely reported. The crack image of a dam surface has disadvantages such as large noise, complex
background texture, random location of cracks, etc. To overcome these problems, we propose a
pixel-level dam surface crack detection method using a deep convolutional network to extract features.
Using the positioning characteristics of shallow convolution layer and the abstract features of deep
convolution layer, multi-scale convolution cascade fusion and multi-dimensional loss value calculation
are performed to achieve pixel-level segmentation of crack defects, and solve the problem of apparent
crack detection on the dam surface with advantages such as high accuracy and high efficiency, eliminate
possible safety hazards, and ensure the safety of the dam surface. The experimental results show that
the proposed method is optimal for detecting pixel-level crack on dam surfaces.

2. Methodology

Semantic segmentation is one of the important research directions in the field of object detection.
It can achieve pixel-level target detection, and has made breakthroughs in scene understanding and
medical disease detection. For example, networks such as PSPNet [42], ICNet [43], Deeplabv3 [44],
UNet [45] and SegNet [46] show good performance in some open datasets. In general, the semantic
segmentation network consists of encoding network and decoding network [47]. In an encoding
network, convolutional layers are applied to extract features of the input image. Pool layers are used to
reduce the size of the feature map and the computational burden of network has also been decreased.
In the decoding network, deconvolutional layers are used to restore the feature map to the size of
the input image and output the prediction result. To make use of both the sparse and dense feature
map, the structure of encoding network and decoding network is highly symmetrical. The location
feature of the shallow layer and the abstract feature of the deep layer are fused by cascade operation.
The network can integrate multi-level features and improve performance by this connecting method.
In this paper, the symmetrical architecture of the network is used to detect cracks on the dam surface.
Crack pixels and background pixels are segmented from input image.

As shown in Figure 1, the schematic diagram of crack detection network. In our method, we
design a pixel-level CDDS network to detect crack on a dam surface. To integrate sparse and dense
features, we use a skip module to connect the encoding network and decoding network, and then
calculate the loss of each skip module to improve accuracy. Next, the structure of CDDS is introduced
in detail.
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Figure 1. The diagram of crack detection network.

2.1. The Architecture of CDDS Network

The architecture of CDDS network is shown in Figure 2. The entire CDDS network consists of
encoding and decoding parts, which is an improved structure combining the advantages of SegNet.
The encoding part consists of 15 convolutional layers and 4 pooling layers. The decoding part consists
of 15 convolutional layers and 4 deconvolutional layers. Both the encoding and decoding parts include
drop layers and batch normalization layers by default. A convolution layer with kernel size of 3 × 3
and stride of 1 is used to extract features of the input image. A pooling layer with kernel size of 2 × 2
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and stride of 2 is used to decrease the size of feature map, thereby reducing the computational burden.
In each deconvolutional layer, the kernel size is 1 × 1, the size of output depends on the step size.
The selection of kernel size is inspired by VGGNet [20] which can reduce the training parameters
and thus improve the network’s operating efficiency. Configuration of the convolutional layer of the
decoding part is the same as that of the convolutional layer of the encoding part. Between the encoding
part and the decoding part, four skip branches are derived from different convolutional layers of the
encoding network, the skip is inspired by DeepCrack [47]. Each skip branch is followed by a 1 × 1
convolutional operation and a deconvolutional operation. The result of the convolutional operation is
added to the corresponding convolutional layer in the decoding part. The deconvolutional result of
each branch is used to calculate a branch loss, and final the four losses are cascaded as part of total loss.
The deconvolutional output size of each skip branch is equal to the size of the input image.
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2.2. Convolutional Layer

The convolution is a basic operation for extracting image features in the field of deep learning.
In general, the convolution is performed on input images using a convolutional kernel with learnable
parameters and a fixed stride. Convolutional operations are essentially multiplication and addition
operations. The number of channels of the convolution kernel must be equal to the number of channels
of the input tensor. The number of channels of the output tensor can be changed by altering the
number of convolutional kernels. Each convolutional layer is followed by a corresponding bias, batch
normalization and activation function. In the convolutional layer, a nonlinear activation function is
used for nonlinear transformations. The CDDS network is trained by iteratively updating weight
parameters and bias parameters. As shown in Figure 3, the input image is a 4-dimensional tensor
with a size of 1 × 5 × 5 × 3, convolutional kernel size is 1 × 3 × 3 × 3, and final output tensor size is
1 × 3 × 3 × 1. It is worth noting that the output size of the feature map is determined by the size of
convolution kernel, padding method, and stride. Usually, if the same mode is selected, it means that
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the convolutional output resolution is equal to the input tensor resolution. The calculation formula is
as follows:

outputsize =

 inputsize
stride same

inputsize− f iltersize+1
stride valid

(1)

where the outputsize is the output size, inputsize is the input size, stride is the step, filtersize is the
convolution kernel size, the same means zero-padding, and valid means non-padding.
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2.3. Pooling Layer

Pooling is a basic operation for down-sampling in the field of deep learning. By reducing
resolution of feature map, the calculation amount of network is decreased. Pooling operation includes
two calculation methods: maximum pooling and average pooling. The maximum pooling uses a
sliding window without weights to slide on the input tensor, and retains the maximum value in the
sliding window as the output. The maximum pooling has the characteristics of translation invariance,
which can adapt to the situation that the object has a certain displacement. The average pooling also
uses a sliding window without weights to slide on the input tensor, and keeps the average of all values
in the sliding window as the output. Figure 4 shows an example of the principle of pooling operation,
the kernel size is 2 × 2, the stride is 2.
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2.4. Deconvolutional Layer

Deconvolution is also called transposed convolution, which is a basic up-sampling operation
in the deep convolutional network. To achieve end-to-end pixel-level prediction, the size of the
feature map is restored to the raw input image size by up-sampling. In general, the main methods
of up-sampling include deconvolution and interpolation. Deconvolution is a simple and reliable
up-sampling method that can transform small sparse matrices to large dense matrices. The calculation
method of deconvolution under different deep learning frameworks is slightly different. Take the
TensorFlow framework as an example, first the outermost layer of the input tensor is filled with zeros,
then the output tensor is calculated using a deconvolution kernel, and the last column and last row of
the output tensor are cropped. In summary, the principle of the deconvolution operation is similar to
that of the convolutional operation. The calculation process of deconvolution includes convolution,
padding and cropping. Figure 5 shows an example of deconvolution operation, where the size of the
input tensor is 1 × 3 × 3 × 4, the size of the deconvolution kernel is 2 × 3 × 3 × 4, and the size of the
output tensor is 2 × 6 × 6 × 1.
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3. Experiments

3.1. Crack Database of the Dam Surface

Dam images come from a dam of hydropower on the Jialing River, a tributary of the Yangtze
River. The manual collection method has the disadvantages of high labor costs, high security risks
and low efficiency. To quickly and efficiently establish the dam crack database, we use DJI MAVIC 2
professional UAV to collect images on the dam surface. The UAV is equipped with a 20-megapixel
high-definition camera and inspects the entire dam surface along the scheduled route. Throughout
the process, we control the UAV to maintain a fixed flight distance from the dam, and then make the
camera lens as parallel as possible to the dam surface. Finally, 1000 raw images with a resolution of
5472 × 3648 were obtained. Figure 6 shows a dam of a hydropower station on the Jialing River Basin.
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Table 1 shows the hardware equipment parameters and environmental parameters for image
collection on the dam surface.

Table 1. Dam surface image collection equipment and environmental parameters.

Hardware/Environmental Specifications/Parameters

UAV DJI MAVIC 2
Sensor 1”CMOS; Effective Pixels: 20 million

Camera Lens 35 mm Format Equivalent: 28 mm
Light Condition 5000 Lux–20000 Lux

Wind Speed 1 m/s–2 m/s
Total Collection Time 18 h
Collection Distance 3 m

To obtain effective images containing cracks, reduce the requirements for computer hardware
performance, and shorten the training time of the CDDS network, the raw images were cropped,
and flipped, and finally 504 images with a resolution of 608 × 608 were obtained. Each image contains
369,664 pixel samples, and the entire database contains 186,310,656 pixel samples. The ground truths
of the collected images are manually labeled at the pixel level using the LEAR software. The ground
truth of all the images was labeled by three laboratory colleagues with extensive labeling experience.
Professionals formulate labeling rules, that is, which pixels in the image are crack pixels and which
pixels are background pixels. To get accurate crack labels, it takes about 15 min to label an image.
All images and labels in the database are RGB three-channel PNG format. In the label image, black is
used to represent the background, and red is used to represent the cracks, that is, (0 0 0) represents the
background pixel and (255 0 0) represents the crack pixel. Figure 7 shows the labeling of crack pixels
using LEAR software.

To train the CDDS network and verify its performance, 80% of the samples in the database are
used for training, 10% of the samples are used for verification, and 10% of the samples are used for
testing. A total of 504 images in the database are randomly shuffled, 404 images are divided into
training dataset, 50 images are divided into the validation dataset, and the last 50 images are used as
the test dataset. Cracks on the dam surface have the disadvantages of patching, noisy images, complex
textures, unstructures, uneven distribution, and blurred backgrounds. These disadvantages bring
many challenges to crack detection on a dam surface. Figure 8 shows an example of crack images and
ground truths on the dam surface.
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3.2. Experimental Settings

TensorFlow is an open source deep learning framework. The architecture of the CDDS network is
built using TensorFlow on a Linux system. Training, verifying, and testing are performed on a HP
workstation configured with 8 GB GPU. The computational task of image is very suitable for GPU.
Anaconda is a software of environment creation; it can be used to create different python environments
for different scenarios. A virtual python environment for CDDS network is established using Anaconda.
CUDA and CUDNN are calculation libraries used to speed up GPU, thereby improving the training
speed of the network. The software version and hardware parameters of the workstation are shown in
Table 2.
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Table 2. Experimental software version and hardware configuration.

Hardware/Software Specifications/Parameters/Version

CPU Inter®Xeon(R) CPU E5-2650 v4 @ 2.20 GHz × 48
GPU Quadro P4000/PCIe/SSE2/8 GB
RAM 62.8 GB

CUDA 9.1
CUDNN 7.1.5
Python 2.7.5

Anaconda 3–5.1.0
TensorFlow 1.10

Each pixel is classified instead of the entire image for enabling pixel-level detection. The CDDS
network is trained with a batch size of one image, a momentum of 0.99, and a weight delay of 0.005
for 100 epochs. To verify initial learning rate, our training processes use the value of 10−4, 10−5, 10−6.
As the depth of deep convolutional network continues to increase, overfitting is prone to occur when
the number of training samples is insufficient. Dropout can reduce the complexity of the network and
improve its performance. Therefore, the CDDS network uses the dropout rate of 0.2. The rectified linear
unit (ReLU) was introduced [48] as a nonlinear activation function. It does not have the problem of
gradient disappearance because the gradients of the ReLU are always zero and one. Root Mean Square
Prop (RMSProp) is an optimization algorithm that optimizes the problem of excessive swing amplitude
of the loss function in the update, and further accelerates the convergence speed of the function. We
select ReLU as the activation function and RMSProp as the optimizer in the experiment. Every epoch,
30 images are randomly selected from the verification dataset to verify the performance of current
network. It takes about 9 h to complete training for the entire network. To make the network focusing
on crack samples, diceloss function is used to calculate the loss value of the network. The formula is
as follows.

loss =
2× true∩ pred

true∪ pred + true∩ pred
(2)

where true represents the ground truth of input image, pred represents prediction result of the network.

3.3. Evaluation Metrics of the Network

Pixel-level crack detection is essentially binary classification for each pixel. Precision, recall and
F-measure are classic evaluation indicators of binary classification. Therefore, these indicators can be
used to assess the performance of crack detection.

The precision represents the probability that the ground truth of the sample is also cracked
in all samples which were predicted to be cracked. The recall indicates the probability of sample
being predicted as cracked in all samples labeled as cracked. When there is a large gap between the
number of positive and negative samples, it is not reasonable to use only precision or recall to evaluate
performance. Considering the combined effect of recall and precision, F-measure is a comprehensive
indicator. IoU is commonly used in the field of object detection to evaluate locating accuracy. The IoU
represents the ratio of the intersection of the predicted result and the ground truth to that of union.
The crack image of the dam surface contains two categories of background and crack. The number of
background pixels is much larger than the number of crack pixels. Usually, we calculate the IoU of
background and the IoU of crack at the same time, and then use the average of the two IoUs as the final
IoU. The value of IoU is affected by the background pixels and cannot accurately express the locating
accuracy of the crack. It is more appropriate to use the IoU of the crack as a locating indicator in our
paper. The calculation formula for the evaluation indicators are as follows.

precision =
TP

(TP + FP)
(3)
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TPR = recall =
TP

(TP + FN)
(4)

TNR =
TN

(TN + FP)
(5)

F−measure =
2× recall× precision
(recall + precision)

(6)

IoUcrack =
TP

TP + FN + FP
(7)

IoUbackground =
TN

TN + FN + FP
(8)

where TP indicates that the ground truth is a crack pixel and the prediction result is also a crack pixel;
FP indicates that ground truth is a background pixel, but prediction result is a crack pixel; FN indicates
that ground truth is a crack pixel, but prediction result is a background pixel; TN indicates that ground
truth is a background pixel, and prediction result is also a background pixel. TPR represents the probability
of being correctly predicted as a crack in all samples labeled as cracks. TNR represents the probability
of being correctly predicted as the background in all samples with the label as the background. IoUcrack
represents the IoU of crack. IoUbackground represents the IoU of background. A more intuitive expression
is shown in Table 3.

Table 3. The detailed description of TP, FP, TN, FN.

Ground Truth
Prediction Results

Crack Background
Crack

Background
TP FN

FP TN

4. Results and Discussion

4.1. Results of CDDS Training

After the hyper-parameters are configured, the training of network parameters is launched.
The training dataset has 404 images, and one input image is used to train during each iteration, so that
each epoch requires 404 iterations to traverse the entire training dataset. At every iteration, the training
loss of the current network is calculated. After each epoch, the network weights are saved. The learning
rate has a certain effect on the network’s convergence speed, the network is trained with 3 different
learning rates. All images contain background and crack pixels, the output size of the CDDS network
is 608 × 608 × 2. The softmax function is used to obtain a probability, and then the dice-loss function is
applied to calculate the loss value of network. After the network training is completed, the precision,
recall, F-measure and IoU are calculated on the test dataset to assess performance of the network.

Figure 9 shows the loss curves of training and validating during the training of CDDS network.
The solid red line represents the loss curve in the training dataset, and the blue dotted line indicates the
loss curves in the verification dataset. To verify a proper initial learning rate, this experiment process
checked the values of 10−4, 10−5 and 10−6. It can be seen from the figure that the convergence rate is
the fastest with a learning rate of 10−4, although there is a gap between validating loss and training
loss, the gap is within the appropriate range. The gap between training loss and validating loss in (b) is
smaller than that of (a). The learning rate 10−5 does not perform as well as the learning rate 10−4 in the
test dataset, which may be caused by overfitting. The convergence rate of (c) is slow, the downward
trend is relatively stable, and the training loss curve is almost consistent with the validating loss curve.

Figure 10 shows the curve of evaluation indicators on the validation dataset over training process.
These evaluation indicators include: precision, recall, F-measure and crack IoU. Each indicator curve is
different at three different initial learning rates. Before the 20th epoch, the precision curve rises rapidly.
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Whether it is the recall, F-measure or crack IoU, the trend of the black curve with the learning rate
of 10−6 is relatively smooth. However, the convergence of the learning rate 10−6 takes a long time,
and it is more prone to overfitting. Although the precision curve with a learning rate of 10−4 fluctuates
significantly in the early stage, from the change trend of the recall rate, F-measure and IoU curves, the
CDDS network with the learning rate of 10−4 has a good convergence speed and performance.

Figure 11 shows the evaluation results of the CDDS network on the test data set, the learning
rate is 10−4. There are 50 images in the test dataset. The TNR, the TPR, the F-measure and the crack
IoU are calculated for each image. The evaluation indicators in the figure are arranged in ascending
order of each indicator. The trend of the F-measure line and the crack IoU curve are similar. The TNR
curve has a high amplitude, indicating that the recognition accuracy of the background pixels is high.
The highest value of each indicator exceeds 80%.
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4.2. Calculation of Crack Size on the Dam Surface

To more conveniently calculate the length, width, and area of the crack, skeleton extraction is
required for the crack. The result of skeleton extraction is to use a crack with a single pixel width
to represent the original crack. A commonly used skeleton extraction algorithm is a fast refinement
algorithm [49]. The skeleton is quickly extracted by calling the opencv library. When the width of the
skeleton is the width of a single pixel, the length of crack can be obtained by summing the skeleton
pixels, the area is the sum of crack pixels, and the average width is obtained by the ratio of the area to
the length. A brief description of the entire crack size calculation process is shown in Figure 12.

Scrack =
∑

i, j ∈ Cc

pi j (9)

Lcrack =
∑

m,n ∈ Cl

lmn (10)

where Scrack represents the area of the crack, pi j represents the pixels of the crack, Cc represents the set
of the crack pixels; Lcrack represents the length of the crack; lmn represents the pixels of the skeleton;
Cl represents the set of the skeleton pixel.
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Figure 13 shows examples of crack skeleton extraction and size calculation. The width of crack
skeleton is expressed by a single pixel. The length of the crack is calculated from the crack skeleton,
and the actual crack size is calculated from the ground truth. It can be seen from the results that the
calculation error of the length and average width is small, and the error of the prediction of the area of
the crack is relatively large. In the entire test dataset, the variation range of the relative error of the
crack area is from −35.02% to 119.94%; the variation range of the relative error of the crack length
is from −35.12% to 73.13%; and the variation range of the relative error of the mean width is from
−32.84% to 58.69%.

Figure 14 shows the comparison of the predicted value and the ground truth of crack size in the
test dataset. Most data points of the mean width are located near y = x, with small deviations. The data
points of area and length have relatively large deviations.

Figure 15 shows some examples of error in the test results of the proposed methods. (a) and
(b) show false-negative errors, which means that the ground truth is crack but the prediction is
background. (c) and (d) show false-positive error, which means that the ground truth is background
but the prediction is crack.
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5. Comparative Study

To verify the pixel-level segmentation performance of the proposed method, this paper uses three
network models for comparative research: UNet [45], SegNet [46], FCN [38] and ResNet152-based [40].
UNet is a typical network in the field of medical image segmentation, and the structure of UNet
is very symmetrical. SegNet is a deep convolutional encoding and decoding network architecture.
The encoding part of the network is composed of the convolution of the VGG16 model, and the
segmentation performance in the street view dataset is good. FCN is a modified network architecture
for concrete crack detection based on VGG19. The road crack of the ResNet152-based is a pixel-level
road crack method, the decoding layer of this method uses ResNet152 network to extract image
features. The learning rate of 0.0001 is best for the ResNet152-based network; UNet and SegNet use a
momentum of 0.995 and the RMSprop is selected as the optimizer. The learning rate of 0.001 is best
for the SegNet network; the learning rate of 0.0001 is suit for UNet. The best learning rate for FCN
is 0.00001. These parameters are selected over by many experiments. The experimental comparison
results are shown in Figure 16.

Figure 16 shows some examples of prediction results for the ResNet152-based, SegNet, Unet,
FCN and CDDS method in test dataset. Different methods perform differently in the details of crack
prediction results. Table 4 shows the comparison results of the proposed CDDS network and other
methods in the test dataset. The indicators of the proposed CDDS network are higher than other
methods. The number of background pixels in the entire dataset is much higher than the crack pixels.
To express the location performance of the crack more accurately, the IoU of crack and background are
calculated respectively. The background IoU of each method is above 90%. The crack IOU and the
F-measure for the proposed CDDS network reach 66.76% and 79.16%, respectively. Table 5 shows the
comparison of training and testing time for the proposed CDDS network and other methods in the
test dataset. Training time includes image reading time, network training and network verification.
Test time indicates the average test time of each picture.
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Figure 16. Examples of comparison of prediction results. (A represents FCN, B represents UNet,
C represents SegNet, D represents ResNet152-based and E represents the proposed method).

Table 4. Comparison of indicator parameters for ResNet152-based, FCN, Unet, SegNet and CDDS.

Methods Recall (%) Precision (%) F-measure (%) Crack IoU (%) Background IoU (%)

ResNet152-based 57.49 74.99 63.68 47.68 99.54
FCN 71.53 72.57 69.37 55.70 99.69
UNet 78.33 77.14 76.20 62.71 99.73

SegNet 79.15 77.85 77.22 64.37 99.74
CDDS 80.45 80.31 79.16 66.76 99.76

Table 5. Comparison of training and testing time for ResNet152-based, FCN, Unet, SegNet and CDDS.

Methods Training Time Testing Time (for Per Image)

ResNet152-based 3 h and 12 min 0.13 s
FCN 6 h and 4 min 0.17 s
UNet 9 h and 17 min 0.20 s

SegNet 6 h and 2 min 0.21 s
CDDS 9 h and 24 min 0.26 s

To validate the performance of our proposed method on other public crack datasets we collected
764 images of road cracks from the Internet. These road crack images have corresponding pixel-level
labels. This crack dataset is also divided into a training dataset, a validation dataset, and a test
dataset. The training dataset contains 620 images, and the validation and test datasets each contain 72
images. If all the hyper-parameters are kept constant, such as learning rate, batch size, we retrained
our proposed method on the training dataset. As shown in Figure 17, the test results on the test
dataset show the effectiveness of the proposed method for the pixel-level detecting cracks. On the
test dataset, the crack IOU and the F-measure for the proposed CDDS network reach 67.41% and
80.14%, respectively.
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6. Conclusions

A pixel-level crack detection method using a deep convolutional network is proposed to detect
crack on dam surface. The CDDS network is improved based on the characteristics of the SegNet
structure and consists of encoding and decoding parts. The encoding part is used to extract the
feature of the input image, the decoding part is used to output the pixel-level prediction results. In the
architecture of CDDS, four skip branches are used for combining the shallow and deep features of the
network. Each skip branch is followed by a convolution layer and a deconvolution layer. The losses of
the 4 skip layers are added as part of the total loss. A UAV with a high definition camera was used to
collect 1000 raw images with a resolution of 5472 × 3648. To augment the dataset, 504 valid images with
a resolution of 608 × 608 obtained by cropping and flipping. The entire dataset is divided into three
subsets, of which the training dataset has 404 images, the test dataset has 50 images, and the validation
dataset has 50 images. After the CDDS network training, to obtain the size of the crack, we need to
extract the skeleton of the crack. The sum of skeleton pixels represents the length of the crack. The sum
of crack pixels in the prediction results indicates the area of the crack. The average width of the crack is
calculated using area and length. The precision, the recall, the F-measure and the IoU are calculated in
the test dataset. The recall, precision, F-measure, crack IoU and background IoU the for the proposed
CDDS network reach 80.45%, 80.31%, 79.16%, 66.76% and 99.76%, respectively. Compared with other
pixel-level detection networks, the proposed CDDS network has higher indicators and performance.
In future studies, we will continue to improve the accuracy of crack location techniques.
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